
Breaking the Accessibility Barrier in Non-Visual Interaction
with PDF Forms

UTKU UCKUN, Stony Brook University, USA
ALI SELMAN AYDIN, Stony Brook University, USA
VIKAS ASHOK, Old Dominion University, USA
IV RAMAKRISHNAN, Stony Brook University, USA

PDF forms are ubiquitous. Businesses big and small, government agencies, health and educational institutions
and many others have all embraced PDF forms. People use PDF forms for providing information to these
entities. But people who are blind frequently find it very difficult to fill out PDF forms with screen readers,
the standard assistive software that they use for interacting with computer applications. Firstly, many of the
them are not even accessible as they are non-interactive and hence not editable on a computer. Secondly,
even if they are interactive, it is not always easy to associate the correct labels with the form fields, either
because the labels are not meaningful or the sequential reading order of the screen reader misses the visual
cues that associate the correct labels with the fields. In this paper we present a solution to the accessibility
problem of PDF forms. We leverage the fact that many people with visual impairments are familiar with web
browsing and are proficient at filling out web forms. Thus, we create a web form layer over the PDF form
via a high fidelity transformation process that attempts to preserve all the spatial relationships of the PDF
elements including forms, their labels and the textual content. Blind people only interact with the web forms,
and the filled out web form fields are transparently transferred to the corresponding fields in the PDF form. An
optimization algorithm automatically adjusts the length and width of the PDF fields to accommodate arbitrary
size field data. This ensures that the filled out PDF document does not have any truncated form-field values,
and additionally, it is readable. A user study with fourteen users with visual impairments revealed that they
were able to populate more form fields than the status quo and the self-reported user experience with the
proposed interface was superior compared to the status quo.

CCS Concepts: •Human-centered computing→ Accessibility technologies; Empirical studies in accessi-
bility.

Additional Key Words and Phrases: PDF form accessibility, screen-reader users, accessible interfaces

ACM Reference Format:
Utku Uckun, Ali Selman Aydin, Vikas Ashok, and IV Ramakrishnan. 2020. Breaking the Accessibility Barrier
in Non-Visual Interaction with PDF Forms. Proc. ACM Hum.-Comput. Interact. 4, EICS, Article 80 (June 2020),
16 pages. https://doi.org/10.1145/3397868

1 INTRODUCTION
PDF (Portable Document Format) documents are ubiquitous in the computing world. Almost anyone
who interacts with computers will invariably come across PDF documents. While most of these

Authors’ addresses: Utku Uckun, uuckun@cs.stonybrook.edu, Stony Brook University, Stony Brook, NY, USA; Ali Selman
Aydin, aaydin@cs.stonybrook.edu, Stony Brook University, Stony Brook, NY, USA; Vikas Ashok, vganjigu@cs.odu.edu, Old
Dominion University, Norfolk, VA, USA; IV Ramakrishnan, ram@cs.stonybrook.edu, Stony Brook University, Stony Brook,
NY, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2573-0142/2020/6-ART80 $15.00
https://doi.org/10.1145/3397868

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020. 80

https://doi.org/10.1145/3397868
https://doi.org/10.1145/3397868

80:2 Uckun et al.

Fig. 1. The Name form field is not interactive; all others are interactive. (Modified from [12])

documents are created primarily for reading purposes, many kinds of fillable forms are also created
in PDF. In fact, businesses big and small, government agencies, health and educational institutions
and many others have all embraced PDF forms. People use PDF forms for providing information to
these entities. However, these PDF forms are meant to be used by sighted people. Naturally, people
who are blind find it challenging to fill out PDF forms.

People who are blind use screen readers (SRs) to interact with computers. SRs serially read
out the text on the screen while ignoring all the graphics. The reasons blind persons (BPs) have
difficulties with PDF form filling using SRs are manifold.

First, some of these PDF forms are images. In a review of over 856 PDF forms that we downloaded
from the Web using Google search, we found out that nearly 1% were PDF images. Second, a
majority of these forms are non-interactive, in the sense that the SR reads the textual elements
in the forms but BPs are unable to key in any data in the form fields or select any of the options
provided by check boxes/radio buttons in these forms (see Figure 1 - the Name field is not interactive
while all the fields with “bluish” tinge are interactive). In our downloaded data set, 440 forms (i.e.,
51.4%) were completely non-interactive, i.e., no form field was fillable. Third, even if the forms are
interactive, the implicit labels of the form fields, which are read out when the SR’s cursor is focused
on these fields, are very often either non-existent or not meaningful such as the string “text”. In
Figure 2 the implicit labels for both the form fields are “text”. So when the SR’s cursor is focused on
them it will readout “text”, which is not helpful to the BP who is trying to get a sense of the kind of
data required by the form fields. In a manual inspection of 103 of the remaining 407 interactive
forms only around 44.6% had correct and meaningful implicit labels assigned to the form fields.
Fourth, the top-to-bottom, left-to-right natural reading order of documents is often not adhered to
by SRs. They tend to follow a reading order that is not consistent with the natural reading order
and instead may read out the elements of the PDF document in seemingly arbitrary order. This is
due to fact that SRs follow the order of words in the PDF’s metadata which does not necessarily
follow the correct reading order. This makes it difficult for BPs to associate the explicit labels that
appear in the immediate locality of the form fields, notably, either in the front or on the top, with
the form fields. In Figure 2 “Print name” and “Signature” are the explicit labels associated with
the top and bottom form fields. But observe that in the SR’s reading order of the form elements
(shown as 1, 2, 3, 4) the SR first reads out “text” followed by “Print Name”. Because the SR reads

Fig. 2. Implicit labels of the two form fields are both “text”. SR’s reading order of the form elements (shown
by numbers 1, 2, 3, 4) makes it difficult for BPs to associate the explicit labels “Print Name” and “Signature”
to their corresponding form fields. (Modified from [11])

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:3

Fig. 3. Mixing the readout of the form elements of two groups - Transferor and Transferee. The numbers
denote the SR’s reading order of the form elements. (Modified from [32])

out in reverse order, it is not easy for a BP to associate “Print Name” as the label of the top form
field. Fifth, even if the screen reading order is consistent with the natural reading order the readout
often intersperses the text elements of one group of form elements with those of another group,
which can confuse and disorient the BP. In Figure 3 it is natural and intuitive to readout all the
form elements of the Transferor group before commencing the readout of the Transferee group.
SRs cannot distinguish such groups and intersperse the elements of the two groups in its readout.
In this figure the numbers denote the reading order. Last, because of length constraints some form
fields cannot accommodate the complete text the BP wishes to key in without either truncating
the text or shrinking the font size to such an extent as to make the text unreadable. Overall, all
these problems make PDF form filling inaccessible for BPs. In fact, many BPs in our focus group
mentioned that they shy away from PDF forms altogether and instead prefer web forms.

This paper proposes a novel approach to make PDF form filling accessible for BPs by addressing
all of the aforementioned problems. Our solution leverages the fact that BPs are familiar with web
browsing and are proficient at filling out web forms as noted in [9] as well in our own user study (see
Section 4.2). Thus, we create a web form layer over the PDF form via a high fidelity transformation
process that attempts to preserve all the spatial relationships of the PDF elements including forms,
their labels and the textual content. The transformation also preserves the grouping of form fields
in such a way that SRs complete the narration of all the text elements of a group before moving
onto other groups. The transformation process also pairs up a form field’s explicit and implicit
labels in the transformed web form, thereby making the semantic meaning of a form field apparent
to the BP, who now will know what data to fill in the form field.
BPs only interact with the web forms, and the filled out web form fields are transparently

transferred to the corresponding fields in the PDF form. An optimization algorithm automatically
adjusts the length and width of the PDF fields to accommodate arbitrary size field data. This ensures
that the filled out PDF document does not have any truncated form-field values, and additionally,
it is readable. Figure 4 illustrates transformation process on a non-interactive PDF form (the 1st
panel on the left). It is first transformed into a (semi)interactive PDF form (the 2nd panel) and then
into HTML (the 3rd panel). Observe how all the spatial relationships amongst the form elements
are preserved. The BP interacts with the HTML form and fills out all the form fields. The last step
of the transformation populates the PDF form with the data filled in the web form (4th panel).

Below are the main contributions of this paper:
• We present an analysis of PDF forms downloaded from the internet to demonstrate that a
large portion of PDF forms are not accessible.

• We introduce and explain a transformation pipeline which converts an inaccessible PDF form
to its Web form version to be filled by SR users, and fills the entered information to the PDF
form.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:4 Uckun et al.

Fig. 4. Illustration of the transformation steps: from non-interactive PDF form to a fully filled out PDF form.
(Modified from [24])

• We demonstrate the effectiveness of our pipeline through both an offline assessment and a
user study.

2 RELATED WORK
2.1 Lessons from Web Accessibility
There have been studies about PDF accessibility in the past, both in the context of web accessibility
and as a topic on its own. One of these studies were carried out by Lazar et al[25]. Their survey
investigates the sources of frustration for people who are blind while using Web. While the results
in this paper represent the state of the Web in 2007, we detected common issues that impact the
accessibility of PDF forms today. As this study indicates, top causes of frustration on the internet are
complex layouts that are confusing the screen-reader’s reading order and poorly designed unlabeled
forms[25]. Another important finding is inaccessible PDF format being a cause of frustration. Even
though there has been many attempts towards more accessible Web since these works have been
published, we believe that these changes were not widely adopted in PDF forms.

2.2 Screen Readers
There are various software and hardware solutions that try to make computers more accessible to
people with visual impairments. Braille display [38] [21] [37] is an example of a hardware solution
while screen-reader software such as JAWS [20], NVDA [30] and VoiceOver[6] are examples of
software solutions [9]. By nature software solutions are more commonly used and less expensive
than hardware solutions therefore, screen reader is the preferred tool for most people with blindness.
Among other tasks, screen readers have been the go-to tools for interacting with PDF forms for
people with visual impairments, which is why our method focuses on screen-reader users.

2.3 PDF Accessibility
Certain characteristics of PDF format make it challenging to enable PDF accessibility for people with
visual impairments. A major setback is the proprietary nature of the PDF format[35]. Open source
documents are easier to work on while developing accessibility features. HTML is an example
open source document type and there has been numerous attempts to making HTML documents
more accessible to BPs[8] [7] [28]. Another challenge is due to frequent discrepancies between the
presentation order of elements in a PDF document and the parsing order of the screen reader. Such
cases are harder to cope with in PDF documents, since it’s more difficult to alter the components’
order in a PDF document compared to changing the component order in an HTML document.
Despite the prevalence and importance of PDF documents, the number of works investigating

the non-visual accessibility of PDF documents has remained limited. One example is [35], which
investigates not only non-visual accessibility of the PDF documents, but also other types of accessi-
bility challenges with PDF documents. While this work is positive about the accessibility of the

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:5

PDF files overall, it does not focus on accessibility of forms. A properly labeled and annotated PDF
form might be suitable for non-visual accessibility under certain conditions, but this is frequently
not the case as we discuss in Section 1. Similarly, [29] examines articles from four journals and
finds out that the majority of articles do not adhere to best-practices for PDF accessibility, such as
providing alt text for figures used in the papers, or providing tags. Authors of [34] acknowledge
the problem of accessibility of PDFs using screen-reader software, since many PDF files consist of
scanned images. This is in line with our findings described in Section 1. Findings presented in [1]
reveal that PDF accessibility is a problem in educational settings.

There has been previous attempts at making existing PDF files accessible or generating accessible
PDF files. One such work focused on a specific application is [4], in which the authors introduce a
framework to replace LATEX formulae with an accessible replacement text for screen-readers. For
generic PDF files, authors of [15] outline an architecture that consists of a client and a processing
component for authoring accessible PDF documents. Another example is PAVE[16, 19], which is a
web-based tool to detect and correct or provide feedback about PDF accessibility issues. In [17]
the authors introduce two plugins for Microsoft Word and Microsoft PowerPoint based on the
architecture described in [15] and in [14] they provide a comparison of these tools to the existing
such tools. A comparison of tools to make PDF files accessible via post-processing, including
PAVE[16, 19], is provided in [13]. These tools are compared on various criteria such as availability
as a web-based tool, and availability without charge. The common theme of these works is they
either aim to improve the PDF accessibility during the authoring process or make existing PDF
files accessible, while our work differs from these works since it does not modify the accessibility
properties of the PDF file other than adding new annotations and modifying implicit labels.
Another distinct group of related work regarding PDF accessibility is in the form of guidelines

and best-practice manuals. One such example guideline is PDF Techniques for WCAG(Web content
accessibility guidelines)[36]. Another example is [18], which briefly describes two processes for
making PDF documents accessible. Although these works do not specifically target PDF forms, they
provide useful tips for PDF accessibility. For example, PDF Techniques for WCAG requires PDF
creators to provide labels for interactive form controls and to provide a correct reading order[36].
Our work does not attempt to make existing PDF accessible per se by modifying the file itself.

2.4 HTML Form Accessibility
Web accessibility has been one of the focal points of non-visual accessibility research in the previous
two decades[10, 27, 33]. In addition, major screen-reader software provide features and shortcuts
specifically targeted at web interaction. Consequently, thanks to efforts from both academia and
the industry, interacting with simple web forms designed with accessibility concerns in mind
is frequently an effortless task. We take advantage of this progress by choosing web forms as a
replacement for PDF forms.

3 MAKING PDF FORMS ACCESSIBLE
Conceptually, a PDF form is composed of a collection of logical segments; each segment consists
of a collection of basic PDF elements, namely text elements and form field elements. Informally,
a logical segment represents a group of form elements that will be narrated by the SR as one
contiguous piece without interspersing them with the elements of any other logical segment during
the narration. In Figure 3 the form elements in the Transferor form and those in the Transferee
form are two separate logical segments. The SR will be required to narrate all the elements in
Transferor first before it proceeds to read out the elements in Transferee.

We will now describe the transformation pipeline, rooted in the idea of logical segments, to
transform a non-accessible PDF into a PDF form that has its fields filled out by the BP.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:6 Uckun et al.

Fig. 5. End-to-end transformation process overview.

3.1 Transformation Pipeline
Figure 5 is a high-level overview of the end-to-end transformation process flow. The PDF document
with embedded PDF forms is converted by the transformation pipeline into a HTML document
with high fidelity, in the sense that the HTML document retains all the spatial relationships in the
PDF documents including forms, their labels and the textual content. The embedded forms get
converted into web forms in the HTML page. BPs only interact with the web forms using their SRs,
and the filled out web form fields are transparently transferred to the corresponding fields in the
PDF form. An optimization algorithm automatically adjusts the length and width of the PDF fields
to accommodate arbitrary size field data, thereby ensuring that the filled out PDF document does
not have any truncated form-field values, and in addition, is readable.

We now describe the “hows” of the transformation pipeline. Figure 6 shows the main operational
steps of the pipeline, denoted by the oval boxes. Each of these steps is described next.

3.1.1 Extraction. In this step the basic elements of the PDF document, namely, text and form field
elements are identified and extracted. Towards this, we employ Adobe Acrobat Pro [2] as well
as Amazon’s AWS Textract [5]. Both these tools identify the PDF elements and using them in
combination provides a higher extraction yield, as opposed to using only one of them.
Each identified element is enclosed by a bounding rectangle and annotated with their 2-D

coordinate locations. Both these tools also assign implicit labels to form elements, although they
may not always be meaningful. We note that sometimes the original PDF form itself may have
meaningful implicit labels. In such cases we do utilize these labels as well. The final operation in
this step is associating meaningful labels with the form field. Rather than finding the explicit label
which in general is difficult, we instead create a suggestion list of possible labels by grabbing the
surrounding text elements in the immediate neighborhood of the form field, namely, text elements

Fig. 6. Main operational steps of the transformation pipeline.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:7

above, below, to the left and to the right of the form field. This list will also include the explicit
label, provided it exists in the original PDF document. The list is then ranked according to the
length of the text (shorter text is preferred) and distance of the text from the form field (closer is
preferred). Our observations showed that combination of these metrics gave the best results when
trying to find the explicit label. When the focus of the SR cursor shifts to a field, it first reads out
the implicit label assigned to this field by either Acrobat Pro or AWS Textract. Next, it reads out the
possible labels such as “text at the top is name”, “text to the right is city”, and so on. If the implicit
label is not meaningful, the labels in the suggestion list provide contextual hints that assist the BP
in making the correct label association in order to enter the right data value in the field.

3.1.2 Logical Segmentation. In this step we create logical segments from the PDF elements extracted
in the previous step (see Figure 7a and Figure 7b). First we create logical lines which are text and
form elements that align horizontally and constitute a line in the PDF document. Figure 7c shows
an example. These logical lines are then merged into logical segments as shown in Figure 7d.
The process of creating logical segments is driven by an ontology that essentially is a set of

machine processable rules. Next, we provide the overview of the rules of this ontology.
Recall that the extraction step results in a set of PDF elements annotated with their associated

2-D coordinates. To create the logical lines the algorithm will merge contiguous elements that
satisfy the following constraints:
(1) The elements are horizontally aligned. Horizontal alignment means that their Y coordinates

are “almost” identical, i.e., within some some small threshold δY .
(2) The consecutive elements are not far apart, i.e., they must be within some threshold δD .
Both δY and δD were experimentally determined from our data set of 856 PDF forms.
The logical lines are next merged into logical segments. As a prelude to the merging step, we

identify explicit and implicit boxes enclosing a group of PDF elements, which can be regarded as
self-contained logical segments. In the PDF document explicit boxes have distinct border lines
(Figure 8a), whereas implicit boxes have a discernible background color enclosing the group of

(a)

(c)

(b)

(d)

Fig. 7. Process of creating logical segments. (a): Example of text elements with bounding boxes. (b): Example
of form field elements with bounding boxes. (c): Example of logical lines created from 7a and 7b. (d): Example
of logical segment created from 7c. (Modified from [24])

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:8 Uckun et al.

elements (Figure 8b). Both explicit and implicit boundaries are detected using standard image
processing methods (e.g., binarization, edge detection, erosion, dilation etc.). Logical lines within
different boundaries cannot be merged into the same logical segment.
Staring with the set of all logical lines, the logical segmentation algorithm recursively merges

them into larger logical segments.
The base step merges pairs of logical lines under these constraints:
(1) The pairs of logical lines are vertically aligned. Vertical alignment means that their X coordi-

nates are “almost” identical, i.e., within some some small threshold δX .
(2) Logical lines have a high degree of overlap along the horizontal axis, i.e., above some threshold

δO .
Both δX and δO were experimentally determined from our data set of 856 PDF forms.

Following this base step, we will get a set of elementary logical segments consisting of merged
pairs of logical lines. We will use these elementary segments to bootstrap the merging process as
follows: First, we identify elementary segments that are unmergeable (i.e., they cannot be merged).
These are segments that have logical lines that are vertically aligned but do not have any horizontal
overlap. Intuitively, such elementary segments will become independent logical segments. We
create the set UM of pairs < α, β > where α and β are unmergeable segments.

In the recursive step logical segment pairs < γ ,ω > are merged into larger segments under the
following constraints:
(1) γ and ω are vertically aligned.
(2) γ and ω overlap horizontally.
(3) There is no other logical segment β that cannot be merged with either γ or ω.
Following a recursive step, if an ummergeable segment becomes part of a bigger segment then

the unmergeability information is propagated to the bigger segment and the unmergeable set UM
gets updated with new pairs of unmergeable logical segments. In Figure 9, logical segments 2 and 3

(a) The red rectangle highlights how PDF forms utilize surrounding boxes
for grouping PDF elements.

(b) Red rectangle highlights how a different background color can serve as a
visual cue for a group. (Modified from [31])

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Fig. 8. Illustration of grouping of PDF elements with explicit and implicit boundaries.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:9

are examples of unmergeable logical segments. Therefore, logical segment 1 cannot merge with
either one of these two segments. Thus we preserve the logical structure of the two columns in
this PDF form. The process stops when no logical segments are left to merge.

3.1.3 Transformation to HTML. The logical segments that are created as a result of the previous
step are first topologically sorted based on their positions.The sorted segments are then converted
into HTML. The BP interacts with the HTML document with a SR. The PDF form fields are converted
to web form fields. These fields are annotated with their implicit labels. They are also augmented
with the suggestion lists. Together they assist the BP in filling out the web form with the right data.

3.1.4 Populating PDF Form Fields. The last step pertains to populating the PDF form fields. The
subtle problem here is in ensuring that the web form data can be accommodated in the PDF form
fields without compromising readability. This is because form fields in PDF have length and width
constraints. So text data that cannot be be accommodated within these constraints either gets
truncated or the font size will get reduced drastically so as to make the text unreadable.
We address this problem in two steps: In the first step we assess if we can find the largest font

size from a range of font sizes, with which the text can be inserted in the form field, splitting it
across multiple lines of the form field, if needed. If this is not possible we expand the width and
length of the form field by greedily grabbing the white space in the immediate neighborhood of
the form field and repeating the previous step. If the text is split over multiple lines we ensure that
the word is split at the right spot using the algorithm in [23]. Figure 10 shows an example where
the length and width of the initial form field cannot accommodate the form field data without
shrinking the font to an unreadable size. Our algorithm can detect this situation and accordingly

Fig. 9. Example of the final logical segments of a PDF form document. (Modified from [31])

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:10 Uckun et al.

(a) Address field, shown with bluish tinge, is too short for the address entered
by the user; the font shrinks to accommodate the data and has become
unreadable.

(b) Length adjusted PDF form field populatedwith user-filled data transferred
from the web form.

Fig. 10. Populating PDF form field by automatic adjustment of its size. (Modified from [12])

expand the form field to the available space around it and thus preserve the readability of the form
field data.

4 EVALUATION
4.1 Algorithm Accuracy
To evaluate our approach, we created a dataset consisting of 100 manually-annotated PDF forms.
Specifically, we marked all the components (text, checkboxes and form fields) in each of these PDFs,
and also the correct reading order in which they are supposed to be narrated linearly by a screen
reader. The outcomes (i.e., field labels, reading order) of our algorithm on this dataset were then
compared to the human “ground-truth” annotations to assess its accuracy and effectiveness.

To compare and match the extracted components with human annotations, we used the Leven-
shtein distance[26] between the component labels, as the extraction services sometimes had few
extraneous characters, e.g., “Name:” instead of just “Name” for the same component.

We used two metrics to evaluate the accuracy of our algorithm: Kendall’s Tau coefficient[22] and
F1 score. To compare the reading order generated by the algorithm to the correct human-specified
reading order, we used the Kendall’s Tau coefficient, which is a rank correlation coefficient between
two lists’ ordering. Highest possible value of Kendall’s Tau is 1 if the ordering is the same for both
lists and the lowest possible value is -1 if a list is compared to its reverse. F1 score was used to
measure the accuracy of field extraction and corresponding labels from the PDFs. Perfect extraction
(i.e., no false positives and no false negatives) would result in an F1 score of 1, while the lowest
possible F1 score is 0.

4.1.1 Results. Table 1 presents the results of our evaluations. We ran our processing algorithm
described in Section 3 3 times, each time using the output of a different form-field detection service
(i.e., Acrobat Pro, AWS Textract, and both). Results obtained only using the output of Acrobat Pro
service are shown in first row while the results obtained only using the output of AWS Textract
service are shown in second row. Lastly, the results obtained by combining outputs of both services
are shown in the third row.

As seen in Table 1, using only Acrobat Pro extractions as input resulted in the best Tau score while
using only AWS Textract extractions yielded the lowest Tau score. Our observations suggest that this
is due to Acrobat Pro being more reliable in accurately determining the exact field locations in our
dataset; since accurate field-location information leads to accurate form segmentation that improves
the reading order. Reverse pattern can be seen in the F1 scores: AWS Textract has performed better

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:11

Sources Tau Score Precision Recall F1
Acrobat Pro 0.922 0.747 0.763 0.755
AWS Textract 0.907 0.817 0.806 0.812
Both Sources 0.921 0.793 0.831 0.811

Table 1. Offline evaluation statistics.

in detecting explicit labels in our dataset, resulting in more accurate element extraction. Using
both services together produced the second highest Tau and F1 scores. However, both these scores
were only marginally smaller than the best scores created by the other methods, which led us to
incorporate output produced by both sources in our proposed method.

4.2 User Study
We conducted an IRB-approved user study with 14 screen-reader users (7 male, 7 female, with an
average age of 47.3, median=46, min=32, max=62) (see Table 2). Recruitment of participants was
done using contact email lists and word of mouth. The inclusion criteria for this study were (i)
having a visual impairment severe enough to require screen-readers for interacting with computers,
and (ii) at least basic proficiency with screen-reader software. All users were proficient in using
JAWS [20] to varying degrees, which is the screen-reader software used in the study. Participants
were given monetary compensation for their contributions.

4.2.1 Design. We designed a within-subject study with two conditions: (i) using Adobe Acrobat
Reader[3] (baseline); and (ii) using the web page generated by our system (proposed). Testing of
each condition involved three forms, totaling to 2 × 3 = 6 forms to be filled per user, excluding the
practice forms which are used in both conditions. The 6 forms used are assigned to two conditions
randomly to ensure uniform selection probability, and the order of conditions was counterbalanced.
The order of forms assigned to each condition was also randomized.

The forms used in the study were chosen from the PDFs that lacked annotations, which consti-
tuted 51.4% of the PDF forms we downloaded from the web. Forms selected included a car accident

ID Gender & Age Condition Desktop Screen Reader Internet Usage Freq.
P1 Male/37 Blind JAWS Everyday
P2 Female/47 Blind JAWS Everyday
P3 Female/58 Blind JAWS Everyday
P4 Male/55 Blind JAWS, NVDA Everyday
P5 Female/58 Blind JAWS Every week
P6 Male/45 Peripheral vision SystemAccess, JAWS Everyday
P7 Male/39 Light perception only JAWS, NVDA Every week
P8 Male/60 Low-vision JAWS, VoiceOver Every week
P9 Male/45 Blind JAWS Everyday
P10 Female/62 Blind JAWS Every week
P11 Male/33 Blind JAWS Everyday
P12 Female/32 Blind JAWS Everyday
P13 Female/57 Blind JAWS Everyday
P14 Female/34 Light perception only JAWS Everyday

Table 2. Participant demographics.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:12 Uckun et al.

report form, a background check request form, a sales form, and an entry form for a competition.
These forms contained 24.5 form fields on average(min=10, max=48). Only one of the forms was
originally a multi-page document, which was then truncated to crop the first page of the form. All
the forms used in the user study were single page forms because of the limitations due to the user
study duration and for ensuring similar length and level of difficulty for each form.

4.2.2 Procedure. The user study was conducted as follows: The participants were first introduced
to each interface along with the useful modes of interaction (e.g., JAWS shortcuts), and asked to
perform simple tasks such as locating and filling a particular text field inside a form using these
modes of interaction. Once the users felt they achieved a certain level of proficiency with these
interfaces, they were asked to perform the main study tasks. Some of the form fields contained
questions that may not apply to the users or questions that users may not be willing to reveal,
hence, during the practice phase, the participants were informed that they could freely make up
dummy answers based on their liking. In addition, the users were instructed to type ‘N/A‘ or ‘NA‘
in the form fields when they were not sure about what to type in those fields.
In the baseline condition, the participants filled PDF forms using Acrobat Reader. These PDF

forms were processed using Acrobat Pro to detect form fields that had not be annotated by default.
In the proposed condition, the participants filled pre-computed HTML forms generated by our
transformation pipeline. Information filled in by the users in both conditions were stored for future
analysis.

After completing each task, the participants were asked to answer a SEQ (Single Ease Question),
on a scale of 1(easy) to 7(hard). We also tracked the time during the process, limiting the filling
duration to 15 minutes for each form(Except a single form that took 16 minutes for the user to fill).

4.2.3 Results.
Unfilled Form Fields. The primary metric of performance for an accessibility aid for form-filling
task is the number of form fields that are accessible to the users with screen readers. For this
purpose, we recorded the number of text fields filled by each user in each and every form. We did
not include checkboxes in our analysis since checkboxes might have been intentionally left blank
by the users. Figure 11a shows the distribution of number of unfilled text fields by the users per
document. On average, the number of text fields missed by the users was 2.81(11.5%) with our
proposed method, compared to 5.79(23.6%) with the baseline method. This difference was found to
be statistically significant (one-tailed Mann-Whitney U test,U = 1180.5, p = 0.002). Based on our
observations, this difference can be mainly attributed to two factors: (i) higher form-field detection
accuracy of the proposed method, and (ii) more accurate label generation leading to more fields
being filled.

SEQ Results. Figure 11b shows the distribution of SEQ results for all forms and all participants.
Average SEQ score for baseline was 5.54 while the average SEQ score for the proposed method was
4.52. As a one tailed Mann-Whitney U Test shows, the proposed method was rated significantly
better than the baseline method(U = 668.5, p = 0.03).

Subjective Feedback. We collected user feedback by administering a custom questionnaire.
First, at the end of the study, the users were asked which interface they liked more. 9 out of 14 users
have stated that they liked the proposed interface more than the baseline. Many of the participants
that selected the proposed method over the baseline mentioned how suggestions of possible labels
(referred to as ‘Hints‘ in the web interface) were helpful for them to infer the label when the
annotations are missing. For example, P1 mentioned that the hints can be helpful when one does
not understand the question being asked in a field. P8 said that hints were helpful in describing
what’s coming next. Speaking of the proposed method, P7 said "More interactive, more descriptive,
and more information... It was easier and faster".

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:13

(a) Boxplot for distribution of number of missed fields
by the users.

(b) SEQ score distribution.

Fig. 11. Boxplots for comparing number of missed fields and SEQ scores for both conditions.

The effects of reading order on user experience became evident particularly in the baseline
condition. Speaking of one of the forms filled during the baseline condition, P9 said the form was
not laid out correct. P2 stated "i felt lost" for one of the forms filled during the baseline condition.
The users that preferred the baseline interface did so mainly due to their previous familiarity

with Acrobat Reader. P13, who preferred baseline over the proposed interface, stated that while
hints were interesting, it was a little challenging to get used to. P2 said hints may be confusing.
This indicates there may be a learning curve associated with using label suggestions effectively.
A longer practice period might result in better utilization of hints. P4 found the baseline more
maneuverable, while P12 stated that she understood the forms better with the baseline interface.

5 DISCUSSION AND FUTURE WORK
The results clearly demonstrate the benefits of using web interfaces generated by our method as a
substitute for the default PDF form-filling interfaces. However, some open questions and limitations
remain to be addressed, which could spark future research.
Tabbing Behavior. During our user study, we observed that some users preferred to use "Tab"

shortcut to jump between editable fields in the given form. However, this behavior jumps over text
elements in the form, and therefore the screen reader does not read them aloud. During the user
study, this caused some users to miss the contextual information required to understand and fill
certain form fields, e.g., ‘From address’ vs. ‘To address’. As part of future work, we will explore
different ways to compensate for this user behavior. For example, pairing form fields with relevant
text in a way that results in screen reader reading this relevant text aloud could help users to stick
with tabbing behavior without losing the context.

Form Label Suggestions. In our approach, we suggested all possible form-field labels that our
program detected, based on our belief that more information would provide more context to the
blind users who are trying to infer what the form field is asking of them. However, our user study
showed that more information can likely cause more confusion. Creating a more delicate balance
by selecting and presenting only useful labels to the blind users can improve the performance of
our pipeline, and therefore is a topic of future research.
Making Form Label Suggestions Optional. Our observations suggest that the ability to estimate

form layouts is directly related to experience the users have with regard to filling HTML or PDF
forms with a screen reader. The two participants who self-rated their screen-reader experience
as beginners both preferred the baseline method over the proposed method, while none of the

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

80:14 Uckun et al.

users that preferred proposed method over baseline self-rated their screen-reader experience as
beginners. This indicates that the hints need to be optional, so that the users can select this option
when desired, and turn it off when they feel it is not beneficial for form filling.

Better Form-Field Recognition. Improving the systems that recognize and extract form fields is
one of the main steps towards making PDF forms more accessible. It is also one of the primary
bottlenecks that our system strives to mitigate. As our goal in this work was not to develop novel
form-field recognition algorithms, we utilized state-of-the-art solutions in an effective manner.
Form-field recognition has been commoditized, with improved versions being released constantly.
While the current form-field recognition systems are frequently inaccurate in handling complicated
forms where the form fields are embedded inside text or are not denoted with a line, they are highly
accurate in forms where the explicit labels and corresponding form fields are visually discernible.
Future developments by service providers and researchers will result in more accurate methods for
form field recognition.

Accuracy of Logical Segments and Reading Order. We identify logical segments using the process
described in Section 3. Accurate recognition of logical segments is vital for constructing ameaningful
and correct reading order. However, as the results in Section 4.1 shows, reading order constructed
by our algorithm is not always accurate. Improving reading order accuracy would allow for better
preservation of context and hence would make the form filling process smoother.

6 CONCLUSION
In this work, we addressed the accessibility issues that screen-reader users face while filling PDF
forms. With screen-readers, we noticed that many fields in majority of PDF forms are either
inaccessible, or are narrated in an incorrect serial order, thereby making it extremely challenging
for screen-reader users to fill them out with ease and also without errors. Therefore, we proposed
a transformation pipeline that enables the users to substitute PDF form filling with the more
accessible and convenient HTML form filling, with the pipeline transparently transferring the
user input obtained from the HTML form back into the original PDF form. Furthermore, to ensure
correct reading order, the pipeline analyzes the PDF form to identify chunks of semantically-related
form elements, called logical segments, and narrates each segment as one contiguous piece without
interspersing its members with other form elements not in the segment. Evaluation of our approach
in a user study with 14 participants showed significant accessibility and usability improvements
compared to the status quo, thereby validating its effectiveness in assisting screen-reader users fill
out PDF forms.

ACKNOWLEDGMENTS
This work was supported by NSF Award: 1806076, NIH Awards: R01EY026621, R01EY030085,
R01HD097188, NIDILRR Award: 90IF0117-01-00.

REFERENCES
[1] Patricia Acosta-Vargas, Sergio Luján-Mora, and Tania Acosta. 2017. Accessibility of Portable Document Format in

Education Repositories. In Proceedings of the 2017 9th International Conference on Education Technology and Computers.
239–242.

[2] Adobe. [n.d.]. Adobe Acrobat Pro DC. https://acrobat.adobe.com/us/en/acrobat/acrobat-pro.html.
[3] Adobe. [n.d.]. Adobe Acrobat Reader DC. https://acrobat.adobe.com/us/en/acrobat/pdf-reader.html
[4] Dragan Ahmetovic, Tiziana Armano, Cristian Bernareggi, Michele Berra, Anna Capietto, Sandro Coriasco, Nadir

Murru, Alice Ruighi, and Eugenia Taranto. 2018. Axessibility: a latex package for mathematical formulae accessibility
in pdf documents. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility.
352–354.

[5] Amazon. [n.d.]. Amazon Textract | Extract Text & Data | AWS. https://aws.amazon.com/textract/.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

https://acrobat.adobe.com/us/en/acrobat/pdf-reader.html

Breaking the Accessibility Barrier in Non-Visual Interaction with PDF Forms 80:15

[6] Apple. [n.d.]. Vision Accessibility - Mac - Apple. https://www.apple.com/accessibility/mac/vision/
[7] Vikas Ashok, Yevgen Borodin, Yury Puzis, and IV Ramakrishnan. 2015. Capti-speak: a speech-enabled web screen

reader. In Proceedings of the 12th Web for All Conference. 1–10.
[8] Vikas Ashok, Yury Puzis, Yevgen Borodin, and IV Ramakrishnan. 2017. Web screen reading automation assistance

using semantic abstraction. In Proceedings of the 22nd International Conference on Intelligent User Interfaces. 407–418.
[9] Yevgen Borodin, Jeffrey P Bigham, Glenn Dausch, and IV Ramakrishnan. 2010. More than meets the eye: a survey

of screen-reader browsing strategies. In Proceedings of the 2010 International Cross Disciplinary Conference on Web
Accessibility (W4A). ACM, 13.

[10] Peter Brophy and Jenny Craven. 2007. Web accessibility. Library trends 55, 4 (2007), 950–972.
[11] Attorney Grievance Committee. [n.d.]. Background Check Request Form. https://www.nycourts.gov/courts/ad1/

Committees&Programs/DDC/Background%20Check%20Request%2001%2028%202019.pdf
[12] PENNSYLVANIA DEPARTMENT OF STATE BUREAU OF CORPORATIONS and CHARITABLE ORGANIZATIONS.

[n.d.]. Articles of Incorporation-Nonprofit. https://www.dos.pa.gov/BusinessCharities/Business/RegistrationForms/
Documents/5306-7102-%20Art%20of%20Inc-Dom%20Nonprofit.pdf

[13] Alireza Darvishy. 2018. PDF accessibility: Tools and challenges. In International Conference on Computers Helping
People with Special Needs. Springer, 113–116.

[14] Alireza Darvishy and Hans-Peter Hutter. 2013. Comparison of the effectiveness of different accessibility plugins based
on important accessibility criteria. In International Conference on Universal Access in Human-Computer Interaction.
Springer, 305–310.

[15] Alireza Darvishy, Hans-Peter Hutter, Alexander Horvath, and Martin Dorigo. 2010. A flexible software architecture
concept for the creation of accessible PDF documents. In International Conference on Computers for Handicapped
Persons. Springer, 47–52.

[16] Alireza Darvishy, Hans-Peter Hutter, and Oliver Mannhart. 2011. Web application for analysis, manipulation and
generation of accessible PDF documents. In International Conference on Universal Access in Human-Computer Interaction.
Springer, 121–128.

[17] Alireza Darvishy, Thomas Leemann, and Hans-Peter Hutter. 2012. Two software plugins for the creation of fully
accessible PDF documents based on a flexible software architecture. In International Conference on Computers for
Handicapped Persons. Springer, 621–624.

[18] Heather Devine, Andres Gonzalez, and Matthew Hardy. 2011. Making accessible PDF documents. In Proceedings of the
11th ACM symposium on Document engineering. 275–276.

[19] Luchin Doblies, David Stolz, Alireza Darvishy, and Hans-Peter Hutter. 2014. PAVE: A web application to identify and
correct accessibility problems in PDF documents. In International Conference on Computers for Handicapped Persons.
Springer, 185–192.

[20] Freedom Scientific. [n.d.]. JAWS® - Freedom Scientific. https://www.freedomscientific.com/products/software/jaws/.
[21] Yoichi Haga, Wataru Makishi, Kentaro Iwami, Kentaro Totsu, Kazuhiro Nakamura, and Masayoshi Esashi. 2005.

Dynamic Braille display using SMA coil actuator and magnetic latch. Sensors and Actuators A: Physical 119, 2 (2005),
316–322.

[22] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2 (1938), 81–93.
[23] Donald E Knuth and Michael F Plass. 1981. Breaking paragraphs into lines. Software: Practice and Experience 11, 11

(1981), 1119–1184.
[24] Template Lab. [n.d.]. CONTRACT FOR SELLING A CAR. http://templatelab.com/vehicle-purchase-agreement/

?wpdmdl=32339
[25] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. 2007. What frustrates screen reader users on the

web: A study of 100 blind users. International Journal of human-computer interaction 22, 3 (2007), 247–269.
[26] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics

doklady, Vol. 10. 707–710.
[27] Jennifer Mankoff, Holly Fait, and Tu Tran. 2005. Is your web page accessible? A comparative study of methods for

assessing web page accessibility for the blind. In Proceedings of the SIGCHI conference on Human factors in computing
systems. 41–50.

[28] Hisashi Miyashita, Daisuke Sato, Hironobu Takagi, and Chieko Asakawa. 2007. Making multimedia content accessible
for screen reader users. In Proceedings of the 2007 international cross-disciplinary conference on Web accessibility (W4A).
126–127.

[29] Julius T Nganji. 2015. The Portable Document Format (PDF) accessibility practice of four journal publishers. Library &
Information Science Research 37, 3 (2015), 254–262.

[30] NVDA team. [n.d.]. NVDA. https://www.nvaccess.org/.
[31] University of Minnesota. [n.d.]. ADMISSION APPLICATION UPDATE FORM. https://admissions.tc.umn.edu/PDFs/

Application_Update.pdf

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

https://www.apple.com/accessibility/mac/vision/
https://www.nycourts.gov/courts/ad1/Committees&Programs/DDC/Background%20Check%20Request%2001%2028%202019.pdf
https://www.nycourts.gov/courts/ad1/Committees&Programs/DDC/Background%20Check%20Request%2001%2028%202019.pdf
https://www.dos.pa.gov/BusinessCharities/Business/RegistrationForms/Documents/5306-7102-%20Art%20of%20Inc-Dom%20Nonprofit.pdf
https://www.dos.pa.gov/BusinessCharities/Business/RegistrationForms/Documents/5306-7102-%20Art%20of%20Inc-Dom%20Nonprofit.pdf
http://templatelab.com/vehicle-purchase-agreement/?wpdmdl=32339
http://templatelab.com/vehicle-purchase-agreement/?wpdmdl=32339
https://admissions.tc.umn.edu/PDFs/Application_Update.pdf
https://admissions.tc.umn.edu/PDFs/Application_Update.pdf

80:16 Uckun et al.

[32] State of Nebraska Department of Motor Vehicles. [n.d.]. Bill of Sale. https://dmv.nebraska.gov/sites/dmv.nebraska.gov/
files/doc/dvr/forms/billofsale.pdf?trkid=1&cka=88&cko=219&cks1=push&cks2=24248663&cks3=psh-cpa-pushnami-
trumpboasts-fri-720am-cr1

[33] Christopher Power, André Freire, Helen Petrie, and David Swallow. 2012. Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In Proceedings of the SIGCHI conference on human factors
in computing systems. 433–442.

[34] Brian Sierkowski. 2002. Achieving web accessibility. In Proceedings of the 30th annual ACM SIGUCCS conference on
User services. 288–291.

[35] Mireia Ribera Turró. 2008. Are PDF documents accessible? Information Technology and Libraries 27, 3 (2008), 25–43.
[36] W3C. 2016. PDF Techniques for WCAG 2.0. https://www.w3.org/TR/WCAG20-TECHS/pdf
[37] Cheng Xu, Ali Israr, Ivan Poupyrev, Olivier Bau, and Chris Harrison. 2011. Tactile display for the visually impaired

using TeslaTouch. In CHI’11 Extended Abstracts on Human Factors in Computing Systems. 317–322.
[38] Levent Yobas, Dominique M Durand, Gerard G Skebe, Frederick J Lisy, and Michael A Huff. 2003. A novel integrable

microvalve for refreshable braille display system. Journal of microelectromechanical systems 12, 3 (2003), 252–263.

Received February 2020; revised March 2020; accepted April 2020

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 80. Publication date: June 2020.

https://dmv.nebraska.gov/sites/dmv.nebraska.gov/files/doc/dvr/forms/billofsale.pdf?trkid=1&cka=88&cko=219&cks1=push&cks2=24248663&cks3=psh-cpa-pushnami-trumpboasts-fri-720am-cr1
https://dmv.nebraska.gov/sites/dmv.nebraska.gov/files/doc/dvr/forms/billofsale.pdf?trkid=1&cka=88&cko=219&cks1=push&cks2=24248663&cks3=psh-cpa-pushnami-trumpboasts-fri-720am-cr1
https://dmv.nebraska.gov/sites/dmv.nebraska.gov/files/doc/dvr/forms/billofsale.pdf?trkid=1&cka=88&cko=219&cks1=push&cks2=24248663&cks3=psh-cpa-pushnami-trumpboasts-fri-720am-cr1
https://www.w3.org/TR/WCAG20-TECHS/pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Lessons from Web Accessibility
	2.2 Screen Readers
	2.3 PDF Accessibility
	2.4 HTML Form Accessibility

	3 Making PDF forms Accessible
	3.1 Transformation Pipeline

	4 Evaluation
	4.1 Algorithm Accuracy
	4.2 User Study

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

