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A Novel Fitted Rolling Horizon Control Approach
for Real-Time Policy Making in Microgrid
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Abstract—In recent years, rolling horizon control (RHC)
approaches have attracted growing attention due to its feature
of reducing forecast errors for real-time/online operation and
optimization. However, the performance of the existing RHC
approach degrades if the intra-day forecast data is unavailable or
missing due to Internet or cloud service provider outages, soft-
ware/hardware failures, and many other factors. In this paper, we
propose a new fitted-RHC approach to overcome this challenge.
The proposed fitted-RHC framework is designed with a regres-
sion algorithm which utilizes the empirical knowledge to make
the real-time decisions whenever the intra-day forecast data is
unavailable. The regression algorithm utilizes a statistical relative
probability method to calculate the relative probability for each
decision vector, and output the proper optimization policy. In
addition, we adopt a modified version of exogenous information
transition function that is more suitable to conduct the simula-
tions in a real-time environment. Simulation results in microgird
show that the proposed fitted-RHC approach can achieve the
optimal policy for the deterministic case even with the missing
data, and perform efficiently with the uncertain environment in
stochastic case study. In comparison, the proposed fitted-RHC
approach outperforms several other optimization techniques.

Index Terms—Rolling horizon control (RHC), regression algo-
rithm, mixed integer linear programming (MILP), microgrid
energy optimization, and renewable energy sources.

I. INTRODUCTION

ATA-DRIVEN learning approaches attract a lot of

researchers attention around the world due to the poten-
tial of these approaches to improve the power system oper-
ation and optimization [1]. Especially, microgrid real-time
energy optimization attracts serious attention in order to guar-
antee a reliable and economic operation due to uncertain
microgrid forecast data and variable intra-day input pro-
files. In recent works, microgrid real-time operation and
optimization have been investigated [2]. The existing real-
time energy optimization techniques are highly dependent on
intra-day forecast data and the performance may degrade if
the microgrid intra-day forecast data is unavailable/missing.
Therefore, real-time optimization of microgrids is still a great
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challenge for the modern power system, especially in cases
with high penetration of renewable energy sources (RESs).

In the past decade, most of the microgrid energy
optimization frameworks are formulated based on determinis-
tic microgrid operations [3]-[5]. In these works, the microgrid
resource information (RESs, load demand, battery, etc.) are
considered as deterministic variables (input variables) assum-
ing an accurate forecast. In the real-world, the RESs are
highly intermittent in nature, and the deterministic formula-
tion may affect the microgrid real-time operation depending
on the accuracy of the forecast information. Also, the offline
optimization approaches with deterministic formulations may
not be feasible or may be too conservative for solving
microgrid optimization problems with unstable scenarios [6].

In recent years, data-driven stochastic optimization
approaches have also been studied in the field of microgrid
energy optimization, considering the uncertain nature of
the RESs [7]-[11]. The optimization performance of these
approaches mostly depend on the scenarios or samples that
are generated using the historical or day-ahead datasets and
the forecast errors. Sometimes, a large number of scenarios
or samples need to be calculated to reach to the optimal
point. The algorithm training processes of these works also
require high computation. Some consider only the integers
for the decision variables to reduce the size of the feasible
action sets. Another drawback of these stochastic optimization
approaches is to identify probability distribution functions
(PDFs) accurately, otherwise, the practicability of the solution
can not be guaranteed.

The rolling horizon control (RHC) approach has been
proposed in the literature as a promising approach to reduce
the effect of forecast errors on microgrid real-time/online
operation and optimization [6], [12], [13]. This approach is
also commonly known as model predictive control (MPC)
in engineering and receding horizon control in operations
research [14]. In [15], the MPC based framework is proposed
to handle a two-layer energy management system (EMS) for
microgrids with hybrid energy storage considering degrada-
tion cost models. In the two-layer EMS, the minimization of
the operational cost is handled by the upper layer by schedul-
ing the power generation units, and the minimization of the
power fluctuations by the RES forecast errors is tackled by the
lower layer. A RHC based framework is proposed to minimize
the hybrid RES system operation cost as well as the invest-
ment cost in [16]. The RHC approach is applied to improve
the reliability of the hybrid RES system in online operation
optimization and the effect of prediction horizon length on

1949-3053 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on August 25,2020 at 15:28:16 UTC from IEEE Xplore. Restrictions apply.



3536

optimal scheduling has also investigated. In [17], a convex
MPC based framework is proposed for dynamic optimal power
flow between the distributed battery energy systems in an ac
microgrid. In [18], a RHC based EMS is proposed for an
islanded PV-powered microgrid with a battery storage system.
The proposed EMS is applied to predict the future state of
charge of the battery, and determine the timing and energy
deficit of an upcoming energy outage. In [19], a MPC based
approach is proposed for islanded microgrids with the presence
of uncertain energy sources where an economical and reliable
microgrid operation is achieved by combining the advantages
of stochastic mathematical formulations. A RHC based frame-
work is proposed to develop a centralized energy management
system for isolated microgrid in [20]. The RHC approach is
also investigated for the economic and reliable operations of
the microgrids in [21].

In summary, the performance of the existing RHC
approaches is influenced by the accuracy of the intra-day
forecast information of the microgrid exogenous information
(load demands, RESs, etc.). So, the economic operation
of the microgrid depends highly on the intra-day forecast
information. In this case, the performance of the existing
RHC approaches may degrade greatly if the microgrid intra-
day forecast information is unavailable or if the operator of
the microgrid fails to obtain the updated intra-day forecast
information. The possible cause of information unavailability
could be Internet or cloud service provider outages, natural
disasters, software malicious attacks, physical attacks, acci-
dental misconfiguration, network equipment hardware failures,
etc. At present, a perfect information system is unobtain-
able because the threats and issues can not be completely
prevented or their prevention can be economically unfeasi-
ble, which makes the information outages inevitable [22].
For the stochastic case study, the exogenous information
transition function (EITF) is used to determine the next-
hour exogenous information using the current hour exogenous
information in [23], [24]. In these works, the forecasted exoge-
nous information is not taken under consideration in the EITF
model, and the output of the EITF model is determined based
on the real-time information and defined noises which may
not be true for all RESs (like outputs of photovoltaic panels).
In real-time operation, the microgrid exogenous information
follows a pattern and in this case the existing model may
not be feasible/realistic. Therefore, an improved version of the
RHC approach is required to overcome the above mentioned
challenges for real-time microgrid operation. Also, a modified
version of the EITF is needed to conduct the simulation in a
more realistic environment.

In this paper, we propose a new fitted-RHC approach
to address the aforementioned challenges of microgrid real-
time/online operation. Our contributions can be summa-
rized as:

o The proposed fitted-RHC approach is capable of reduc-
ing the dependency of intra-day forecast information on
the real-time operation and optimization. We strengthen
our proposed framework by incorporating a regression
algorithm which estimates the decision vector when the
intra-day forecast information is unavailable or missing.
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The regression algorithm is designed with a statistical
probability method to calculate the relative probability
for each possible combination of actions or decision vec-
tor, and to generate the optimization policy based on the
highest relative probability in the decision vector set.

o We adopt a modified version of the EITF. In the model,
instead of using previous-hour exogenous information
with some noise, we use the forecasted exogenous
information with the forecasted errors to determine the
real-time exogenous information. This model is more
suitable to conduct the simulation studies in a real-time
environment.

o The performance of the proposed fitted-RHC approach is
justified using both deterministic and stochastic case stud-
ies, and compared with the traditional online optimization
approaches. We show that the proposed fitted-RHC
approach can achieve the optimal performance for the
real-time/online microgrid operation by tuning the hori-
zon size. We also conduct simulation studies with miss-
ing intra-day forecast information and observe that the
proposed fitted-RHC approach can still show competitive
performance in a microgrid energy optimization problem.
To further validate the performance of the proposed
fitted-RHC approach, we utilize both uniform and nor-
mal probability distribution functions for the stochastic
case study, and analyze the effect of missing or no
predictions (described in Section V). In the stochas-
tic case study, we also present the sensitivity analysis
to validate the performance of the proposed fitted-RHC
approach in the presence of variable forecast information
size. The proposed fitted-RHC approach outperforms the
other conventional online optimization techniques.

The rest of this paper is organized as follows. In Section II,
the background of the existing optimization techniques are
discussed. In Section III, the proposed fitted-RHC approach is
demonstrated. The benchmark model description and problem
formulation are presented in Section IV. Simulation setup
and results analysis are carried out in Section V. Finally, the
conclusions are provided in Section VI.

II. BACKGROUND OF EXISTING OPTIMIZATION
TECHNIQUES

A. RHC Approach

The RHC approach is an online/real-time optimization
technique which solves a constrained optimization problem
repeatedly, considering the predictions of future costs, distur-
bances, and constraints over a sliding time horizon to choose
the optimal policy for the current time step [25]-[27]. The
procedure of the RHC approach is illustrated in Figure 1. In
the figure, the red dotted line indicates the current time step ¢.
The shaded sliding/moving window represents the time frame
of the optimization problem where H is the available predicted
time horizon. The size of the prediction horizon H plays an
important role in the RHC approach which can be determined
by trial and error method as shown in Section V. At time ¢, the
optimization problem needs to be solved for the time frame
t : t+ H where the output is the optimization policy, and I; is
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Fig. 1. The RHC approach with the sliding window and the prediction
horizon.
the set of available information I; = (E/,, E/yq, ..., Ep).

Here, E; represents the current hour exogenous data (for exam-
ple, in a microgrid, iAt could be the value of load demand,
grid price, etc.) and E represents the intra-day forecast data
predicting from the time step ¢.

If the cost function for the available information I, at time ¢
can be defined as C(z, I;), then the optimization policy/decision
vector can be defined as,

++H

a/(I;) = argmin ;‘ CG,1,). (1)
where, a; is the optimization policy/decision vector at time ¢.
Note, the optimization problem could be subjected to the oper-
ational constraints of the system. According to the figure, the
prediction horizon size needs to be adjusted if 7 + H exceeds
the final time period 7. In this case, if the current time-step
is (t + k), then the prediction horizon size should be adjusted
as H =T — (t + k). Here, the value of k can be any number
based on sampling rate of the time scale as 0 < k < T. For
example, if the sampling rate of the time scale is 1 then the
value of k should be an integer. According to the figure, if
the values are t = 6, k = 15 and T = 24, then at time step
t+k =64 15 =21, the horizon size H needs to be adjusted
as H=24-21=3.

B. Other Conventional Approaches

In this paper, for the optimal solution, we use mixed integer
linear programming (MILP). The MILP is a mixed integer pro-
gramming based approach which is suitable for solving linear
optimization problems with both integer and continuous vari-
ables [28]. The MILP approach is usually used in an offline
optimization process to get the optimal solution for a cer-
tain period of time, which requires the exact information over
the optimization horizon. In the MILP approach, the objective
function of the problem, which was described in last section,
can be written as,

T
min Z ct,I,). (2)
! =1

Through the optimization process, the action set can also
be obtained for each time step. To compare with the online
optimization approaches, most of the existing publications
considered the result of this approach as a reference and tried
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to reach the optimal solution by tuning their parameters. For
example, to get the optimal operation of the microgrid using
the MILP approach, it should be assumed that the system oper-
ator can “see” the future information of the microgrid, or the
optimization problem should have to be solved at the end of
the day when all the exogenous information is available.

Additionally, we investigate the myopic optimization
approach. The myopic approach is an optimization technique
where the decisions need to be made in an online man-
ner, without knowledge of future events [14]. In the myopic
approach, the objective function of the optimization problem
can be presented as,

min C(z. 1. 3)

This approach optimizes the objective function based on the
current environment information with the consideration of the
operational constraints.

Furthermore, we also investigate the SBSP technique for the
stochastic case study where the scenarios are generated using
a Monte Carlo simulation technique. In the SBSP approach,
the optimization problem is solved for each of the scenarios
where the random scenarios are generated using the stochas-
tic variables, and the final result is obtained using statistical
methods (like statistical mean operation) [23], [29], [30].

III. PROPOSED FITTED-RHC APPROACH

The performance of the RHC approach degrades if the avail-
able intra-day forecast informatiqn size (§}) is less than the
prediction horizon size H or if Sj, = 0 (no intra-day forecast
information). In this paper, a fitted-RHC approach is proposed
which fits the RHC algorithm using the regression algorithm so
that the proposed approach can perform efficiently even with
missing information (S]; < H) or no information (SJ; = 0). The
proposed algorithm is presented in Algorithm 1.

The fitted-RHC algorithm initializes by defining the day-
ahead exogenous forecast input data, control period 7, and
horizon size H. Then the time step begins by defining
a condition. If the condition is S’; > H, then the algo-
rithm generates the intra-day forecast data for horizon H
and the available input information at time ¢ becomes I; =
(EI,EAI,H,...,I:IHH). At step 6, the algorithm solves the
optimization problem (linear/non-linear) for the optimization
policy at time ¢ subject to the operational constraints using
the sliding horizon time frame ¢ : r + H. After solving the
optimization problem, the algorithm executes the optimization
policy (action) for current time step ¢ at step 7, updates the
dependent information variables, and returns to step 2. If
0 < SJIC < H, the proposed fitted-RHC algorithm uses the
regression algorithm to determine the optimization policy a;.
The regression algorithm is presented in Algorithm 2.

The regression algorithm initializes with the day-ahead
exogenous data for the time steps ¢ + k : ¢ + H. For exam-
ple, if S]; = 0, the regression algorithm initializes with the
day-ahead exogenous data for the time steps 1+ 1 : t+ H. At
step 2, the algorithm generates N number of data samples by a
Monte Carlo method using the forecast errors and the defined
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Algorithm 1 The Proposed Fitted-RHC Algorithm
1: Initialization:
Initialize day-ahead exogenous forecast input

data, control period T, and horizon H
: for time t=1:T do

2
3 if S; > H then
4: Generate the intra-day forecast data
5 Available information:
L = (B, Erq1, o, Eryn)
6: Solve the optimization problem (e.g., MILP)
ar(Iy) = argmin 31 CGQ, 1))
subject to the loperational constraints

7: Execute the action for current time step “t”
8: else
9: input: day-ahead exogenous information
Use the regression algorithm (Algorithm 2)
10: output: action set, a;
11: Execute the action, a;
12: end if
13: Use the transition function to update the exogenous
information variables and go to step 2
14: end for

Algorithm 2 The Proposed Regression Algorithm
1: Initialization:
Initialize day-ahead exogenous data for
t+kt+H
2: Generate “N” number of data samples by Monte Carlo
method using forecast errors and probability distribution
functions
Available information I,
for sample n = 1 : N do
Input Information: I;(n)
Solve the optimization problem (e.g., MILP)
@} (I (m) = argmin 3.5 CQ, 1 (n)

subject to the opérational constraints
Save the action set for current time step “t”
n=n+ 1, and go to step 4
9: end for
10: Calculate the relative probability for each possible action
set and select an action set which has highest relative
probability [31]
11: Send the action information to the main algorithm

AN

probability distribution function. An example of the available
information matrix at step 3 in the algorithm is

_ A1 ~1 —_
E, - Et+k Ez2+H
E, - Et+k Et+H
~N ~N
LE, T Et+k Ez+H—
where, the superscripts 1,2, ..., N represent the number of

data samples.
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In the matrix, the first notation E, is same for all the rows
because it represents the exogenous input data for current time
step ¢ which is available in real-time. All other information
varies because of random forecast errors within a defined
range. Then the algorithm solves the optimization problem for
each of the information sets as described in steps 4 to 9. Note,
in this paper, the MILP toolbox from MATLAB is used for
solving the optimization problem. For each input data sample,
the algorithm stores the action set for current time step ¢, pro-
ceed to next sample input data, and continues the process until
n > N. At step 10, the algorithm calculates the relative proba-
bility for each possible action set and select an action set which
has the highest relative probability. At the end, the regres-
sion algorithm sends the action information set to the main
fitted-RHC algorithm. Then, the fitted-RHC algorithm takes
the action which is recommended by the regression algorithm,
update the input information, and go to the next-time step. The
process of the fitted-RHC approach continues until the time ¢
reaches at time 7'. At the end of each time step 7, the next-hour
exogenous information variables can be determined using the
EITF model as E, | = min{max{]:ltﬂ +¢&, Epin}y Emax}, Where,
ﬁ,H and ¢ represent the day-ahead forecast data and the fore-
cast error, respectively. Ej,.x and E,,;, represent the maximum
and minimum limit of the exogenous information data. Note,
in the EITF model, we use the day-ahead forecast data instead
of immediate previous hour data in literature, so that the model
can be applied for all exogenous information. The cost func-
tion is used to calculate the cost for the optimization policy
and the total cost can be obtained at the end of the total
time period. Later, the performance of the proposed fitted-
RHC can be determined by comparing with other online and
offline methods.

IV. BENCHMARK PROBLEM: MICROGRID ENERGY
OPTIMIZATION

In this paper, we have considered a grid-connected
microgrid with different generation units: photovoltaic (PV)
and wind turbine as the RESs, a grid level lead-acid battery
as the energy storage system, and the grid. The proposed fitted-
RHC approach is used to allocate the residential load demand
to the microgrid generation units efficiently so that the total
operational cost of the microgrid can be minimized without
violating the operational constraints. The proposed fitted-RHC
approach in the microgrid energy optimization benchmark
problem is illustrated in Figure 2. In our proposed design,
the proposed technique considers the day-ahead exogenous
forecast data (RESs, load demand, and grid price) with the
real-time information of the exogenous input variables and bat-
tery energy storage system, and takes the microgrid operation
and optimization decision so that it can achieve the objective
without violating the operational constraints.

We formulate our optimization problem using the receding
horizon principle and consider the intra-day forecasted exoge-
nous information. In this benchmark problem, the available
information at time ¢ can be written as,

L= (BB Bipr o B ). 5)
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Fig. 2. The proposed fitted-RHC approach in the microgrid energy
optimization benchmark problem.

where, B; represents the available energy in the battery at
time z. E; can be defined as the set of exogenous information
as E; = (R;, Dy, G;) at time t. Here, R;, D;, and G; represent
the total available power from the renewable energy genera-
tion unit in kW, the total residential load demand in kW, and
the grid price per kWh at time ¢, respectively. In this bench-
mark problem, we add B; to the I; set because B; is not an
independent variable and at time step ¢, we can only obtain the
available energy in the battery from the battery unit. E repre-
sents the intra-day future forecast information predicting at a
specific time step. For example, for solving the optimization
problem at time 7 using the RHC principal, we should have
the intra-day future forecast information as E;y1.,+py so that
the approach can achieve the optimal solution (deterministic
case) or very closely approximated optimal solution (stochastic
case).

In this problem, a, represents the action set which contains
the decision variables of the microgrid energy optimization
problem, a; > 0, and aseo;. Here, o; represents the feasible
action space. The action set a, can be written as,

a; = {Ptgrid,D’ P?’D, Pf’D, Pf,grid’ Pf’B, Ptgrid,B}. (6)

where, each decision variable represents the amount of power
flow transferred from one unit to another unit in the microgrid.
For example, P;’ represents the amount of power transferring
from unit i to j at time ¢. The superscripts grid, D, B, and R
represent the grid, the load demand unit, the battery unit, and
the RES unit, respectively.

The operational cost of the microgrid at time ¢ can be
written as,

C(t) = Coar(t) + Ceria (1) (7
Cou(t) = GPF™". ®)
Caria(t) = GPE"P. )

where, Cpy () and Cgig(?) represent the battery charging cost
and the operational cost to buy energy from the grid to fulfill
the load demand at time ¢, respectively.

The operational constraints of the microgrid can be
defined as,

Ptgrid,D —i—P?’D +P$’D — D,
Pf’D-i—Pf'gnd-l—Pf’B <R,

(10)
(1)
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(Pf,B +Ptgrid,B> pB.D
~1< ~ <1, (2
v v
SOCmin =< SOCt < SOCmax» (13)

where, the constraint (10) maintains a balance between the
microgrid generation and load demand. The constraint (11)
distributes the available power from the RES unit to other
units. The constraint (12) is used to keep the value of the
battery decision variables within a certain range. Here, i rep-
resents the charging/discharging limit of the battery in kW. The
constraint (13) is defined to keep the state of charge (SOC) of
the battery within a certain range at any time f.

The transition function for the battery SOC and the available
energy of the battery can be formulated as,

B erid, B PfYD
B+ (PFP + P )—7 . (14)

15)

SOCi1 =

cap

BH-l = SOCH_chap»

where, Bc,p represents the battery capacity of the microgrid.
B4 represents the next-hour available energy in the battery.

The overall objective of this microgrid energy optimization
problem is to determine the optimization policy efficiently
at every time step as equation (1) so that the total daily
operational cost can be minimized as,

T
V= nl%nIE ch, I |.

=1

(16)

where, IE[.] represents the expectation operator. The
optimization problem is formulated for finite horizon of time
as {1, At,2At, ..., T} where At indicates the time interval.

V. SIMULATION SETUP AND RESULTS ANALYSIS

In this section, the performance of the proposed fitted-RHC
approach is determined by examining several experiments on
a grid-connected microgrid system.

A. Simulation Setup

The grid-connected microgrid information parameters are
summarized in Table I. In this paper, it is assumed that
the battery efficiency and energy limit for the charging and
discharging process are the same.

The residential microgrid load, RESs, and electricity price
profiles with the forecast errors are illustrated in Figure 3. The
residential load profile is collected for the city of Minneapolis
in Minnesota from [33]. The RESs data are collected from
the system advisory model (SAM) by National Renewable
Energy Laboratory for the city of Minneapolis, MN [32].
We run the simulation with the given configuration in the
SAM software, and the SAM provides the RESs output pro-
file for one year. We select a RES output profile of a day
from the summer time frame, which is presented in Figure 3.
The grid price profile in cents per kWh is collected from [34].
The objective of the optimization problem is to minimize the
daily operational cost of the microgrid over 24 hours with
a time resolution of 1 hour. In this paper, we consider fore-
cast error for the load demand as g; = [—4, 4], for the RES
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TABLE I
MICROGRID INFORMATION [32]

Photovoltaic

System size 60 kWdc
Module type Standard
DC to AC ratio 1.2
Rated inverter size 50 kWac
Wind Turbine
Name Endurance Wind E-3120
Rated output 50 kW
Rotor diameter 19.2 m
Hub height 20 m
Shear coefficient 0.14
Battery
Type 2V/1000 Ah
Quantity and capacity 100 and 200 kWh
Charging and discharging efficiency (¢) 100%
Maximum charging and discharging rates (¢)) 40 kWh/At

=
S
@

kW,
N
S

Load Demand
o o ©
8 &8 &8
Electricity Price
(cents/kWh)
IS

40 o— ‘
5 9. 13 17 21 24 1 5 9 13 17 21 24
Time (hour) Time (hour)
A) (8)
__100 50
s
@ g
o 50 0
1 5 9 13 17 21 24
5 —60
3 40 =
40
Sol VTN
=

5 9 13 17 21 24 1 5 9 13 17 21 24
Time (hour) Time (hour)
©) (D)

Fig. 3. (A) Residential load-demand with the forecast errors (red shaded
region). (B) Electricity price with the forecast errors (blue shaded region). (C)
Total power from the RESs with the forecast errors (green shaded region).
(D) Original RES of PV and wind turbine forecast information.

unit as &, = [—3, 3], and for the grid price as ¢, = [-2, 2].
Note, the forecast errors of the exogenous information can be
determined by analyzing the historical exogenous information
data. In this paper, we have analyzed the data, and observed
the daily maximum and minimum changes/deviations in the
input profiles. Later, we have obtained average maximum and
minimum changes in values, and rounded up to the closest
integers. For example, we have collected the day-ahead and
real-time price profiles for a month from [34], and determined
daily maximum and minimum changes/deviations of the input
profiles. We have calculated average daily maximum and min-
imum changes/deviations, and used those numbers as forecast
errors in the problem.

The EITF model is used to obtain the exogenous
information variables as R;, D;, and G;. This model is also
used for determining the intra-day forecast information. For
example, using the EITF model, the load demand at time ¢
can be determined as D; = min{max{bt + €4, Dmin}, Dmax}-

The optimality gap (%) is calculated as,

V=V
0G = ———— x 100%. 17)
where, V is the total operational cost of the microgrid using
a specific optimization approach and V* is the optimal total

operational cost of the microgrid. Note, the MILP approach
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is used to collect the optimal/reference value offline, and the
optimal value can be obtained using this approach if and only
if all the exogenous data can be provided as input with the
operational constraints.

In this paper, we generate five hundred data samples by
Monte Carlo simulation for the regression algorithm. We deter-
mine the sample number using the trial and error method.
For deterministic cases, the competitive performances can be
achieved with as low as a hundred samples. We have also
tested with different large number of data samples (> 100)
but did not observe any improvement. However, we observe
that the stochastic cases require a large number of data sam-
ples for the regression algorithm to get close to the optimal
solution. The sample number of the regression algorithm has
an influence on the optimization result. Specifically, it depends
on the forecast error bounds. A high forecast bound requires
a large number of samples to reach the optimal solution. We
use 200 data samples to train the regression algorithm for
the stochastic case study. During our experiment, we have
observed that our proposed approach takes on average 11.50
seconds for a single run to solve the optimization problem
over the whole time frame, including the calculation of the
regression algorithm. All the simulations are conducted in
MATLAB R2018b environment on a 7th generation Intel Core
i7 — 7700K 4.2GHz Windows based PC with 32GB RAM.
For the performance comparison, all other techniques are
implemented in the same environment.

B. Results Analysis

1) Deterministic Case Study: Deterministic case study is
usually used as an experiment to test the performance of the
proposed approach in terms of percentage of optimality. In this
case study, the day-ahead exogenous profiles are used as input
at every time step. Note, the forecast errors of the exogenous
input data are not considered in this case study.

First, the horizon size of the RHC approach is determined
based on the performance of the RHC approach in terms of
percentage of optimality gap. The horizon size of the RHC
approach is dependent on the input profiles. The day-ahead
input profiles can be used to determine the horizon size of
the RHC approach for the next-day operation. In this paper,
to determine the optimal horizon size H, we have used a trial
and error method. The effect of the horizon size in terms of
percentage of optimality gap is presented in Figure 4. The
result shows that when the horizon size H = 0, then the RHC
approach incurs more than 50% of optimality gap. The per-
centage of optimality gap drops with the increment of horizon
size. According to the zoomed figure, we can observe that, at
H = 14, the percentage of optimality gap becomes 0. During
our experiments, we have observed that when H > 14, the
optimal value can be achieved. According to the RHC the-
ory, it is better not to use a large number for H because if
any unexpected change occurred in the intra-day forecast, the
performance of the RHC approach may degrade and also it
may increase the computation time. Therefore, it can be con-
cluded that the optimal horizon size of the RHC approach is
14 for the given exogenous input data.
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TABLE 11
PERFORMANCE COMPARISON OF THE OPTIMIZATION TECHNIQUES FOR
THE DETERMINISTIC CASE STUDY IN TERMS OF DAILY OPERATION COST
AND OPTIMALITY GAP. MILP IS AN OFFLINE APPROACH AND
USED AS A REFERENCE

Approach Operation | Optimality
Cost ($) Gap (%)
MILP (offline) 12.19 -
Proposed fitted-RHC 12.19 0
RHC with 12.74 451
missing predictions
RHC with 14.97 22.81
no predictions
Myopic approach 18.63 52.83

To show the effectiveness of the proposed fitted-RHC
approach, the performance comparison of the optimization
techniques for the deterministic case study are summarized
in Table II. In the table, the RHC approach with no prediction
indicates the RHC approach with SJ; = 0. And, the RHC
approach with missing prediction indicates the RHC approach
with S]; < H. For both of these experiments, we assume
that the intra-day forecast information at hours 12 and 15
are unavailable/missing. For the experimental setup of the
RHC approach with missing predictions, we assume that 5
hours of intra-day forecast information is available where
the size the intra-day forecast horizon should be H = 14
(S]; < H). The results show that the proposed fitted-RHC
approach can achieve the optimal policy even with unavail-
able/missing intra-day forecast information which indicates the
proposed technique reduces the dependency on the intra-day
forecast information. The performance of the RHC approach
degrades even if the intra-day forecast information are unavail-
able/missing only for two hours. The result shows that
the RHC approach with no predictions and with missing
predictions achieve 22.81% and 4.51% of optimality gap,
respectively. Myopic optimization approach is also investi-
gated, and the result shows that the fitted-RHC approach
outperforms the myopic approach with a large margin.

In addition, the comparative performance analysis of the
fitted-RHC approach with the RHC technique by varying the
forecast information size at each time step is presented in
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RHC technique by varying the forecast information size at each time step.

Figure 5. From this figure, we can see the time steps which
are very much sensitive on the forecast information size in
terms of the optimality gap. The blue surface represents the
performance of the fitted-RHC approach. The red surface rep-
resents the optimality gap of the traditional RHC technique.
All other places, the both approaches are overlapped and
illustrated by the blue color. The available intra-day forecast
information size (S];) is varied from 1 to 14. In this experiment,
at each run, the forecast information size is changed only for
one time step and the forecast information size of all other
time steps is kept the same as the optimal horizon size. For
example, if any outage happens at time step 14 and the oper-
ator can only obtain data with the forecast information size
SJ; = 1, then the performance of the traditional RHC approach
degrades with 14.06% of optimality gap. The result shows
that for the deterministic case study with missing predictions,
the fitted-RHC can achieve the optimal performance while the
RHC approach shows some degraded performance.

2) Stochastic Case Study: Stochastic case study is an
important experiment to measure the ability of the proposed
technique in terms of uncertain environments which is more
suitable for microgrid real-time/online energy optimization
problem with uncertain generation units. To validate the
performance of the proposed fitted-RHC approach, we define
four stochastic test problems which are presented in Table III
where U and N represent uniform and normal probability
distribution functions [14]. For example, in stochastic test
problem 2 in Table III, we use RESs noise as U(—1, 1) which
represents the value of forecast error ¢ in EITF equation should
be within ‘—1" to ‘1’ with the defined interval. In this paper,
we use the interval as 1. For the load noise, we use normal
probability distribution as N(0, 3.0%) where the mean value is
as 0 and the variance is 3. A vector of discrete values between
—4 to 4 is used with the interval of 1 for introducing noise
into the system. The probability of each value in the vector
is determined using the normal probability distribution func-
tion [23]. After obtaining the noise value, the load demand
is calculated using the EITF model. Similarly, the stochastic
price value can also be determined using the price noise and
the EITF model.

In this case study, we generate random forecast errors based
on the defined probability distribution functions and run each
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TABLE III
STOCHASTIC TEST PROBLEMS

Problem RESs Load Price
NO. Noise Noise Noise
1 U(-1,1) U(-1,1) U(-1,1)
2 U(-1,1) | N(0,3.02) | N(0,1.0%)
3 N(0,1.0%) | U(-1,1) | N(0,0.5%)
4 N(0,2.0%) | N(0,1.5%) | U(-1,1)
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Fig. 6. Box plots for stochastic case study in terms optimality gaps: (A)

proposed fitted-RHC approach, (B) RHC approach with no predictions at
hours 12 and 15, (C) RHC approach with missing predictions at hours 12 and
15, and (D) myopic approach.

problem 500 times to study the effect of uncertainties in terms
of optimality gap and how well our proposed approach can
deal with the problems. At each time step, while solving the
optimization problem using the given techniques, we save the
real-time exogenous information so that at the end of each
run we can calculate the optimal solution using the offline
MILP technique and obtain the optimality gap. The results are
presented in Figure 6. Note, in this experiment, the fitted-RHC
approach performs considering with no predictions (intra-day
forecast data) at hours 12 and 15. The results show that with
the uncertainties, the proposed fitted-RHC approach incurs
on average 5.07%, 1.87%, 1.01%, and 4.99% of optimality
gaps for four different problems, respectively. On the other
hand, the RHC approach with no predictions at hours 12
and 15 incurs on average 24.98%, 24.42%, 23.36%, and
24.38% of optimality gaps which are much higher than the
proposed fitted-RHC approach. For the comparative study, we
also report the performance of the RHC approach with miss-
ing predictions at hours 12 and 15, and the myopic approach.
The results show that the proposed fitted-RHC approach out-
performs both approaches. From this result analysis, we can
claim that the proposed fitted-RHC approach can tackle the
effect of missing or no predictions horizon window under the
stochastic environment efficiently.

In addition, we validate the performance of the proposed
fitted-RHC approach in a stochastic environment for the given
input profile forecasts and forecast errors. The input profiles
of this experiment is illustrated in Figure 7. The blue lines
represent the forecast information of the input profiles and
the brown lines indicate the input profiles that are realized
in real-time. Here, the differences between forecast and real-
time input profiles are causing due to the forecast errors. In the
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Fig. 8. Battery SOC and microgrid operation cost outputs for the stochastic
case study.

figure, we also show the training input profiles for the fitted-
RHC approach that we use in the regression algorithm to train
the algorithm at hours 12 and 15 since we assume information
outages at those hours. The outputs of this case study are
presented in Figure 8. Note, in this case study, we also present
results of the RHC approach considering no predictions at
hours 12 and 15.

In Figure 8, the outputs are presented in terms of the battery
SOC and microgrid operation cost. In our microgrid applica-
tion, the charging and discharging cycle of the battery plays a
very important role in terms of minimizing the operation cost.
The charging and discharging cycle of the battery is highly
dependent on the intra-day forecast input profiles. For exam-
ple, if the intra-day price input forecast shows there is a chance
of increasing the electricity price in the future hours, then the
controller may charge the battery or save the battery energy at
current hour so that the total operation cost can be minimized.
The results show that at hours 12 and 15, the RHC approach
discharges energy from the battery since no intra-day fore-
cast information is available at those hours. On the other side,
the fitted-RHC approach charges the battery considering the
future outcome of the current taken decision. The total daily
operation cost of the microgrid using the fitted-RHC and the
RHC approach are obtained as $10.03 and $12.20, respectively
where the optimal cost based on the realized input profile is
$9.90. Therefore, in this case, the optimization gaps of the
fitted-RHC and the traditional RHC approaches are 1.31% and
23.23%, respectively, which depicts significant improvement
in terms of scheduling operation decisions efficiently.
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TABLE IV
COMPARATIVE STUDY FOR STOCHASTIC CASE STUDY

Approach Average Total | Optimality
Cost ($) Gap (%)
MILP 14.27 -
Proposed fitted-RHC 14.83 3.92
SBSP approach 20.63 44.57

In order to validate the performance of the proposed fitted-
RHC approach further, we also analyze the sensitivity of the
proposed technique in terms of the optimality gap with the
variable forecast information size in a stochastic environment.
The results are compared with the traditional RHC technique.
We consider same four stochastic test problems and the results
are reported after 500 runs. In this experiment, we randomly
vary the predicted forecast information size as S; =1: 14
The results are illustrated in Figure 9. During the experiment,
we observe that the proposed fitted-RHC utilizes the proposed
regression algorithm whenever the forecast information size
(8}) is less than the optimal (H), and generates the optimization
policy based on its operational strategy. The results show that
in a stochastic environment with the variable predicted fore-
cast information size, the proposed fitted-RHC can perform
efficiently with the optimality gap on average less than 10%
in all four cases where the traditional RHC approach shows
the optimality gap on average higher than 20%. According
to this experiment, we can claim that the proposed fitted-
RHC technique can be a powerful optimization tool to perform
efficiently in a stochastic environment even with the missing
predictions, and outperforms the traditional RHC technique.

Furthermore, we compare the performance of the proposed
fitted-RHC approach with the SBSP approach. In this experi-
ment, we conduct the simulations for 500 runs and report the
average results in Table IV. The results are compared with
the optimal results from the MILP approach, and the per-
centage of optimality gaps are calculated. The result show
that the fitted-RHC approach obtains on average 3.92% of
optimality gap and outperforms the existing SBSP technique.
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According to the result analysis, it can be concluded that the
fitted-RHC can be a powerful tool for microgrid online/real-
time optimization which can perform efficiently even with the
uncertain environments.

VI. CONCLUSION

In this paper, we propose a new fitted-RHC algorithm
for the online/real-time microgrid energy optimization. In
the proposed fitted-RHC approach, the RHC approach is
strengthened with a regression algorithm which overcomes the
performance degradation effect of the existing RHC approach
when the intra-day forecast data is missing or unavailable. To
validate the performance of the proposed fitted-RHC approach,
we conduct both deterministic and stochastic case studies. In
the deterministic case study, we test the proposed algorithm
with missing predictions or no predictions cases, and observe
that the proposed fitted-RHC approach can achieve exactly the
optimal performance without violating any constraints. To jus-
tify the performance of the proposed fitted-RHC approach, we
conduct the stochastic case study with random intra-day fore-
cast errors based on different probability distribution functions.
In the stochastic case study, we present an example to show
the performance degradation of the traditional RHC approach
in terms of missing forecast data and how the proposed fitted-
RHC approach overcomes this challenge. We also measure
the sensitivity of the proposed fitted-RHC approach in terms
of optimality gap with the variable prediction horizon size in
the stochastic environment and compare with the traditional
RHC technique. The results show that the proposed fitted-RHC
approach can perform efficiently even with uncertain scenar-
ios. For both cases, we observe that the proposed fitted-RHC
approach has the strength to tackle the effect of prediction
horizon size and make microgrid real-time decision efficiently.

In the future, we will investigate the proposed fitted-RHC
approach for solving the power system optimization problems
using different IEEE test cases considering the network con-
straints. We will also focus on analyzing the power system
optimization problems over larger time frames (weekly and
yearly).
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