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Cooperative Differential Game-Based Optimal
Control and Its Application to Power Systems

Chaoxu Mu

Abstraci—Differential games have been extensively ap-
plied to optimal control problems. Nash equilibrium cap-
tures the tradeoff among players’ policies when every
player independently tries to minimize a predefined in-
dex. When considering potential cooperation, Pareto equi-
librium plays an important role in cooperative differential
games. This article studies the cooperative control of mul-
tiplayer systems on the quadratic infinite horizon. First,
by defining a joint cost function using a parameter set, a
cooperative differential game is reformulated as a general
optimal control problem, where all players form a grand
coalition. Then, the joint cost function is approximated
by a critic neural network, and for the first time, a novel
adaptive dynamic programming algorithm with two learn-
ing stages is proposed to determine the parameter selec-
tion and then obtain Pareto optimal solutions. A numeri-
cal example demonstrates that this algorithm can achieve
optimal policies and Pareto frontier. As for its applica-
tion, the cooperative control of a two-area interconnected
power system is investigated, where the primary frequency
control and secondary frequency control are regarded as
two players. Simulation results indicate that the proposed
scheme can obtain binding cooperation agreements, such
that cooperative control scheme can get better overall per-
formance compared to Nash control method and another
three control methods.

Index Terms—Adaptive dynamic programming, coopera-
tive differential game, neural network, Pareto equilibrium,
two-area interconnected power system.

[. INTRODUCTION

IFFERENTIAL game (DG) theory is concerned with the
dynamic decision-making in multiplayer interactive sys-
tems [1]. From the optimal control perspective, a complete
differential game consists of three elements: Players (controllers
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or agents), control policies, and the cost function (cost) [2]. The
interest of this article lies in nonzero-sum DGs. In a noncoop-
erative differential game (NCDGQ), it is desirable that all players
simultaneously take policies to obtain the Nash equilibrium [3],
where the outcome of one player cannot be improved through
a unilateral changing. While cooperative differential games
(CDGs) arise when multiple players, participating in a dynamic
system, collaborate their actions with the intent to optimize
their objectives [4]. At this point, all players need to minimize
their own costs while considering a joint cost to achieve the
overall optimality, i.e., the Pareto equilibrium. Therefore, ac-
cording to [5], the CDG problem is equivalent to an optimization
problem where every player has multiple objectives. In practice,
CDGs can be employed to solve optimization problems of the
multicontroller systems, such as power system [6] and vehicle
stability system [7]. Pareto optimality plays a pivotal role in
analyzing and solving these problems [5]. This article mainly
focuses on handling CDG problems by the aid of the adaptive
dynamic programming (ADP) methodology [8]-[11]; besides,
its application in the load frequency control (LFC) problem
of power systems is another interest. Before elaborating our
work, the relevant results are primarily introduced from three
perspectives.

First of all, some pioneering theoretical studies of cooperative
games are instructive. The essence of cooperative games was
early elaborated by Starr [12] and Schmitendorf [13], and they
proposed that cooperative games were actually problems where
one player has multiple vector-valued performance indices.
Engwerda [14] profoundly studied cooperative game problems
and gave sufficient and necessary conditions for the existence of
a Pareto optimum. Similarly, existence conditions of Pareto op-
timal solutions were derived for infinite-horizon linear quadratic
CDGs in [15] and [16]. Based on these studies, it can be learned
that, in cooperative games, an optimal control policy namely
Pareto optimal policy is related to the joint cost function. In
other words, a player’s control policy is not only depending on
his own cost but also relying on the costs of other individuals. It
can also be further known that obtaining Pareto optimal solutions
can be translated into solving a parameterized optimal problem
with all weight coefficients being strictly positive, which means
every player minimizes a weighted sum of all cost functions [16].
The set of Pareto optimal solutions is called Pareto frontier. As
for those solutions, superior to the Nash outcome (threatpoint)
which appears ina NCDG, are called Pareto improvement set [6].
Thus, the notion of Pareto optimality provides an appropriate
solution for players who are willing to cooperate. Another
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noteworthy point is that these studies are mainly focusing on
problem formulation and lack algorithm design. It is of some
theoretical significance to develop a general algorithm.

Second, some ADP researches have provided us with inspi-
ration to tackle the cooperative differential game. ADP usually
takes advantage of neural networks (NNs) to perform function
approximation and adaptive control. In theoretical aspect, many
efforts have been made to solve NCDG games. For example, [17]
elaborated how to solve multiplayer games online by adaptive
learning using the data measured from players. Johnson et al.
[18] designed an actor—critic-identifier structured algorithm for
the multiplayer nonzero-sum NCDG, where each player only
minimized its own cost function without mutual cooperation. In
application aspect, ADP control schemes are also extensively
applied to industrial systems [19]—[21]. Such as [19] proposed
an adaptive critic controller for the heating-ventilation—air-
conditioning system, and [20] developed an event-based dual
heuristic programming method for a class of networked systems.
In this article, an ADP algorithm is designed to solve the LFC
problem.

Third, frequency regulation of power systems has been a
hot issue in the control community, and LFC is extensively
applied to balance tieline power and frequency when the load
fluctuates. Considerable control algorithms have been proposed
to solve the LFC for interconnected power systems. Among them
a conventional approach is proportional-integral (PI) control
strategy, and some other typical representatives such as slid-
ing mode control (SMC) [22]-[24], robust H., control [25],
[26], adaptive control [27], [28], and multiagent reinforcement
learning (MARL) control [29]-[31]. Specifically, in [22], an
SMC-based frequency controller was designed for multiarea
interconnected power systems, where the switching surface was
constructed for each area to improve dynamic performance.
By adopting an adversarial idea, Peng ef al. [25] proposed an
event-driven robust control algorithm with a given attenuation
level ~. In addition, [27] and [28] used a novel hierarchical
structure to construct the composite controller, which consists of
the primary PI controller and supplementary adaptive controller.
This hierarchical design improved the dynamic process. MARL
is another typical learning control. It includes two agents in each
area: The estimator agent provides the area control error signal
while the controller agent uses reinforcement learning to control
the power system by trial-and-error method [30].

Comparing these studies, it can find that PI is not adaptive
and SMC improves the dynamic effect but is still not optimal. In
H, control, the performance is related to the level v. Moreover,
most existing intelligent learning algorithms rely on trial-and-
error scheme, that is, the success rate must be considered. So
how to devise an adaptive controller in the optimal sense is still
meaningful. To the best of our knowledge, there is no result to
solve the CDG using ADP technique, and an effective algorithm
for obtaining Pareto optimal solutions is also a well-recognized
conundrum. On the other hand, by modeling a power system
as a differential game, it is desirable to provide a novel idea to
tackle LFC problem in a cooperative manner. These motivate
our work.

In this article, we are only concentrating in obtaining Pareto
solutions of a CDG where all players form a grand coalition and
adopt a joint control policy. It is assumed that players make a
binding cooperation agreement at the start and resolutely enforce
later; besides, all players share the closed-loop state-feedback
information and know mutual cost functions. The whole work is
composed of theoretical algorithm design and practical verifica-
tion. The main contributions are summarized as follows: 1) The
cooperative problem of /V-player nonzero-sum differential game
is transformed into a general optimal control problem, which is
embodied by a parametric Hamilton—Jacobian—-Bellman (HJB)
equation. This scheme is applicable to both nonlinear systems
and linear systems. 2) For the first time, a novel ADP algorithm
is proposed to approximately obtain Pareto solutions. This algo-
rithm consists of two adaptive learning stages, and can be easily
implemented with only one critic NN. 3) In terms of application,
the proposed algorithm is used successfully to solve the LFC for
a two-area benchmark power system. This problem is tackled
within the framework of cooperative game, which brings a novel
idea to solve LFC. Comparative simulation results indicate that
the proposed method has better control performance.

The remainder of this article is organized as follows. First,
Section Il formulates the optimal problem for /V-player nonzero-
sum differential game and completes the problem transforma-
tion. Section III implants the critic NN to approximate the joint
cost function and afterwards develops an adaptive algorithm
consisting of two learning stages. Furthermore, in Section IV, a
numerical system and a two-area power system are provided to
verify the cooperative performance, which is achieved by com-
parison with the Nash equilibrium. Finally, Section V concludes
this article.

Il. PROBLEM FORMULATION AND MATHEMATICAL
DESCRIPTION

Notation 1: N'={1,2,..., N} indicates a grand coalition
composed of all players. R, R™, and R™*™ denote the set of
real numbers, the n-dimensional Euclidean space and the set
of real n X m matrices. “I” signifies the identity matrix of the
appropriate dimension. “T”” means the transpose operation and
“V” means the gradient operation.

Consider the N -player nonzero-sum game which is described
by the input-affine nonlinear differential equation

N
&= f(@(t) + ) gile(®)u(t), =(0)£weR" (1)
i=1

where x(t) € R™ represents the state variable that is influ-
enced by all players. f(z(t)) € R™ represents the system
drift dynamic, g;(x(t)) € R™™i represents the input matrix.
u;(t) € R™i is the control policy manipulated by player i,
and belongs to an admissible control space U;,i € N [2]. It
is normally assumed that f(x), g;(z) are locally Lipschitz with
£(0) = 0. For concision, the time variable ¢ is omitted in the
sequel.
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In this nonzero-sum game, every player wants to minimize
the following quadratic cost function on a infinite horizon:

Ji(wg,uh s ,UN) £ Ji = / (mTQix + UIRZ‘UZ‘)dT (2)
t

where two penalty matrices ); € R™*™ and R; € R™*™ are
symmetric and positive definite.

The differential game is essentially an optimal control prob-
lem where the control goal is to minimize the predefined cost
function, with as little as possible control action. In practice, the
state and control input are usually defined to describe deviations
of certain variables from their target values or their long-run
equilibrium levels [16]. Therefore, the cost function usually
consists of different deviation terms, where every deviation is
quadratically penalized, i.e., the state penalty x " ;= and control
energy cost u; R;u;. Also note that, by properly selecting the
matrix ();, the preference of every player can be determined.
In the LFC problem, the system state is mainly composed of
the frequency deviation and power deviation. Therefore, the
frequency regulation can be achieved by minimizing the defined
cost function.

Next, we analyze two kinds of desired gaming results
for NCDG and CDG, namely Nash equilibrium and Pareto
equilibrium.

Case A: Noncooperative Optimal Control

In aNCDG, each player unilaterally pursues the minimization
of (2) to get the optimal policy. Hence, this game is equivalent
to solving N single-objective optimization problems

min J;
{ i v . O
st = f(z) + 2252 9i(@)ui(t), (0) = 2o

With no cooperation, the ideal gaming results for (3) can be
described by the following definition.

Definition 1 (cf. [2]): A set of polices {u},--- ,ul} will
constitute a Nash equilibrium for a nonzero-sum NCDG, if the
following inequalities are simultaneously held:

JiNash 2 Ji(ul, -l

7

yun) < Ji(uy, -

s Ugy s vt 7uy]FV)

According to the existing studies [3], [17], [18], one can obtain
the Nash optimal control policy as

1
uj £ uj(z) = —ER;‘giT(x)VJfV”"’. 4)

Case B: Cooperative Optimal Control

In a CDG, the cooperation goal of the coalition AV is to ensure
the minimization of overall cost under a formulated agreement.
So we consider this overall performance situation in which all
players cannot be improved simultaneously with at least one
player being improved, i.e., so-called Pareto equilibrium. This
allows us to reformulate this problem as a weighted sum optimal
control problem [4].

Before proceeding further, Definition 2, given below, states
such a control policy which can minimize the joint cost function
combined by all players’ cost is Pareto optimal.

Definition 2 (cf. [16]): Let the weight o; € (0, 1), if a pa-
rameter set ® = {(ay, 00, ,an) | a; >0, SN = 1}

exists such that it makes U* € U satisfy

N
U* e arg min {;aiji(x, U)}

then U* is Pareto optimal, where U is the joint control U £
[ul,u2,~-- ,UN}T EU XUy X -+ X UN £ U.

Formally, control policy U* is Pareto optimal if at least one
of the following inequalities is strict:

Ji(z,U) > Ji(z, U*) 2 J5i= N )

The correlative cost point (J;,J;,...,J}) is thus called a
Pareto optimal solution.
As a consequence, for system (1), the joint cost function of

CDG is then defined as follows:
N 0

Jo 2 Jo(2,U) = ZaiJi = / (2" Quz + U MU)dr,
i=1 t

(6)

where the definite matrix Q, = Zi\;l «;@Q; and the diagonal
matrix M = blockdiag(ay Ry, xRy, -+ ,anRy).

When considering cooperation, each player is responsible
for the minimization of all cost functions, and hence it is a
multiobjective optimization. By defining the argument input-
matrix G(z) := [91,92, - ,gn] € R™ ™ and considering the
joint cost (6). Hence, this CDG game is equivalent to solving
such a single-objective optimization problem

min J,
U . )
st. @ = f(z)+ Gx)U(t), x(0) = o
Next, with feedback information, we present how to derive the
optimal joint control policy U*(x).
1) Taking the differential of (6) along the state trajectory, one
can derive the following Lyapunov equation:

0=2'Quz+U MU+(VJ,)' (f(z)+G(z)U),J,(0) = 0.
(®)
2) Define the Hamiltonian of this problem as
H(z,UNVJ,) =2 Quz+U"'MU + (VJ,)' (f + GU).
€))
3) Employing Bellman’s optimality principle [32], the optimal
joint cost J7 () can guarantee the HIB equation

0= min H(z,U,VJ,). (10)

4) By adopting the stationary conditions, it yields the optimal
joint control policy
0H(z,U,VJ; 1
@UNI) o o) = —2umraT@vre. an
oU 2
Obviously, every element of U*(x), i.e., the individual Pareto
optimal control policy is given as

1
uj £ uj(r) = —5 (aiRi) g/ () VI,

Remark 1: In principle, varying the weight «; means dif-
ferent Pareto optimal control policies. A binding agreement is

12)
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built on a suitable selection of «;, which can ensure the overall
performance Jy, = Zf\; J; in the sense of Pareto.

Remark 2: One major difference between CDG and NCDG
is within the determination of control policies, that is, the Nash
policy is only related to its own cost function, seeing (4). While
in a CDG, every player seeks its Pareto policy in accordance
with the costs of the coalition NV, seeing (12).

Remark 3: A Pareto optimal control policy participates in
gaming from two aspects: The individual control policy affects
the joint cost (6); all costs of the coalition N determine the
individual control policy with the form of weight «;.

Remark 4: According to Definition 1, the associated Nash
equilibrium point (or threatpoint) is (JN@*" ... J¥as") Then
a Pareto optimal solution (J},--- , JX) can be called a Pareto
improvement solution if it satisfies J; < JV*" foralli € N. Tt
is desired that mutual cooperation can achieve a smaller overall
cost, i.e., JZ,, < JNash,

5) Applying (11) into (10), the optimal joint cost can be
obtained by solving the parametric HIB equation

1
0=2'Qur+VJ: f(z) - ZVJ;;TG(J;)z\rlGT(a:)VJ;;.
(13)

It is obvious that if (13) can be deduced to obtain .J, then us-
ing the conditions J7, , < JN@shand J¥ < JNes" the required
Pareto frontier and Pareto improvement set can be obtained.
However, this equation is intractable or impossible to analyti-
cally solve due to its nonlinear nature and partial derivative. Till
now, this CDG has been translated to a general optimal problem
with the joint control U (z), and this formulation contributes to
approximate the solutions of (13) using the developed ADP-
based algorithm.

IIl. ADAPTIVE CRITIC LEARNING-BASED CONTROLLER
DESIGN USING NEURAL NETWORK

In this section, we devise the ADP-based approximate
scheme. Different from the noncooperative differential game
in [3] and [18], which takes advantage of N critic NNs to
approximate all players’ cost functions, only one critic NN is
adopted here to approximate the joint cost function J;.

First, a three-layer feedforward NN is utilized to reconstruct
J7, under the precondition that w, is a bounded constant ideal
weight vector [33], then the approximations of the joint cost and
its gradient can be expressed as

Jo(x) = wlp(x) + &(x) (14a)

VJi(z) = Vo' (2)w. + Ve(z). (14b)

This NN consists of three layers: Input-layer, hidden-layer, and
output-layer. For simplicity, the input-to-hidden weight is fixed
to be 1, and thus the input information of hidden-layer is the
state 2(t). The weight w.(t) € R™ connects the hidden-layer
and output-layer, and the corresponding activation function is
p(z) € R™, where ny, signifies the number of hidden-layer
neurons. The output of critic NN is VJ%(z) and thus the
structure is ‘n — ny, — 1. Besides, €(x) is the reconstruction
error and is also assumed to be bounded.

Substituting (14b) into (11), the optimal joint control policy
can be rewritten as

U () = —%M”GT(;U)(WT(QC)% L Ve(x).  (15)

Let the estimated weight w. approximate the ideal weight w,.
Then, the actual outputs of the critic NN are

Jo(@) = &) p(x) (16a)

Via(z) = Vo' (). (16b)

Correspondingly, the approximation of optimal joint control
policy can be derived as

AA 1
U2U(x) = —EM*IGT(J;)WT(x)@c (17)
and the approximated individual Pareto control policy is
. . 1 _ .
G 2 0(x) = —= (s Ry) g (2)Ve (z)d (18)

2

Furthermore, using the approximate expressions (16b) and
(17), the approximation of Hamiltonian is thus, as follows:

I:I(x, 0#-:)0)

=1 Qux + U MU + & Vo(z)(f(z) + G(z)U) £ &..
(19)

Remark 5: 1t is worth emphasizing that the policy (18) will
be adopted during the learning phase to achieve the estimation
of W, — w,, and the optimal policy is then derived by (15).

For deducing the weight tuning law, one first establishes the
following relation:

0&.

0w,
Our purpose is to derive £ — 0, for convenient operations,
which can be transformed to minimize the squared residual
error B, = £ €. /2. Based on the normalized gradient-descent
algorithm, a parameterized weight tuning law is given by
0F, 7 T. T AT A
cC A~ — *lc c o U' MU
O, (1+nTn)2(nw +@ Qo t )

= V() (f(x) + G()U) £ n. (20)

We =—1

T
2n

where . > 0 is the learning rate and (1 + 1" n)? is a normalized
processing term [17]. In the learning implementation, the term
T, is actually

T = [WP(%)(f(l‘) + ﬁ;gi(x)ﬁi)]T@c

N N
+ Z Oéi.%‘TQi.%‘ + Z Oézﬂ;rRﬂlZ

i=1 i=1
Remark 6: Note that the tuning law (21) is related to the
weight coefficient «;, which requires network learning to be
conducted multiple times. Therefore, how to determine the
weight «; should also be taken into account in the algorithm de-
sign. Moreover, the well-known persistency-of-excitation (PE)

(22)
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sgnal flow | Cost J,
ffffffff training path x

Fig. 1. Implementation of the proposed cooperative scheme.

condition is necessary during the learning phase. This proposed
scheme can ensure closed-loop stability and weight conver-
gence, this proof is omitted here due to page limitation. Some
similar proofs can be referred to [3] and [9].

In order to better describe this control scheme and to present
the training process, a structural diagram Fig. 1 is interpolated
to highlight crucial components of this learning system and
their mutual relationships. The critic NN transmits its real-time
approximation value to every player. By means of the coefficient
«;, every player can thus individually compute its Pareto control
policy and cost.

For the sake of clarity, a two-player CDG system is employed
to illustrate the algorithm flow, seeing Algorithm 1. Note that, in
this situation, there exists such a relation: oy = 1 — 3. There-
fore, our algorithm only needs to determine «;. This algorithm
will determine the scope of «y (the first learning stage), and
eventually obtain the Pareto frontier (the second learning stage).

Remark 7: For implementing this algorithm, it is necessary
to solve the Nash equilibrium, i.e., step 2. In this design, in order
to obtain the Nash solution, we adopt the following weight tuning
law for every critic NN

o
—zm (0] @ei + 2" Qiz + (4) " RyaY)
(23)

where @,; is ith critic weight and [.; > 0 is the associated
learning rate. The Nash policy and variable o; are

Weip =

1
i = = SR @)V (@)

N
0; = Vi(z) (f(x) + Z!ﬁ(@”ﬁ) -
=1

In addition, other methods can be found in [3] and [33].

Remark 8: Some annotations are helpful

1) For N-player CDG, Algorithm 1 also can determine the
values of «; when fixing other N — 2 weight coefficients.

2) The initial coefficient «y is generally given to a smaller
value, such as 0.1. If this value does not match the condition
JX . < JNash then one can choose a larger value.

sum sum

Algorithm 1: Neural Learning for Finding Pareto Optimal
Solutions of a Two-player CDG.

Input: o°, Aa®, Aa® and T (the single running time).
1: Initialization:
System settings: zg and R;, Q;; i € N
Learning parameters: initial weight &.(0) and ...
2: Calculate the Nash outcome for (3):
Obtain Nash optimal costs JN %" and Jash.
3: First learning with a large step:
Set the single excitation time 7},,;
give o an initial guess a° and a large step Aa’.

4: fora; =a% o =a; +Aa’;a; < 1do
5: while ¢t < T;,, do
6: approximate the joint cost function using (16);
7: update the control policy of player ¢ by (18);
8: train the critic weight according to the law
(21);
9: end while
10: acquire the converged weight w, ~ @.(T);
11: applying this weight to the system yields J and
i
12: if JZ,,, > JNash then
13: the current J7, is not persuasive solution; break.
14: end if
15: end for

16:  determine the satisfied interval of ay: [min, ¥max]-
17:  Second learning with a small step:

Give a small step Aa®.
18: for oy = amin: @1 = a1 + Aal; @] = max do
19: while ¢t < T, do

20: perform the learning phase as steps 6-8.
21: end while
22: use w.(7") to compute J;, J%, ., and record them.

23: end for
24: obtain all the cost combinations and get Pareto frontier.
Output: o, max and Pareto solutions J;, J*

7 sum*

3) Note that the joint cost function with «; € R is a linear
combination of Ji, Ja,...,Jy, so the interval [min, Cmax)
is continuous and the resulting Pareto frontier is also
smooth.

4) Algorithm 1 can obtain Pareto solutions under different
coefficients, which can provide some analytical insights and
guidelines. An appropriate selection means a binding agreement
that each player voluntarily adheres.

[V. NUMERICAL RESULTS AND ANALYSIS

In this section, using the proposed cooperation scheme,
a nonlinear CDG system is simulated to verify the effec-
tiveness of Algorithm 1. Subsequently, we investigate the
cooperation between primary frequency control and sec-
ondary frequency control of a two-area interconnected power
system.
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Fig. 2. Weight convergences under different parameters. (a) o1 = 0.2.

(b) a; =0.3. (C) a; = 0.5.

A. Two-Player Nonlinear CDG System

Consider the following two-player nonlinear DG system [3]:

&= f(x) + gi(x)ui(z) + g2(x)ua(x) (24)
Ty — 214
with f(z) = | —x2 — 0.5z + 0.252; (cos (271 + 2))?
+0.2525(sin (427) +2)?
gi(x) = ’ ,92(x) = - (25

cos (2xy + 2) sin (423) + 2)

In (24), z = [x1,72]" denotes the state vector. The related pa-
rameters are configured as o = [0.5,0.2]"; Ry =21, Ry = I,
Q1 =21,Q,=1; ©.(0) =[1,0.3,0.5]"; I, = 5,T},, = 300 s;
a® =0.1,Aab = 0.1, Aa® = 0.005.

The critic NN is structured as “2 — 3 — 1”. The activation
function is ¢(z) = [z}, 7122, 23] ", and thus the estimated critic
weightis @.(t) = [0}, &2, &3] 7. The probing noises are injected
in the first 280 s of the learning.

According to the running of the first learning stage in
Algorithm 1, feasible values of «; locate in [0.2, 0.6]. For
simplicity and without loss of generality, here, three sets of
representative results are given to illustrate different coopera-
tion consequents. Fig. 2 shows that three sets of weights. The
cooperative control policies can be obtained using the converged
weights and exhibited as Fig. 3. As can be seen, in three schemes,

(z)

X
1

E
3
g
=
& - = =02 ]
—_—a; = 0.3
- == =05
0 0.5 1 1.5 2 0 0.5 1 1.5 2
tls —> (a) s —> (b)
Fig. 3. Cooperative control comparison among three schemes.

TABLE |
TwoO-PLAYER COOPERATIVE PERFORMANCE COMPARISON

Schemes Nash a1=02 «@1=03 «a1=05
J1 0.1610 0.1647 0.1539 0.1421
Ja 0.0771 0.0714 0.0749 0.0827

Jsum 0.2381 0.2361 0.2288 0.2248

these two controls can be coordinated to complete control mis-
sion at about 2.5 s.

Then we continue to analyze the cooperative performance
and a detailed cost comparison is given in Table I. As previously
stated, cooperative control scheme seeks to optimize overall cost
in the premise of decreasing at least one player’s cost. It can
be observed that three cooperative schemes have optimized the
overall control cost, that is, any one of Pareto optimal costs,
i.e., 0.2361, 0.2288, 0.2248, is definitely less than the Nash
cost. Evidently, scheme o = 0.3 is a “win—-win” cooperation
agreement, where two players’ costs are all superior to the Nash
equilibrium point.

Finally, a total of 81 sets of Pareto optimal solutions can
be calculated by performing the second learning stage, and
the Pareto frontier is thus presented as Fig. 4. The relation
between Nash equilibrium point and Pareto improvement set has
been clearly marked. Based on afore-analyzed results, it can be
concluded that, one can coordinate two players’ control actions
by regulating «; to optimize either player’s cost or together
optimize two players’ costs.

B. Two-Area Benchmark Interconnected Power System

Next, the LFC problem of a two-area interconnected power
system is studied. According to [34]-[37], primary frequency
(PF) control and secondary frequency (SF) control play im-
portant roles in maintaining the frequency stability. We will
first formulate this system as a two-player CDG differential
game, and then study the cooperation between PF control and
SF control, which are regarded as two players.

The classic IEEE two-area power system frequency control
model is shown in Fig. 5, and some critical notations have been
annotated. Besides, ACE; means the ith area control error.
The simulation environment is: Ty = Ty = 0.08 s, Ty =
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T, = 0.00545 p.u. and K¢ = K¢ = 0.45 [37].

Next, we discuss five control schemes to comparatively illus-
trate the merits of CDG-based controller.

1) Scheme 1 (PI control method): In the light of the typical
values in [35], the PF signal AP, is provided by setting 7 =
r, = 2.4 Hz, and the SF signal AP,, is provided by adopting
the gains K| = K, = 0.15, K;; = Ky = 0.3. For comparison,
the SF signal is calculated as dA P, /dt.

2) Scheme 2 (NCDG-based control method): In the area 1,
with the help of DG theory, we employ PF and SF control signals
u; and uy to substitute the original control loop, i.e., Struture
A—Struture B, as presented in blue part of Fig. 5. In order to
simplify this application process, we do not consider control
constraints and climbing rates, etc. Therefore, this system can
be modeled by the linear equation

& = Ax + Biuy + Byus + DAP,, (26)

APy = [AR, Aszr

Note that (26) has the extra load disturbance term DA P; when
compared with the classical DG shown in (1). For simplicity, this
article considers that AP, substitutes the true random change
with a known step load disturbance. Therefore, we adopt the
idea of [6] to use the steady-state value after the disturbance as
a reference point, and a deterministic NCDG problem is finally
expressed as
{ min J; = [ (2" Q;x + u] Ryw;)dr 27
s.t. z = Az + Biuy + Bous ’

Two players can determine the values of matrices (); and
R; according to their own preferences. In this article, they are
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determined as follows:
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As such, two associated costs can be derived as

(o} (o)
Ji :/ (mTle + ulTRlul)dT :/ (Aflz(T) + IOu%(T))dT
t t
(o}
J = / (" Qa4+ ug Ryuy)dr
t

-/ TR () + AR(r) + 2P () + ().

These choices rely on two players’ behaviors. The output of
player 1 is only affected by the deviation A f, but player 2
can influence area 2 through the tie line. Therefore, player 1 is
committed to driving A f} to 0; player 2 not only minimizes the
frequency deviations A f; and A f, but also reduces APy, to
support area 2. These two criteria express a balance between the
cost of having nonzero deviations and the cost of the control
required to make the deviations smaller. A similar selection can
be found in [36].

3) Scheme 3 (CDG-based control method): In this case, two
players cooperates to optimize the joint cost such that they can
get a more happier overall cost. With the proposed scheme, the
CDG-based formulation of (26) is given by

{min Jo=ai+ (1 —a))

st. o = Az + Byuy + Byuyp (28)

Since schemes 2 and 3 need optimal policies, adaptive learn-
ing is first implemented to approximate optimal control policies.
In NCDG (27), it is desired to obtain every player’s Nash policy,
and hence, two critic NNs are structured as “8 —20 — 1.
The associated activation functions are ¢;(z) = py(x) =
[l‘%, 1T, 18, l‘%, a3, J?%, l‘%, T4T5, 428, Jfg, T5X6, Loy, l‘%,

XT6X7, L7T1, T7T4, T7T5, T7X8, T1 L3, TgLse].  Therefore,  the
corresponding estimated weightis 0 (t) = [@},, @2, ..., &%]T

and will be randomly initialized. The running time is
T,, = 600 s, and learning rates are [, | = l.» = 2.
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Fig. 6. Weight-norm trajectories.

After training, the weight-norm trajectories of two players are
presented in Fig. 6(a). It can be seen that the final convergence
roughly appears at 550 s.

For the CDG (28), only a critic NN is used to approximate
the joint cost function, and the weight vector is similarly set as
Qe(t) = [0, @2, ..., @2 7. By running Algorithm 1, it can be
known that o = 0.6 is a satisfactory value. Thus, the weight-
norm convergence trajectory is revealed in Fig. 6(b).

4) Scheme 4 (SMC method): SMC is an effective control
method with good dynamic response. Note that we are con-
sidering PF and SF control in area 1, so the SMC is only applied
to area 1. Therefore, by defining Y = [Af,, AP, ,AX,,] and
using the methods in [23], [24], the sliding mode variable is
defined as follows:

p(t)=C7T (29)
where C = [c1, ¢, ¢3) is the coefficient and the polynomial
c3p® + cop* + cypis Hurwitz. The reaching law is selected to be
p(t) = —E€sat(p) and the saturation function sat(p) is to reduce
chattering. In the simulation, the control gain is ¢ = 20 and three
coefficients are ¢; = 0.9; ¢, = 0.05; ¢3 = 0.05.

5) Scheme 5 (H, method): From the adversarial perspective,
by giving an attenuation level, it is desired to do the utmost to
attenuate the disturbance. This problem can be seen as a zero-
sum game from the perspective of min—max optimization [38]. In
order to implement this scheme, the attenuation level is 7 = 15
according to [25].

Next, we apply PI control, Nash control, Pareto control, SMC,
and H,, control into the power system, respectively. In this
process, it is assumed that the prediction of AP, is known,
which indicates that APy, stays zero throughout the control
period while two step disturbances AP; = —0.005 p.u. and
AP;, = +40.01 p.u. occurs at ¢ = 0. The evolution of three
deviation signals Afy, Afs, AP, is, respectively, given in
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Fig. 7. LFC performance comparison of the two-area power system
under three control schemes.

TABLE I
CoST COMPARISON OF THREE CONTROL SCHEMES

Schemes cost (10_4)

Jl J2 Jsum
Scheme 1 7.0882 9.4740 16.5622
Scheme 2 1.3763 2.5993 3.9756
Scheme 3 1.3223 2.4647 3.7870
Scheme 4 3.2299 7.1977 10.4276
Scheme 5 1.6624 2.9983 4.6607

Fig. 7(a)—(c). Table II also provides the specific cost (payoff)
comparison during the entire frequency regulation process.

First, according to the above results, we conduct some analysis
and illustrate the merits of the proposed scheme.

1) Scheme 1 is only concerned with eliminating the deviations
while Schemes 2 and 3 achieve this goal with optimal manners,
which indicates that the overshoot and oscillation of PI con-
troller are relatively large, seeing Fig. 7. In Scheme 2, every
player unilaterally optimizes, while in Scheme 3, two players
cooperatively optimize. Therefore, Pareto policies are superior
to Nash policies, seeing three close-ups.

2) Although Scheme 4 ameliorates the dynamic response of
area 1, it does not have the ability to coordinate area 2, and

Fig. 8. Phase trajectories w.r.t. states z;,z4,zs. (@) Pl control.
(b) Cooperative control. ‘o’ marks the origin, ‘x marks the starting point
after disturbances.

TABLE Il
STATISTICAL RESULTS OF FIVE SCHEMES

Schemes Statistical indices (10~3)
Overshoot | Undershoot | Mean RMS STD
1 4.764 -5.549 -0.229 1.793 1.778
2 1.400 -0.047 0.033 | 0.313 | 0.311
Afi | 3 1.209 -0.043 0.021 | 0.265 | 0.263
4 2.846 -2.725 0.255 | 0.550 | 0.488
5 2.423 -0.076 0.083 | 0.588 | 0.583
1 5.333 -10.306 -0.232 | 2.715 | 2.705
2 1.403 -2.901 -0.008 | 0.614 | 0.613
Afa 3 1.211 -2.512 -0.002 | 0.513 | 0.513
4 4.170 -6.646 -0.656 | 1.643 | 1.507
5 0.691 -4.903 -0.332 | 1.286 | 1.243
1 2.516 -0.109 0.310 | 0.741 | 0.673
2 0.364 -0.089 0.027 | 0.101 | 0.098
APyie | 3 0.317 -0.079 0.023 | 0.089 | 0.086
4 1.855 -0.126 0.109 | 0.512 | 0.500
5 0.505 -0.072 0.051 | 0.147 | 0.139

hence the overall cost is larger compared to Schemes 2 and 3. By
attenuating the disturbance, Scheme 5 can also obtain a relatively
good control performance due to smaller fluctuation and less
cost. But the nonzero-sum gaming results are more prominent
and cooperation is a better choice.

3) It can be known from Table II that cost .J, is bigger because
more deviation terms are considered for player 2. The overall
cost of Scheme 3 is the least, which means that the cooperation
is necessary and the current agreement is persuasive. Fig. 8 also
gives three dimensional (3-D) convergence curves of A f1, A f,,
and A P, by using PI control and cooperative control.

Moreover, some dynamic analysis are presented by five sta-
tistical indices: Overshoot, undershoot, mean, roor-mean-square
(RMS), and standard deviation (STD). They have been provided
in Table III.

1) Itis observed that five schemes all can drive three deviation
terms to zero. These five indices can evaluate the dynamic
process to some extent, such as STD reflects the dispersion of a
collection of values. Besides, for RMS and STD, a smaller value
means a better dynamic performance.
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2) From Table III, one can see the obvious advantages of the
proposed cooperation control in dynamic response. Especially,
the overshoot and undershoot are the least, which indicates the
CDGe-based controller responds quickly.

To conclude, the first example illustrates the effectiveness
of Algorithm 1 in obtaining cooperative Pareto solutions. This
is a general algorithm and is beneficial for current studies. By
comparing with different control methods, the second example
shows that the proposed cooperation scheme has advantages in
practical application. It provides a novel idea and an alternative
method for solving LFC of multiarea power systems.

V. CONCLUSION

In this article, with the formulation of CDG, the optimal
control problem of multiplayer systems was studied by defining
ajoint cost function, which was a weight coefficient combination
of multiple costs. Then, a novel ADP-based learning algorithm
was developed to find all Pareto optimal solutions, and it was
performed by two learning stages based on a single-network
structure. A two-player numerical example illustrated that the
proposed algorithm obtained the feasible scope of the weight co-
efficient as well as Pareto optimal solutions. Finally, by designat-
ing the PF control and SF control as two players, the cooperative
control of a two-area power system was studied by comparing
with different control methods. The results demonstrated that
the players’ cooperation had some advantages and potential.
The whole work theoretically presented a new algorithm and
provided some references for practical engineering implemen-
tations. In future work, the random load changes, controller
constraints, and climbing rates, etc. will be considered.
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