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ABSTRACT
Standard Tucker tensor decomposition seeks to maximize the
L2-norm of the compressed tensor; thus, it is very respon-
sive to outlying/high-magnitude entries among the processed
data. To counteract the impact of outliers in tensor data
analysis, we propose L1-Tucker: a reformulation of stan-
dard Tucker decomposition, resulting by simple substitution
of the outlier-responsive L2-norm by the sturdier L1-norm.
Then, we propose the L1-norm Higher Order Orthogonal
Iterations (L1-HOOI) algorithm for the approximate solution
to L1-Tucker. Our numerical studies on data reconstruction
and classification corroborate that L1-HOOI exhibits sturdy
resistance against outliers compared to standard counterparts.

1. INTRODUCTION

Tensor analysis finds important applications in areas such as
signal processing [1], computer vision [2], and data mining
[3], to name a few. Tucker decomposition is a popular tensor
factorization approach, typically carried out by the Higher-
Order Singular-Value Decomposition (HOSVD) and Higher-
Order Orthogonal Iterations (HOOI) [4, 5] algorithms.

In applications of specific interest (e.g., classification
of multimodal data [6]), Tucker decomposition of an N -
way tensor is reformulated to Tucker2 decomposition which
treats the processed tensor as a collection of (N − 1)-way
tensor-measurements and strives to jointly Tucker-analyze
these measurements. Generalized Low-Rank Approxima-
tions of Matrices (GLRAM) [7] is a special case of Tucker2
for (N = 3)-way tensors. Tucker and Tucker2 are both con-
sidered multiway generalizations of the standard Principal
Component Analysis (PCA) [8] of matrices, carried out by
Singular-Value Decomposition (SVD). The focal point of this
work will be general-order Tucker tensor decomposition.

Tucker decomposition, owing to its L2-norm formula-
tion, is highly sensitive to erroneous entries (outliers) within
∗Corresponding author.

the processed tensor [9–11] which often appear in mod-
ern datasets. PCA, a special case of Tucker, has also been
known to exhibit sensitivity towards outliers. L1-norm PCA
(L1-PCA) [12] has illustrated significant robustness against
outliers in applications such as image recovery, video surveil-
lance, and classification of micro-Doppler radar signatures,
to name a few [13–15]. Motivated by the success of L1-
PCA, L1-norm formulations of higher-order Tucker2 were
studied in [10, 11, 16, 17]. More recently, [18] introduced
an L1-norm reformulation of general-order tensor Tucker de-
composition (L1-Tucker) and offered a first algorithm for its
solution, namely L1-HOSVD.

L1-HOSVD [18, 19] exhibited remarkable corruption re-
sistance in data reconstruction and classification, in sharp
contrast with HOSVD and HOOI. However, L1-HOSVD de-
composes each tensor mode individually and, thus, it does
not leverage inter-mode dependencies. In this work, we ex-
tend L1-HOSVD and present L1-HOOI: a novel iterative
algorithm for the solution to L1-Tucker. The proposed algo-
rithm is accompanied by numerical studies which illustrate
that: (i) L1-HOOI attains similar performance to standard
Tucker solvers when the processed data are outlier free; (ii)
L1-HOOI is significantly more outlier-resistant than standard
Tucker solvers; (iii) L1-HOOI iterations converge at a solu-
tion that outperforms L1-HOSVD in the L1-Tucker metric.

2. BACKGROUND

2.1. Tucker Decomposition

We consider N -way tensor X ∈ RD1×D2×...×DN and de-
fine [N ] = {1, 2, . . . , N}. X is a structured multiway array
of M =

∏
n∈[N ]Dn scalar entries, each of which is ac-

cessible by N indices. For every mode index n ∈ [N ],
X can be treated as a collection of Mn =

∏
m∈[N ]\nDm

length-Dn vectors arranged across its n-th mode. These
vectors are known as the mode-n fibers of X . That is,
for any fixed set of indices {im}m∈[N ]\n, a mode-n fiber
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of X is vector X (i1, . . . , in−1, :, in+1, . . . , iN ) ∈ RDn . A
matrix with columns the mode-n fibers of tensor X is
known as the mode-n matrix flattening of X , commonly
denoted by [X ](n) ∈ RDn×Mn . Noticing that the mode-n
fibers of X can be organized in multiple different orders, in
this work we specify that tensor element (i1, i2, . . . , iN )
is mapped to the mode-n flattening element (in, z) for
z = 1 +

∑
h∈[N ]\n(ih − 1)Zh and Zh =

∏
k∈[h−1]\nDk,

for every h ∈ [N ] [4].
Tucker decomposition of X seeks to maximize the L2-

norm of the core tensor which results by the multi-projection
of X with a set of N orthonormal-basis factors. Defining
the Stiefel manifold S(D, d) = {R ∈ RD×d; R>R = Id},
d < D, Tucker decomposition is formulated as

maximize
{Rn∈S(Dn,dn)}n∈[N]

∥∥X ×n∈[N ] R
>
n

∥∥2
F
, (1)

where ×n denotes the mode-n tensor-to-matrix product [4],
L2-norm operator ‖ ·‖2F returns the summation of the squared
entries of its input argument, and ×n∈[N ]R

>
n compactly de-

notes the multiway product ×1R
>
1 ×2 R

>
2 . . .×N R>N .

2.2. L1-Tucker Decomposition

Outliers often appear in modern large datasets due to a num-
ber of causes, including sensor malfunctions, errors in data
storage/transfer, and, in some cases, intentional dataset con-
tamination [20]. Researchers from the fields of signal pro-
cessing, data analysis, and machine learning have long ob-
served that PCA and its multiway generalization, Tucker, are
significantly misled by outliers in the processed data, even in
a very small fraction [9–12]. Consequently, applications the
performance of which depends on PCA/Tucker (e.g., clas-
sification, clustering) can be heavily affected. The outlier
sensitivity of PCA/Tucker is, in part, attributed to their L2-
norm based formulation, which places squared emphasis on
each data point, favoring outliers in the data periphery. Vari-
ous robust reformulations of Tucker have been proposed over
time, in order to suppress the undesired impact of outliers in
data analysis [21–23]. Arguably, the most straightforward ap-
proach is to replace the outlier-responsive L2-norm in PCA
by the L1-norm which places linear emphasis on each data
point, thus suppressing the undesired effects of outliers. For
data matrix X ∈ RD1×D2 and d1 < rank(X), this modifica-
tion results to the L1-PCA formulation [12]

maximize
R∈S(D1,d1)

‖R>X‖1, (2)

where ‖ · ‖1 denotes the L1-norm operator which returns the
summation of the absolute entries of its input argument. L1-
PCA in (2) has been extensively studied over the past few
years and many solvers (both exact and approximate) have
been presented for its solution [12, 24, 25]. Even more re-
cently, L1-PCA was extended to L1-norm-based Tucker2 for-
mulation, specifically for 3-way tensors [11, 16, 17].

Following the paradigms of L1-PCA and L1-Tucker2, a
recent work presented L1-Tucker decomposition [18], as the
outlier-resistant counterpart of general-order Tucker, formu-
lated as

maximize
{Rn∈S(Dn,dn)}n∈[N]

∥∥X ×n∈[N ] R
>
n

∥∥
1
. (3)

Moreover, [18] offered the first solver for L1-Tucker, namely
L1-HOSVD, which we briefly review below.

2.3. L1-HOSVD [18]

For every n ∈ [N ], L1-HOSVD approximates Rn by
L1-PCA of the mode-n matrix flattening of X . That is,
L1-HOSVD approximates the solution to (3) by the set
{Rl1-hosvd

n }n∈[N ], such that Rl1-hosvd
n is a maximizing argu-

ment of

maximize
R∈S(Dn,dn)

∥∥R>[X ](n)
∥∥
1
. (4)

A solution to (4) can be computed both exactly and approxi-
mately with any of the existing L1-PCA solvers [12, 24, 26].
For instance, [18] approximated the solution to (4) by means
of alternating optimization iterations of [26] as follows. Ac-
cording to [12], the maximization in (4) can be equivalently
written as

maximize
R∈S(Dn,dn)

B∈{±1}Mn×dn

Tr
(
R>[X ](n)B

)
. (5)

Moreover, for any tall matrix A ∈ RD×d that admits
SVD A = WSd×dQ

>, operator Ω(A) = WQ> solves
maximizeR∈S(D,d) Tr(R>A) [27]. Thus, for any fixed B,
maximization in (5) is attained by R = Ω([X ](n)B). On the
other hand, for any fixed R, maximization in (5) is attained
by B = sgn([X ]>(n)R), where sgn(·) returns the ±1 signs of
the entries of its argument. Thus, the solution to (4) can be
pursued as

Rt = Ω([X ](n)sgn([X ]>(n)Rt−1)), (6)

for t = 1, 2, . . ., and arbitrary initialization R0 ∈ S(Dn, dn).
In [18] it was shown that the metric of (4) increases monoton-
ically across t, which combined with the fact that the metric
of (4) is upper bounded by the exact L1-PCA solution, ob-
tainable by the optimal algorithms of [12], guarantees that the
iterations in (6) converge. In practice, iterations can be ter-
minated when the L1-PCA objective metric ‖Rt

>[X ](n)‖1
stops increasing, or when t exceeds an upper limit of allowed
iterations. Upon convergence/termination, L1-HOSVD re-
turns Rl1-hosvd

n = Rt.

3. PROPOSED L1-HOOI

We present L1-HOOI, a new algorithm for approximating the
solution to L1-Tucker in (3). L1-HOOI is an iterative solver,
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L1-HOOI algorithm for L1-Tucker tensor decomposition
Input: X ∈ RD1×...×DN , dn for every n ∈ [N ]

1: Rn ← Rl1-hosvd
n for every n ∈ [N ]

2: while
∑N

n=1 ‖[X ]>(n)Rn‖1 increases, do
3: for n ∈ [N ]

4: Z← [X ×m<n Rm
> ×k>n Rk

>](n)

5: while ‖Z>Rn‖1 increases, do
6: Rn ← Ω

(
Zsgn

(
Z>Rn

))
Return: Rl1-hooi

n ← Rn for every n ∈ [N ]

Fig. 1. The L1-HOOI algorithm for solving L1-Tucker in (3).

arbitrarily initialized to a set of bases {Rl1-hooi
n,0 }n∈[N ], such

as the solution of L1-HOSVD. At every iteration q ≥ 1, L1-
HOOI updates {Rl1-hooi

n,q }n∈[N ] sequentially (across n) while
the L1-Tucker metric increases at every single update. Mathe-
matically, at the q-th iteration step, for n ∈ [N ], L1-HOOI de-
fines Zn,q=

[
X ×m<n Rl1-hooi

m,q
>×

k>n
Rl1-hooi

k,q−1
>
]
(n)

, and up-

dates Rl1-hooi
n,q by solving

maximize
R∈S(Dn,dn)

∥∥R>Zn,q

∥∥
1
. (7)

Following the L1-PCA alternating optimization solver frame-
work presented above, Rl1-hooi

n,q is optimized by the basis ob-
tained upon convergence of the iteration

Rt = Ω
(
Zn,qsgn

(
Z>n,qRt−1

))
, (8)

t = 1, 2, . . ., where R0 is initialized at Rl1-hooi
n,q−1. For fixed q,

iterations in (8) can practically terminate when the update of
Rt doesn’t increase ‖R>t Zn,q‖1, or when t exceeds a maxi-
mum number of allowed iterations. At this point, we observe
that, since iterations in (8) increase ‖Z>n,qRt‖1 across t, it
holds that ∥∥∥Rl1-hooi

n,q

>
Zn,q

∥∥∥
1
≥
∥∥∥Rl1-hooi

n,q−1
>
Zn,q

∥∥∥
1
. (9)

The latter inequality implies that each basis update across q
and n increases the L1-Tucker metric, which in turn, sug-
gests that when initialized at the L1-HOSVD solution, L1-
HOOI offers a set of bases that is superior with respect to the
L1-Tucker metric. In addition, using standard norm inequali-
ties and the fact that orthogonal projection is a non-expansive
mapping in the L2 norm, we can easily show that, for any
{Rn ∈ S(Dn, dn)}n∈[N ], it holds

‖X ×n∈[N ] R
>
n ‖1 ≤

√ ∏
n∈[N ]

dn‖X‖F . (10)

Therefore, the L1-HOOI iterations are guaranteed to con-
verge. In practice, iterations across q can terminate when∑N

n=1 ‖Rl1-hooi
n,q

>
[X ](n)‖1 ceases to increase, or when q ex-

ceeds a maximum permitted number.

4. EXPERIMENTAL STUDIES

4.1. Tensor Reconstruction – Synthetic Data

We consider (N = 5)-way tensor following Tucker struc-
ture X = G ×n∈[5] Rn , where Dn∈[5]\3 = 10, D3 = 8,
dn∈[5]\3 = 4, d3 = 5. The entries of G are drawn from
N (0, 12). Arbitrary orthonormal-basis factors Rn, n ∈ [5]
are considered. The entries of X are corrupted with zero-
mean unit-variance additive white Gaussian noise (AWGN),
disrupting its low-rank Tucker structure. Moreover, No out of
the 80,000 entries of X are additively contaminated with high
magnitude outliers drawn fromN (0, σ2

o). Compactly, we ob-
tain X c = X +N +O, where tensors N and O model noise
and sparse outliers respectively. The task of interest is to re-
cover X from the corrupted X c. To that end, we carry out
Tucker decomposition of X c by means of HOSVD, HOOI,
L1-HOSVD, and the proposed L1-HOOI algorithms. Then,
we estimate X as X̂ = X c ×n∈[5] R̂nR̂

>
n where {R̂n}n∈[5]

are the orthonormal-basis factors returned by the Tucker de-
composition algorithms. To measure the success of each al-
gorithm at recovering X , we compute the normalized squared
error (NSE) ‖X − X̂‖2F ‖X‖

−2
F . In Fig. 2, we plot the the

mean normalized squared error (MNSE), estimated over 1000
independent noise/outlier realizations, versus outlier standard
deviation σo = 4, 8, . . . , 28, for No = 70. In the absence of
outliers (σo = 0), all methods exhibit similarly low MNSE.
As σo increases, the MNSE of all methods increases. We
observe that the performances of HOSVD and HOOI signifi-
cantly deteriorate for σo ≥ 16 and σo ≥ 24, respectively. L1-
HOSVD and L1-HOOI remain robust across the board with
L1-HOOI exhibiting the lowest MNSE.

In Fig. 3, we set σo = 25 and plot the MNSE versus the
number of outliersNo = 0, 20, . . . , 100. We notice that in the
absence of outliers (No = 0) all methods exhibit low MNSE.
As the number of outliers increases, HOSVD and HOOI ten-
sor estimates deviate significantly from X . For example, for
No = 80 outliers (about 0.1% of the entries of X are cor-
rupted) HOSVD and HOOI are clearly misled; on the other
hand, L1-HOSVD and L1-HOOI exhibit very low MNSE.

4.2. Classification – AT&T Face Dataset

We conduct a classification study on the AT&T face dataset
[28] which consists of size (D1 = 112) × (D2 = 92)
image-samples. We consider P = 3 training samples
from each of the first C = 5 classes. Following the ap-
proach of [6], we organize all training data in tensor X ∈
{0, 1, . . . , 255}D1×D2×15 and decompose modes 1 and 2
with d1 = d2 = 25 (compression ratio 16.48) by means of
HOSVD, HOOI, and L1-HOOI (i.e., we fix U3 = I15). Then,
we obtain 15 training vectors in G = [G1 G2 . . . G5] =
[X ×1 R

>
1 ×2 R

>
2 ]>(3) ∈ R625×15, where Gc has as columns

the feature-vectors of class c. These vectors are used to
build a k-NN classifier. A testing point T ∈ RD1×D2 is
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Fig. 2. MNSE versus outlier standard deviation σo, for
HOSVD, HOOI, L1-HOSVD, and L1-HOOI. No = 70
(about 0.0875% of the total number of entries of X are outlier
corrupted).
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Fig. 3. MNSE versus number of outliers No, for HOSVD,
HOOI, L1-HOSVD, and L1-HOOI. σo = 25.

first compressed as t = vec(R>1 TR2) ∈ R625×1 and then
classified by the k-NN; that is, for k = 1, t is classified to
class c∗ = argminc∈[C]{minj∈[P ] ‖t − [Gc]:,j‖22}. To test
the corruption resistance of the compared methods, we cor-
rupt each training and each testing sample, with probability
α = 0.1. Each pixel of a corrupted sample is substituted
by salt (‘255’) or pepper (‘0’), with probability β. For each
training-data configuration, we test the performance of the
methods on 7 testing points from each class. We repeat this
study on 2000 configurations of training data, testing data,
and corruption, and calculate the average classification accu-
racy of plain k-NN, HOSVD, HOOI, and L1-HOOI. In Fig.
4, we plot the performance of these methods, versus β. Once
again, we observe that, even though all methods perform sim-
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Fig. 4. AT&T classification study: Classification accuracy
versus β, for α = 0.1 and d = 25.

ilarly well, L1-HOOI exhibits superior performance than all
its counterparts, for every value of β.

5. CONCLUSIONS

We introduced L1-HOOI, an iterative algorithm for the so-
lution of L1-Tucker tensor decomposition. We provided nu-
merical studies on tensor reconstruction and classification that
compare L1-HOOI with standard counterparts. Our studies
showed that L1-HOOI outperforms L1-HOSVD in the L1-
Tucker metric and that, in contrast to HOSVD and HOOI, it
exhibits sturdy resistance against outliers in the tensor data.
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