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ABSTRACT
Principal-Component Analysis (PCA) is a data processing
method with numerous applications in signal processing and
machine learning. At the same time, standard PCA has been
shown to be very sensitive against faulty/outlying data. On
the other hand, L1-norm-based PCA (L1-PCA), seeking to
maximize the aggregate absolute projections of the processed
data, has demonstrated sturdy corruption resistance. At the
same time, in our big data era, there is a need for online
(stochastic) algorithms for data analysis with limited storage
and computation requirements. To this end, in this paper
we extend batch L1-PCA and propose a novel algorithm for
stochastic PC calculation based on mean absolute projection
maximization, with formal convergence guarantees. Our nu-
merical studies demonstrate the convergence and corroborate
the corruption resistance of the proposed method.

1. INTRODUCTION

Principal-Component Analysis (PCA) finds numerous appli-
cations in machine learning and signal processing [1] , among
other fields. However, PCA is also known to be particu-
larly sensitive against faulty data entries [2], occuring often
in modern big datasets, due to various causes such as misla-
beling, intermittent sensor malfunction, deliberate jamming,
and sensing-environment changes.

To counteract the faulty entries, corruption-resistant PCA
approaches have been proposed in the literature. In one stan-
dard direction, researchers study methods for Robust PCA
(RPCA) that tries to express the processed data matrix as the
sum of a low-rank matrix, spanning the sought-after subspace,
and a sparse matrix that captures outliers [2]. Typically,
RPCA relies on the formulation and solution of a convex op-
timization problem, with a metric that places ad-hoc weights
on dimensionality reduction and outlier sparsity. On a dif-
ferent, arguably more straightforward direction, researchers
study reformulations of PCA that are based on absolute pro-
jections and the L1-norm (L1-PCA), placing lower emphasis
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per data point, thus gaining robustness against outliers. For
the solution of batch L1-PCA, several exact [3] and efficient
solvers [4–6] have been proposed in the literature.

In the advent of the big data era, joint processing of all
data measurements as a batch can be computationally pro-
hibitive. In other practical cases, measurements arrive in a
streaming fashion, as for example in real-time video process-
ing [7]. In such cases, solving PCA from scratch on an aug-
mented batch each time that a new point arrives is clearly im-
practical. In order to process a large volume of measurements
incrementally, online PCA solvers have been proposed in the
literature, typically relying on stochastic optimization [8, 9].
More recently, robust methods for online PCA have also been
proposed in order to combine corruption resistance with low-
cost online processing [10, 11].

While stochastic PCA has been well studied in the liter-
ature, the stochastic formulation of L1-PCA remains to date
unexplored, despite its clear robustness in batch processing.
In this paper, we formulate a novel stochastic version of L1-
PCA, for one principal component, based on mean absolute
projection maximization. Then, we propose an incremental
algorithm for its solution, based on fundamental stochastic
approximation theory. Our method is accompanied by formal
convergence guarantees and numerical studies that corrobo-
rate its corruption resistance.

2. TECHNICAL BACKGROUND

2.1. Stochastic PCA
Given data distribution D, the stochastic Principal Compo-
nent (PC) is formulated as

qL2 = argmax
q∈RD ; ||q||2=1

Ex∼D{|x>q|2}. (1)

Defining C := Ex{xx>}, the objective in (1) can be
rewritten as Ex{q>xx>q} = q>Cq and it is maximized
by the dominant eigenvector of C. In practical appli-
cations, C is unknown and sample-average estimated as
Ĉ := 1

N

∑N
i=1 xix

>
i = 1

NXX>, based on a size-N batch
of coherent data points X := [x1, . . . ,xN ]. Accordingly,
substituting C with Ĉ, the metric of (1) can be approximated
as q>Ĉq = 1

N ‖X
>q‖22, where the squared L2-norm (or
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Frobenius-norm) ||.||22 returns the sum of the squared entries
of its vector argument. Similarly, the stochastic PC can be
approximated by the batch PC

q̂L2 = argmax
q∈RD ; ||q||2=1

||X>q||22. (2)

The solution to (2) can be obtained by Singular-Value Decom-
position (SVD) of X with cost O(NDmin(N,D)). Impor-
tantly, as the batch size N tends to infinity, Ĉ tends to C and
the batch PC q̂L2 tends to the stochastic PC qL2.

Clearly, for large N , batch PCA in the form of (2) can
be computationally prohibitive. Therefore, stochastic PCA
methods target at solving (1) incrementally, by processing one
sample at a time. One of the earliest solvers [8, 9] initializes
at a PC estimate q0 and, when the t-th sample is processed,
for t = 1, 2, . . ., it updates

qt = P(qt−1 + ηxtx
>
t qt−1) (3)

where, for any g ∈ RD \ 0D, P(g) := g
||g||2 .

In [9] we read that the algorithm in (3) converges almost-
surely to the dominant eigenvector of C, when the step-size η
decreases across t, e.g., similar to 1/t. Multiple other works
in the literature have also studied the stochastic convergence
of (3) [12–14]. Variants of (3), with different step sizes, were
proposed in [15, 16]. Recently, [17] proposed a variant of
(3) with adaptive step-size (AdaOja), based on the theory of
[18]. Other variants of (3) operate on mini-batches, instead of
single data points [19].

2.2. Outliers, L1-PCA, and Other Robust Variants
The squared emphasis that batch PCA in (2) places on each
data point renders it sensitive against outliers, which are typ-
ically peripheral points. A straightforward approach to coun-
teract the impact of outliers is to replace the squared emphasis
in (2) by linear emphasis, simply by changing the norm from
L2 (sum of squared projections) to L1 (sum of absolute pro-
jections). This results in the batch L1-PC

q̂L1 = argmax
q∈RD; ‖q‖2=1

||X>q||1. (4)

Batch L1-PCA in (4) has attracted extensive documented
interest over the past decade. In [5, 6], authors presented
efficient algorithms for its solution based on alternating opti-
mization. In [3], authors solved the problem exactly for the
first time. In [4], authors presented a bit-flipping-based itera-
tive solver. Extensions of L1-PCA to tensor (multi-way array)
data processing have also been presented in [20–22]. Other
algorithms for Robust-PCA were presented, e.g., in [2,23,24].

2.3. Robust Stochastic/Adaptive PCA
Similar to batch PCA, stochastic PCA is sensitive against
outliers among the processed data. This has created a need
for robust stochastic PCA algorithms. To this end, Online

Robust-PCA (OR-PCA) was presented in [25]. Later, [26]
presented R-SGD1, an algorithm that conducts robust gradi-
ent descent iterations: qt = P(qt−1 + ηt xtsgn(x>t qt−1)).
A similar streaming algorithm was presented in [32], with-
out stochastic convergence analysis. Recently, an algorithm
for adaptive L1-PCA for multiple PCs with online outlier
rejection was presented in [27]. Algorithms for incremental
L1-PCA were also presented in [28–30]. In this work, for
the first time, we present an algorithm for stochastic L1-PCA
through mean absolute projection maximization.

3. PROPOSED METHOD

3.1. Problem Formulation
First, we note that the metric of (4) can be equivalently rewrit-
ten as 1

N ‖X
>q‖1. Next, we note that 1

N ‖X
>q‖1 tends to

Ex{|x>q|}, as N tends to infinity. Thus, the stochastic L1-
PC takes the form

qL1 = argmax
q∈RD; ||q||2=1

Ex{|x>q|}. (5)

Incorporating the norm constraint in the objective function,
we can rewrite the stochastic L1-PC in (5) as the mean-
absolute projection maximization (MaxAP)

zMaxAP = argmax
z∈RD

Ex

{
|x>z|
||z||2

}
, (6)

noticing that P(zMaxAP) solves (5). In order to ensure the def-
inition and continuous differentiability of the function inside
the expectation, we modify it as

M(x; z, ε) :=

√
|x>z|2 + ε√
||z||22 + ε

, (7)

for some positive ε� 1, and rewrite MaxAP as

zMaxAP = argmax
z∈RD

Ex

{
M(x; z, ε)

}
. (8)

Certainly, for ε = 0, (8) coincides with (6). In the sequel, we
focus on solving (8).

3.2. MaxAP Solution
At the extrema of the ε-modified MaxAP metric in (8), it holds

∇z>

[
Ex

{
M(x; z, ε)

}]
= 0D. (9)

In accordance with the regularity conditions on M(x; z, ε)
[33], we interchange the gradient and expectation operators
in (9) as

Ex{L(x; z, ε)} = 0D, (10)
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Proposed Stochastic MaxAP
Input: {xt}t=1,2,...,N , {ηt}t=1,2,...,N , q0 ∈ RD

1: for t = 1, 2, . . . , N

2: zt ← zt−1 + ηtL(xt; zt−1, ε)

3: qt ← P(zt)
4: end for

Output: qN (as estimate of the stochastic L1-PC qL1 )

Fig. 1: Proposed method for PC estimation through MaxAP.

where

L(x; z, ε) :=∇z>M(x; z, ε) (11)

=
x>z√

(|x>z|2 + ε)(z>z+ ε)
x

−
√
|x>z|2 + ε

(
√
z>z+ ε)3

z. (12)

In view of (11), we first propose the iteration

zt = zt−1 + ηtL(xt; zt−1, ε), t = 1, 2, . . . , (13)

for step sizes {ηt} that satisfy
∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <

∞ (e.g., ηt = γ
t for some constant γ > 0). First, we

note that, due to the step-size conditions, for any given
stream of data, the iteration converges in the argument:
limt→∞ ‖zt − zt−1‖2 = 0. In addition, based on the
fundamental stochastic approximation lemma presented by
Robbins-Monro in [31], the iteration attains stochastic con-
vergence, in the mean-square (m.s.) sense, to a root of (10).
In fact, similar to gradient ascent for standard Rayleigh quo-
tient maximization [34], (13) stochastically converges to a
maximum of Ex{M(x; z, e)} that solves (9). Accordingly,
for very low ε, the dependent PC sequence

qt = P(zt), t = 1, 2, . . . , (14)

approximates the stochastic L1-PCA solution in (5). For
ε = 0, the proposed iteration in (13) simplifies to zt =
zt−1 + ηtPtvtsgn(v>t zt−1), t = 1, 2, . . . , where Pt :=
ID−zt−1 1

‖zt−1‖22
z>t−1 = ID−qt−1q>t−1 is the projection ma-

trix to the nullspace of the previous PC and vt := xt
1

‖zt−1‖2
is the normalized new sample. A pseudocode for the proposed
method is presented in Fig. (1).

4. NUMERICAL STUDIES

4.1. Synthetic Data
Convergence: We consider D = 3 and draw N = 500

data points from N (03,C), where C =
[
2.05 1.05 1.08
1.05 0.7 0.31
1.08 0.31 0.97

]
.

We set ε = 0 and run the proposed iteration with a step
size ηt = 1

t . Then, we compute the change magnitude
||qt − qt−1||22 and plot it in Fig. 2(a), versus t. An argu-
ment convergence to zero-change is observed after just 5
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Fig. 2: Convergence of the proposed method: (a) argument
convergence in an arbitrary single stream of data; (b) esti-
mated mean-square convergence to the stochastic L1-PC.
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Fig. 3: Average subspace error vs. t.

iterations. Then, we notice that, specifically for Gaussian
data x ∼ N (03,C), |z>x| follows half-normal distribution

with mean Ex{|x>z|} =
√

2
πz
>Cz [35]. Accordingly, the

MaxAP metric becomes Ex{M(x; z, 0)} =
√

2
π

√
z>Cz
z>z

and
the stochastic L1-PC that solves (5) coincides with the dom-
inant eigenvector of C, denoted here by p. To demonstrate
the stochastic convergence of the proposed iteration, we draw
S = 1000 independent realizations of length-N data streams
from the above Gaussian distribution and, for the i-th stream,
we compute the proposed PC sequence {q(i)

t }t=1,2,...,N ac-
cording to (14). Then, we average-estimate the m.s. conver-
gence metric as 1

2S

∑S
i=1 ‖q

(i)
t q

(i)>

t − pp>‖2F , for every t,
where ‖.‖2F returns the squared Frobenius-norm of its matrix
argument, and plot it in Fig. 2(b). The stochastic convergence
of the proposed iteration is clearly documented.

Subspace estimation: We draw N = 300 independent
points from N (03,C), where C =

[
7 7 6
7 10 9
6 9 13

]
, and form

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on August 26,2020 at 02:26:57 UTC from IEEE Xplore.  Restrictions apply. 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

SVD (batch)
L1-BF (batch) [4]
Oja [8]
R-SGD1 [26]
Proposed method

Best  (=0.1) for R-SGD1 and proposed method

Best  (=0.05) for Oja

(a)

0 5 10 15 20
# Mislabelled training data

0.74

0.76

0.78

0.8

0.82

0.84

0.86

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

SVD (batch)
L1-BF (batch) [4]
Oja [8]
R-SGD1 [26]
Proposed method

(b)

Fig. 4: Average classification accuracy vs. (a) γ and (b) num-
ber of mislabeled training points.

data matrix X = [x1,x2, . . . ,xN ] ∈ R3×300. Then, we
add benign zero-mean white Gaussian noise (AWGN) from
2N (0, 1) to every entry of X. In addition, we corrupt x120

and x230 with outlying corruption drawn from N (03,Co),

where Co =
[
1585 1039 −76
1039 1311 −61
−76 −61 104

]
, such that the dominant eigen-

vector of the outlier covariance matrix Co, po, makes an
angle of about 45◦ with the dominant eigenvector of the nom-
inal covariance matrix C, p. Then, we apply the proposed
method to estimate p, from the corrupted data stream. We
repeat this task for S = 104 independent data realizations
and plot in Fig. 3 the average-estimated mean subspace er-
ror 1

S

∑S
i=1 ||q

(i)
t q

(i)>

t − pp>||2F , versus t. Alongside the
proposed algorithm, we also plot the performance of SVD
(batch processing –joint calculation on [X]:,1:t at the t-th
iteration), Oja’s standard stochastic PCA algorithm of [8],
candid covariance-free incremental PCA (CCIPCA) [36],
AdaOja [17], and R-SGD1 [26]. For fairness we tune the
step sizes of Oja, R-SGD1, and the proposed algorithm to
ηt =

0.05
t0.6 . We notice that for t < 120, all methods perform

similarly well and returned subspaces nearly converge to the
span of p. For t ≥ 120, we observe that all L2-based methods
(SVD, Oja, CCIPCA, and AdaOja) are significantly affected
by the corruptions. On the other hand, the robust solver R-

SGD1 [26] and the proposed algorithm show similarly good
corruption resistance, maintaining low subspace error.

4.2. Wisconsin Breast Cancer Dataset
In this experiment, we perform nearest subspace (NS) clas-
sification on the Wisconsin breast cancer dataset [37], which
contains (D = 9)-dimensional measurements on healthy
and unhealthy cell nuclei. We first split the dataset into
85% training and 15% testing data. In order to identify a
preferred learning rate for the stochastic methods, we vary
γ ∈ {0.05, 0.05, 1} and perform NS classification using the
final element of each stochastic PC sequence. Specifically,
we first estimate for each method the individual PCs of train-
ing data from class 1 (healthy) and class 2 (unhealthy). Next,
for each testing point, we measure its squared projection er-
ror for each PC and assign it to the class with the PC that
attained the lowest error. We repeat this experiment over 104

independent data splits and, in Fig. 4(a), we plot the average
classification accuracy versus γ (including the batch methods
as benchmarks). For the method of [8], γ = 0.1 is preferred,
while for R-SGD1 and the proposed method γ = 0.15 is
preferred. Interestingly, we notice that L1-BF outperforms
SVD. In addition, we observe that the proposed method is
significantly more robust than its counterparts against inferior
choices of γ.

Next, we tune γ to the preferred values found above and
mislabel a portion of the training data. We repeat the exper-
iment over 103 independent data splits and plot in Fig. 4(b)
the average NS classification accuracy versus number of mis-
labeled training data points from each class. First, we observe
that as the number of mislabelings increases, the performance
of SVD drops significantly. On the other hand, batch L1-BF,
R-SGD1, and the proposed algorithm exhibit similar robust-
ness against mislabeling.

5. CONCLUSIONS

We introduced a method for stochastic L1-PCA based on
mean absolute projection maximization, with formal conver-
gence guarantees. Our numerical studies on synthetic and
real-world data demonstrate both the convergence and the
corruption resistance of the proposed method.
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