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ABSTRACT

We study Lp-norm Principal-Component Analysis (Lp-PCA)
of a matrix. For p = 2 (standard PCA), the problem can be
solved with standard Singular-Value Decomposition (SVD).
For p = 1 (L1-PCA), the problem was recently solved ex-
actly and approximately with efficient iterative algorithms.
For general values of p, the exact solution to Lp-PCA remains
to date unknown. In this work, for the first time in the litera-
ture, we prove that, for p ≤ 1, Lp-PCA can be solved exactly
through combinatorial optimization and present the first exact
solver. Our experimental studies on medical data demonstrate
the significant robustness of Lp-PCA, p ≤ 1, against outliers.

Index Terms— Principal-Component Analysis, PCA, L1-
PCA, Lp-norm, Lp-PCA, outliers, robustness.

1. INTRODUCTION

Principal-Component Analysis (PCA) is a fundamental
method for data analysis with a plethora of signal process-
ing and machine learning applications [1]. PCA is typi-
cally formulated as a L2-norm error minimization, or, equiv-
alently, a L2-norm projection maximization problem. Math-
ematically, for given matrix X of size D-by-N , PCA seeks
a D-dimensional unit-norm vector q that minimizes ‖X −
qq>X‖22, or equivalently, maximizes ‖X>q‖22, where the
squared L2-norm ‖ · ‖22 returns the sum of the squared en-
tries of its argument. The solution to PCA can be obtained by
Singular-Value Decomposition (SVD) of X [2]. Despite its
documented success, PCA is known to exhibit severe sensi-
tivity against outliers within the processed data [3, 4]. Out-
liers are high-magnitude/peripheral data points that lie far
away from the nominal data subspace and commonly ap-
pear in modern datasets, e.g., due to data storage/transfer er-
rors, faulty sensors, or deliberate data contamination in ad-
versarial environments [5]. The outlier-sensitivity of PCA
can be attributed to its L2-norm-based formulation which
places squared emphasis to each data point, thus promoting
the impact of outliers. Accordingly, applications that rely on
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PCA are severely affected when outliers exist in the processed
data [6]. To counteract the impact of outliers, researchers
have proposed an array of “robust” PCA formulations [6, 7].
One approach considers a L1-norm based residual-error min-
imization formulation the (approximate) solution to which is
computed by means of alternating-optimization [8]. A more
straightforward approach considers the projection maximiza-
tion PCA formulation and replaces the outlier-sensitive L2-
norm by the more robust L1-norm. In this way, linear em-
phasis is placed on each data point, resulting in the popular
L1-norm PCA (L1-PCA) formulation. L1-PCA was solved
exactly in [9, 10]. Efficient [11, 12], adaptive [13], incremen-
tal [14], stochastic [15], and complex-valued data [16, 17]
solvers have also been proposed. L1-PCA has been success-
fully employed in an array of applications [18–22] where it
has been documented that it attains similar performance to
PCA when the processed data are nominal/clean while it ex-
hibits strong resistance against outliers. L1-norm formula-
tions have recently been proposed for robust tensor analysis
(e.g., L1-Tucker [23–29] and L1-Rescal [30]). Similar to L1-
PCA, L1-Tucker and L1-Rescal exhibited significant robust-
ness against data corruptions.

Apart from p = 2 (standard PCA) and p = 1 (L1-PCA),
the exact solution to Lp-PCA remains unknown. Motivated
by the documented success of L1-PCA, in this work, we study
Lp-PCA for p ≤ 1, expecting that further decreasing p, and
thus the emphasis per training sample, can increase the ro-
bustness against outliers. Specifically, we show for the first
time that the exact solution to Lp-PCA can be found by means
of combinatorial optimization and present the first exact al-
gorithm for its solution. Our experimental studies on matrix
reconstruction and medical-data classification corroborate the
outlier resistance of Lp-PCA.

2. PROBLEM STATEMENT

Consider X = [x1,x2, . . . ,xN ] ∈ RD×N with rank(X) =
β ≤ min{D,N}. For any p > 0, Lp-PCA is formulated as

max.
q∈SD

∥∥X>q∥∥p
p
, (1)
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(a) (b) (c)
Fig. 1. Visual illustration of fp(q) = ‖X>q‖pp, q ∈ BD, for (a) p = 2, (b) p = 1, and (c) p = 0.75.

where, for any x ∈ RD, ‖x‖p :=
(∑D

d=1 |[x]d|p
) 1

p

and

SD := {q ∈ RD : ‖q‖2 = 1}. To date, Lp-PCA has been
solved exactly only for p = 2 and p = 1. For general p, the
exact solution to (1) remains unknown. For p > 1, only ap-
proximate solvers exist that provably converge to local max-
ima [31]. For p < 1, there exist neither exact solvers nor
converging iterative approximators. In the sequel, we briefly
review the special case of p = 1 (L1-PCA). Then, we present
new theory on Lp-PCA (p ≤ 1) that enables us to compute its
exact solution.

2.1. L1-PCA BACKGROUND

For the special case of p = 1, (1) simplifies to the popular
L1-PCA formulation [10]:

max.
q∈SD

∥∥X>q∥∥
1
. (2)

The exact solution to L1-PCA was presented in [10], where it
was shown that if bopt is a solution to max.b∈{±1}N ‖Xb‖2,
then, the exact solution to (2) is given by qL1 = ω(Xbopt),
where ω(x) := x‖x‖−12 for any x ∈ RD. Accordingly, the
computational cost for solving L1-PCA exactly was found to
be O(Nβ) [10]. For practical applications, an efficient algo-
rithm that approximates qL1 with cost O(DN min{D,N}+
N2β), comparable to that of SVD, was offered in [11]. Mo-
tivated by the outlier-robustness of L1-PCA, in the sequel,
we study Lp-norm PCA for p ≤ 1, which places sub-linear
(p < 1) emphasis to each data point of X compared to the
linear emphasis of L1-PCA and squared emphasis of stan-
dard PCA.

3. PROPOSED EXACT SOLUTION

We consider p ≤ 1 and commence our developments with
Lemma 1. The proofs of Lemma 1 and all subsequently pre-
sented Lemmas are omitted due to lack of space.
Lemma 1. For any X ∈ RD×N , it holds that

max
q∈SD

∥∥X>q∥∥p
p
= max

q∈BD

∥∥X>q∥∥p
p
, (3)

where BD := {q ∈ RD : ‖q‖2 ≤ 1}.
In view of Lemma 1, the solution to Lp-PCA in (1) can equiv-
alently be pursued over the closed unit-radius hyperball. A
visual illustration of fp(q) = ‖X>q‖pp, q ∈ BD, is offered in
Fig. 1 for arbitrary matrix1 X and p ∈ {2, 1, 0.75}. Next, for
every b ∈ A := {±1}N , we define

P(b) := {q ∈ BD : sgn(X>q) = b} (4)

and notice that there exist instances of b ∈ A for which
P(b) = ∅. Moreover, the following Lemma 2 holds true.
Lemma 2. For every b,b′ ∈ A such that b 6= b′, it holds
that P(b) ∩ P(b′) = ∅.
We define N (X) := {q ∈ BD : ∃n ∈ [N ] such that q>xn =
0}, where [N ] := {1, 2, . . . , N}. By Lemma 2 and the def-
inition of N (X), the following Lemma 3 straightforwardly
follows.
Lemma 3. It holds that BD =

⋃
b∈A P(b)

⋃
N (X).

Lemma 3 states that, for any X, the closed unit-radius hyper-
ball can be partitioned in a finite number of non-overlapping
sets. Moreover, the following Lemma 4 holds.
Lemma 4. Let qLp denote the exact solution to (3) for p ≤
1. Then, qLp /∈ N (X).
In view of Lemmas 1-4, we find

max
q∈SD

∥∥X>q∥∥p
p
= max

q∈BD

∥∥X>q∥∥p
p

(5)

= max
q∈

⋃
b∈A P(b)

⋃
N (X)

∥∥X>q∥∥p
p

(6)

= max
q∈

⋃
b∈A P(b)

∥∥X>q∥∥p
p
. (7)

By Lemma 2, the solution to (7) can be pursued by combina-
torial search over A: i.e., by separately solving

max.
q∈P(b)

∥∥X>q∥∥p
p

(8)

for each b ∈ A for whichP(b) 6= ∅. The question of interest
now is how to solve (8). Below we show that the solution to

1X=

[
1.7876 −0.1967 0.9107 0.0728 0.6752
−0.8204 −0.8901 −0.0123 0.9394 0.7860

]
∈R2×5.
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CVX code snippet for the solution to (8)
Input: X ∈ RD×N , b ∈ A, 0 < p ≤ 1

1: Y=X.*repmat(b’,D,1);
2: cvx begin
3: variable q(D)
4: maximize( sum( pow p( Y’*q , p ) ) )
5: subject to
6: q’*q<=1
7: Y’*q>=0
8: cvx end

Return: q ∈ RD

Fig. 2. CVX code snippet for the solution to (8).

(8) exists and can be found exactly, in accordance with the
following Lemmas 5 and 6.
Lemma 5. For any b ∈ A, P(b) is a convex set.

Lemma 6. For p ≤ 1 and any b ∈ A, ‖X>q‖pp is concave
with respect to q ∈ P(b). Moreover, ∀q ∈ P(b) it holds
that ‖X>q‖pp =

∑
n∈[N ] |x>nq|p =

∑
n∈[N ]([b]nq

>xn)
p

and [b]nq
>xn > 0 ∀n ∈ [N ].

By Lemmas 5 and 6, Proposition 1 follows.
Proposition 1. The problem in (8) is a convex problem and
can be equivalently rewritten as

min.
q∈P(b)

−
∑
n∈[N ]

([b]nq
>xn)

p. (9)

Proposition 1 states that, for every b ∈ A such that P(b) 6=
∅, (8) is a convex problem and, thus, it can be solved exactly,
e.g., by interior point methods. For instance, considering a
standard primal-dual interior-point solver based on Newton’s
method [32, 33], (8) can be solved with about cubic cost in
D,N . More sophisticated solvers with lower computational
cost can also be derived, but this is beyond the scope of this
paper. For simplicity in presentation, in this work we solve (8)
using CVX [34, 35]. In Fig. 2, we offer a CVX code snippet
for Matlab for the solution to (8). The proposed algorithm for
exact Lp-PCA is summarized in Fig. 3.

4. EXPERIMENTAL STUDIES

4.1. Matrix Reconstruction

We consider rank-1 matrix X = qnomu
> ∈ R(D=5)×(N=7),

where E{‖u‖22} = DN and qnom denotes the nominal signal
subspace. We disrupt the structure of X by Additive White
Gaussian Noise, forming Xn = X + N, where N draws
entries from N (0, D−1N−1). Moreover, we further corrupt
one column of X by adding to it a high-magnitude outlying
point. That is, we form Xn+o = Xn + O = X + N + O,
where [O]:,i = o, i ∈ [N ] is arbitrarily chosen and for any
j ∈ [N ]\ i, [O]:,j = 0D. Vector o draws entries from (0, σ2).
We vary σ2 ∈ {0, 0.4, 0.8, 1.2}, p ∈ {2, 0.8, 0.5}, and for
every pair (σ2, p) we compute the exact Lp-norm principal

Algorithm 1. The proposed exact Lp-PCA solution.
Input: X ∈ RD×N , 0 < p ≤ 1

1: v ← 0
2: For every b ∈ A
3: q← argminq∈P(b) −

∑
n∈[N ]([b]nq

>xn)
p

4: If ‖X>q‖pp > v, v ← ‖X>q‖pp, qLp ← q

Return: qLp ∈ RD

Fig. 3. Proposed algorithm for exact Lp-PCA (p ≤ 1).

component of Xn+o as q̂ = argmaxq∈BD
‖X>n+oq‖pp using

the proposed exact algorithm in Fig. 3. Then, we compute the
Normalized Squared Error (NSE) ‖q̂q̂>Xn+o −X‖22‖X‖−22 .
In Fig. 4, we plot the Mean NSE (MNSE) versus σ2, com-
puted over 40 statistically independent realizations of Xn+o.
We observe that, in the case of nominal/clean data (σ2 = 0),
Lp-PCA exhibits high performance for every p = 2, 0.8, 0.5.
As σ2 increases, the MNSE increases. Lp-PCA for p = 0.5
and p = 0.8 exhibits strong resistance against the outlier
compared to standard PCA, the performance of which sig-
nificantly deteriorates as σ2 increases.

4.2. Classification of Biomedical Data

We consider the Breast Cancer Wisconsin (Diagnostic)
dataset [36, 37] which comprises 569 samples of 30 features
computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. Each sample is labeled and corre-
sponds to a malignant or benign tissue. Overall, there are 212
malignant and 357 benign tissue-samples available. We ar-
range all the samples in data matrix X ∈ R(D=30)×(N=569)

and define label-vector z ∈ {0, 1}569, where [z]i = 1
if xi corresponds to a malignant tissue and [z]i = 0 if
xi corresponds to a benign tissue. We consider availabil-
ity of Ntrain = 14 points from each class for training and
Ntest = 60 for testing. We let Xb = [X]:,Ib ∈ RD×Ntrain

and Xm = [X]:,Im ∈ RD×Ntrain denote the benign and ma-
lignant training data samples, respectively, where Ib ⊂ [569],
|Ib| = Ntrain, Im ⊂ [569], and |Im| = Ntrain. Similarly,
Yb = [X]:,Jb

∈ RD×Ntest and Ym = [X]:,Jm
∈ RD×Ntest

denote the benign and malignant data samples, respectively,
for testing, where Jb ⊂ [569], |Jb| = Ntest, Jm ⊂ [569], and
|Jm| = Ntest. There is no overlap between the training and
testing data of each class: i.e., Im∩Jm = ∅ and Ib∩Jb = ∅.
During training, we compute qb = argmaxq∈BD

‖X>b q‖pp
and qm = argmaxq∈BD

‖X>mq‖pp by means of the proposed
algorithm. Given a testing sample y from Ym or Yb, we
classify it according to

(q>my)2‖y‖−2
benign
≶

malignant
(q>b y)

2‖y‖−2. (10)

In Fig. 5, we plot the average classification accuracy (com-
puted over 300 distinct realizations of Im, Ib,Jm,Jb) when
p varies in {0.1, 0.3, 0.5, 0.7, 0.9, 2}. Moreover, we include
as a benchmark the classification accuracy of the k-nearest

1613

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on August 26,2020 at 02:29:30 UTC from IEEE Xplore.  Restrictions apply. 



0 0.4 0.8 1.2
0

0.5

1

1.5

2

M
N

S
E

PCA (SVD)
Lp-PCA, p=0.5 (proposed)
Lp-PCA, p=0.8 (proposed)
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Fig. 5. Classification accuracy v.s. p with no mislabelings.

neighbor classifier for k = 1 (NN). We observe that all meth-
ods exhibit high performance. NN exhibits the best perfor-
mance, slightly higher than that of Lp-PCA for p = 0.1.
Standard PCA, implemented by means of SVD, exhibits the
lowest performance. In Fig. 6, we repeat the above experi-
ment but this time we consider thatm = 2 malignant samples
have mistakenly been labeled as benign samples and m = 2
benign samples have been mislabeled as malignant. We no-
tice that the performances of NN and SVD are significantly
compromised by the mislabelings: i.e., the performance of
NN dropped to 0.77 from 0.89 and the performance of PCA
dropped to 0.73 from 0.85. On the other hand, Lp-PCA for
p < 1 remained almost unaffected. Also, we notice that all
values of p < 1 are similarly robust, with p = 0.1 exhibit-
ing the best performance in this study. Finally, in Fig. 7, we
fix p = 0.3 and let the number of mislabelings, m, vary in
{0, 1, 2, 3, 4}.2 Expectedly, when m = 0 the performances
of all methods are similar to their performances in Fig. 5.
However, as m increases, the performances of NN and PCA
are compromised. Interestingly, the performance of Lp-PCA
(p = 0.3) appears to be affected very little by the mislabelings
for all values of m.

2That is, m benign samples have wrongly been labeled as malignant and
m malignant samples have been labeled as benign samples.
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Fig. 6. Classification accuracy v.s. p, for m = 2.
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5. CONCLUSIONS

In this work, we studied Lp-PCA for p ≤ 1 and showed
that it can be solved exactly through combinatorial search.
Our experimental studies on data reconstruction and classifi-
cation illustrate the remarkable outlier-resistance of the pro-
posed method.
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