
A TTL-based Approach for Data Aggregation in Geo-distributed
Streaming Analytics

Dhruv Kumar1, Jian Li2, Abhishek Chandra1 and Ramesh Sitaraman2
1{dhruv, chandra}@umn.edu, 2{jianli, ramesh}@cs.umass.edu

1University of Minnesota, Twin Cities, 2University of Massachusetts, Amherst

ACM Reference Format:

Dhruv Kumar1, Jian Li2, Abhishek Chandra1 and Ramesh Sitaraman2. 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming

Analytics. In ACM SIGMETRICS / International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS ’19 Abstracts), June 24ś28,

2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/

10.1145/3309697.3331491

Streaming data analytics has been an important topic of research

in recent years. Large quantities of data are generated continuously

over time across a variety of application domains such as web

and social analytics, scientific computing and energy analytics.

One of the key requirements in modern data analytics services

is the real-time analysis of these data streams to extract useful

and timely information for the analyst. Several distributed data

analytics platforms have been developed in recent times tomeet this

growing requirement of real-time streaming analytics. Nowadays,

a large amount of data is generated continuously by geographically

distributed sources (e.g., agents, sensors, mobile devices, edge nodes,

etc.) in many streaming applications. For instance, services like

Facebook, Twitter and Netflix continuously gather data from the

end users for a variety of analytical purposes such as finding the

popular web content amongst their users or monitoring the QoS

metrics. Large content delivery networks (CDNs) like Akamai that

serve a significant fraction of content on the Internet continuously

collect data from their edge servers and clients from around the

globe to understand what, where and how content is accessed for

the purpose of providing content analytics insights to businesses.

Hub-and-spoke model for analytics processing. A typical

analytics infrastructure for processing such geo-distributed streams

follows a hub-and-spoke model, which conceptually comprises a

single centralized łhubž connected to multiple edges by a wide-

area network (WAN). The data is either generated at the edge or

collected at the edge from clients such as sensors, mobile devices

etc. In the latter case, clients report data to the edge that is łclosestž

to them. Each edge has a cluster of servers to collect and process

3For a full journal version of this paper see: Dhruv Kumar, Jian Li, Abhishek Chandra
and Ramesh K. Sitaraman. 2019. A TTL-based Approach for Data Aggregation in
Geo-distributed Streaming Analytics. Proc. ACM Meas. Anal. Comput. Syst. Vol. 3, No.
2, Article 29 (June 2019). DOI: https://doi.org/10.1145/3326144.
4This research was sponsored by the NSF under Grant CNS-1717834, 1717179, and by
the U.S. ARL and the U.K. MoD under Agreement Number W911NF-16-3-0001.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS ’19 Abstracts, June 24ś28, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6678-6/19/06.
https://doi.org/10.1145/3309697.3331491

Figure 1: Delay-traffic tradeoff. This shows empirically com-

puted delay and traffic for varying amounts of edge-based

aggregation for Akamai trace on AWS EC2 testbed.

its data streams and then send the processed data to a central hub

for further processing. Analysts directly query the central server

for retrieving the relevant analyzed data. In this paper, we limit

ourselves to aggregation-based processing which we explain next.

Data aggregation. We focus on optimizing a common and

widely-used operation that is performed within any analytics sys-

tem ś the operation of computing aggregates, such as the Reduce

operation in MapReduce, GroupBy in SQL and LINQ etc. We con-

sider data streams in which every record is of the type (k,v), where

k is the key and v is its corresponding value, e.g., in the Akamai

content analytics context the key could be a combination of con-

tent id (url) and geographic location and the value could be the

number of clients accessing the url from that location. Aggregation

is performed over such a key-value stream by grouping all records

(k,vi ), 1 ≤ i ≤ n that have the same key value k , to produce an

aggregate record (k,v1 ⊕ v2 ⊕ · · · ⊕ vn ), where v1,v2, · · · ,vn are

the values received for key k up to time T and ⊕ is an application-

defined associative binary operator. Such operators can be as simple

as sum or max , or more sophisticated, including filters (such as

Bloom filters), transforms and sketches (such as HyperLogLog), and

user-defined functions. In this paper, we focus on continuous aggre-

gation at the center where the newly arrived data record (k,v) is

immediately aggregated into its key k’s aggregated value to provide

the most updated aggregated result for any key k .

Delay-traffic tradeoff. The data transfer from edges to the

center happens over a WAN link which is generally scarce or ex-

pensive. To save WAN bandwidth, the computing resources on the

edge could be utilized to perform (partial) aggregation on the input

data stream before sending intermediate results to the center for

a full aggregation. Such edge-based aggregation leads to a funda-

mental tradeoff between two key metrics: delay andWAN traffic, as

illustrated in Figure 1. Here, delay corresponds to the edge-induced

aggregation delay in computing the results, while WAN traffic is

the amount of data sent out over wide-area links. Figure 1 shows

Session 2B: Network Measurement and Performance SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

15



the delay-traffic tradeoff, with delay decreasing as traffic increases

and vice versa. In particular, the two end-points correspond to two

extreme approaches to edge aggregation: streaming and batching.

Streaming refers to sending all the data from edges to the center

without any processing at edges. This approach is able to achieve

the desired low delay but results in high WAN traffic. On the other

hand, batching refers to aggregating the data at the edge for a long

time (typically, a few hours) and then sending the summarized data

to the center for further processing. This approach is able to achieve

the desired low traffic but results in high delay. However, different

analytics systems, or even different applications using the same

system, require different tradeoffs between delay and traffic.

Real-world examples. We discuss examples of analytics ser-

vices from industry to further support the different delay-traffic

tradeoff requirements explained above.

Akamai Media Analytics: Akamai Media Analytics provides insights

into online video performance, quality of experience, and audience

behavior by monitoring crucial metrics that drive business critical

decisions. Media Analytics consists of two main services: a delay-

sensitive Quality of Service (QoS) Monitor and a delay-tolerant

Audience Analytics. The customers of both the services are video

providers who use Akamai’s video delivery services. Both analytics

services use a hub-and-spoke model where individual clients (video

players) send information as a stream of packets (called łbeaconsž)

in real-time to the widely-distributed Akamai edge servers. Each

beacon has key-value pairs that are aggregated by the edge servers

and then forwarded to a central hub for more aggregation and

processing. Users visualize the fully aggregated data by accessing

the central hub.

QoS Monitor analyzes the quality of video streams using metrics

such as startup time, rebuffer rates, audience size, bitrates, and

availability in near real-time. The goal is for video providers using

the service to get a real-time view of how their end-users are expe-

riencing their video streams and take immediate diagnostic action

if there is a noticeable quality degradation. A common use case is

when a large live streaming event such as the FIFA soccer world

cup is being delivered by Akamai. The analytics service is used to

quickly identify and solve video quality degradations, even as the

event is in progress. Given the performance diagnostic goals of the

service, reducing delay is extremely important, even at a greater

traffic cost.

Audience Analytics provides analytics around the behavior of

the audience engaging with video content using metrics such as

time spent per video, geographic location of the user and so on. This

is not a service used for performance diagnostics, but rather for the

video provider to gain analytic insights useful for the business. So,

it is more crucial to reduce the traffic cost, even at the expense of

greater delay.

Twitter Analytics: A large number of businesses use Twitter for their

marketing and advertisement campaigns. In such cases, the busi-

nesses want to understand how their audience engages with their

brands and campaigns. Twitter Analytics such as trending hashtags,

trending topics, audience statistics etc are very common for making

business decisions. The need for real-time updates versus reducing

traffic cost may vary depending on the specific use. For instance,

real-time advertisement campaigns are delay sensitive. But, brand

awareness campaigns have longer-term goals and less delay sen-

sitive, making traffic cost reduction important. Consequently, our

model and algorithms allow for adjusting the relative weights of

delay and traffic at a granular level, even allowing per-key weights.

In summary, between the extremes of streaming and batching,

there are different operating points for a wide-area data analytics

system that represent different tradeoffs between delay and traffic.

A goal of our work is to devise edge aggregation mechanisms that can

provably achieve the desired delay-traffic tradeoffs.

Research contributions. In this paper, we propose a novel

Time-to-Live (TTL)-based aggregation mechanism for online stream

aggregation that provably optimizes delay and traffic jointly. In

this approach, records corresponding to each key are aggregated

at the edge for a certain time period dictated by its TTL, before

the aggregates are sent over the WAN to the center. The proposed

approach is able to achieve the desired delay-traffic tradeoff, and

is also able to satisfy the low delay - low traffic requirement where

needed. To the best of our knowledge, we are the first to provide a

theoretical basis for understanding the delay-traffic tradeoff that is

fundamental to streaming analytics. In doing so, we provide ana-

lytical answers to how much aggregation should be performed at

the edge versus the center, how much delay can be incurred at the

edges, and how the edge-to-center bandwidth must be apportioned

across different applications with different delay requirements. We

study the tradeoff between delay and traffic by presenting a family

of optimal TTL-based algorithms for jointly minimizing both delay

and traffic. In addition, we showcase the generalizability of our

proposed model by solving two complementary problems: (i) mini-

mizing delay under a traffic constraint and (ii) minimizing traffic

under a delay constraint. This paper makes the following research

contributions:
• To the best of our knowledge, the proposed TTL-based aggre-

gation model is the first to provide a theoretical basis for under-

standing the delay-traffic tradeoff that is fundamental to geo-

distributed streaming analytics. Our model also characterizes the

storage requirements at the edges to achieve such a tradeoff.

• Using this model, we show how to optimize delay and traf-

fic jointly, achieving a user-desired delay-traffic tradeoff, while

also characterizing a stable łsweet spotž operating region that

achieves the łbestž tradeoff where both delay and traffic are rela-

tively small.

• We have implemented the TTL-based aggregation mechanism

in Apache Flink, a popular stream analytics framework. As part

of this implementation, we provide a simple, expressible API for

users to easily leverage the proposed optimization framework.

In addition, our optimization dynamically adapts to changing

workloads.

• We evaluate our approach through experiments running our

Flink implementation on geo-distributed Amazon EC2 data cen-

ters, as well as a local cluster emulating WAN characteristics.

The experiments are driven by real-world Akamai and Twitter

traces. Our empirical results are in close agreement with our

theoretical model predictions. Further, we show that by deriving

the optimal TTLs using our model, our system can achieve a

łsweet spotž stable operating point where both delay and traffic

are minimized, in comparison to traditional aggregation schemes

such as batching and streaming.

Session 2B: Network Measurement and Performance SIGMETRICS’19 Abstracts, June 24–28, 2019, Phoenix, AZ, USA

16


