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Abstract 

Visual object perception requires integration of multiple features; spatial attention is 

thought to be critical to this binding. But attention is rarely static—how does dynamic attention 

impact object integrity? Here we manipulated covert spatial attention and had participants 

reproduce multiple properties (color, orientation, location) of a target item. Object-feature 

binding was assessed by applying probabilistic models to the joint distribution of feature errors: 

feature reports for the same object could be correlated (and thus bound together) or independent. 

We found that splitting attention across multiple locations degrades object integrity, while rapid 

shifts of spatial attention maintain bound objects. Moreover, we document a novel attentional 

phenomenon, wherein participants exhibit unintentional fluctuations—“lapses” of spatial 

attention—yet nevertheless preserve object integrity, at the wrong location. These findings 

emphasize the importance of a single focus of spatial attention for object-feature binding, even 

when that focus is dynamically moving across the visual field. 
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OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION 

 3 

Author Contributions 

Both authors were involved in the conceptualization and interpretation of the study. E. W. Dowd 

designed the experiments, oversaw data collection, analyzed the data, and drafted the manuscript. 

J. D. Golomb contributed to writing the manuscript and gave feedback throughout the project. 

 

Acknowledgments 

We thank Makaela Nartker, Samoni Nag, and Alexandra Haeflein for assistance with data 

collection and David Osher and Brandon Turner for helpful discussions. 

 

Funding 

This study was funded by grants from the National Institutes of Health (R01-EY025648 to J. D. 

Golomb, F32-028011 to E. W. Dowd) and the Alfred P. Sloan Foundation (to J. D. Golomb). 

Analyses reported in this publication were supported by an allocation of computing resources 

from The Ohio Supercomputer Center. 

  



OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION 

 4 

Our visual environment contains a multitude of objects, each composed of multiple visual 

features (e.g., color, shape, texture) that must be integrated together into a cohesive object-level 

representation, forming the basis for effective perception, memory, and action (e.g., Kahneman, 

Treisman, & Gibbs, 1992). Spatial attention is thought to be crucial for this binding process, 

acting as the “glue” that binds an object’s features together (Nissen, 1985; Reynolds & 

Desimone, 1999; Treisman & Gelade, 1980). Thus, attending to a given location selects all of the 

non-spatial features coinciding at that location and binds them into an integrated object 

representation (e.g., Schoenfeld et al., 2003). 

Visual object integrity is critical for interacting with the world. Successful object-feature 

binding requires integration between different non-spatial features (i.e., feature-feature binding) 

and between non-spatial features and spatial location (i.e., feature-location binding). Failures of 

binding can be both detrimental and revealing (Treisman, 1996; Wolfe & Cave, 1999). For 

example, limited attention can produce “illusory conjunctions”, such as when one views a green 

square and a red circle, but reports a green circle (Treisman & Schmidt, 1982). Patients with 

unilateral deficits in spatial attention also report more illusory conjunctions, suggesting that 

object integrity depends on intact spatial extent (Robertson, 2003). Other studies have 

demonstrated that spatial crowding can induce greater “swap” errors (see Bays, 2016), i.e., 

misreporting features from another location altogether (e.g., Emrich & Ferber, 2012). One 

candidate model of object-feature binding posits that non-spatial features are randomly sampled 

from a probabilistic window of spatial attention (Vul & Rich, 2010)—when the attentional 

window is narrower and more precise, features are veridically bound as an integrated object, but 

when the focus of spatial attention is more diffuse and encompasses multiple object locations, 

features are encoded independently, resulting in inaccurate groupings of features and thus 
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failures of object integrity. The strong consensus is that the ability to maintain a precise spatial 

focus of attention is critical for preserving object integrity.   

Visual attention, however, is rarely singular or static—nor do we want it to be. In the real 

world, multiple objects with multiple features are simultaneously present in the environment, and 

attention must dynamically shift and split across multiple goals and locations. How do these 

dynamic changes in spatial attention impact visual object integrity?  

Here, we examine object-feature binding while manipulating dynamic attention. We 

applied a recent paradigm measuring distortions in feature perception under different conditions 

of spatial attention (Golomb, L’Heureux, & Kanwisher, 2014), adapted to probe binding between 

multiple feature dimensions. Participants were presented with an array of multi-feature objects 

and were asked to reproduce both the color and the orientation of a target object (i.e., joint 

continuous-report paradigm; Wilken & Ma, 2004; Bays, Wu, & Husain, 2011). In Experiment 1, 

we manipulated attention with a spatial pre-cue that either remained stable, shifted from one 

location to another, or was split across two locations simultaneously. Experiment 2 replicated 

these conditions with the further addition of a continuous location report. We applied 

probabilistic mixture models to assess whether errors in recalling multiple features of the same 

object would be correlated—indicating that features were bound together (Bays et al., 2011). 

This modeling approach allowed us to evaluate the fate of object integrity under common 

conditions of dynamic attention (Experiment 1), and moreover, to directly examine the three-way 

conjunction of feature-feature-location binding (Experiment 2).  

We predicted that object-feature binding would be contingent on the spatial extent of 

attention (Cohen & Ivry, 1989; Vul & Rich, 2010), such that splitting attention simultaneously 

across two locations would expand the attentional window and disrupt object integrity. But what 
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happens during shifts of spatial attention? Previous studies have demonstrated that spatial 

attention does not update immediately, but rather may take 100–200 ms to fully disengage from 

one location, move, and re-engage attention at a new location (e.g., Müller, Teder-Sälejärvi, & 

Hillyard, 1998). More recent work suggests that attention can be allocated to a new location 

before it disengages from the previously attended location, resulting in a transient period in 

which both locations are simultaneously attended (e.g., Eimer & Grubert, 2014; Khayat, 

Spekreijse, & Roelfsema, 2006). Here, we probe binding during this critical period of spatial 

updating and test two contrasting theories: If spatial attention shifts as a single “spotlight” from 

location A to location B (Posner, Snyder, & Davidson, 1980), then the spatial extent of attention 

should remain narrow, and object-feature binding should survive—for either object A or B. 

Alternatively, a shift might result in temporarily highlighting both locations—e.g., spreading to 

encompass both locations (“zooming” out; Eriksen & St. James, 1986) or briefly activating both 

A and B simultaneously (e.g., Khayat et al., 2006; Golomb, Marino, Chun, & Mazer, 2011)—

such that we should expect greater independent feature errors. 

We found that dynamic shifts and splits of attention lead to distinct patterns of object-

feature binding: rapid shifts of attention preserve object integrity, while splitting attention results 

in failures of object integrity. We also document a novel attentional phenomenon, wherein 

participants exhibit unintentional fluctuations—or “lapses”—of spatial attention, akin to 

momentary fluctuations of sustained attention (Reason, 1984). While lapses of sustained 

attention are typically defined as slowed responses in a vigilance task (e.g., Rosenberg et al., 

2016), lapses of spatial attention are here defined as identifying an incorrect location as the 

target. By simultaneously modeling color, orientation, and location responses in Experiment 2, 

we show that the vast majority of feature reports are correlated across all three dimensions, 



OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION 

 7 

demonstrating that fully-bound objects survive both intentional shifts and inadvertent lapses of 

spatial attention. Thus, object integrity is preserved when there is a single focus of spatial 

attention, even if attention is at the wrong location. 

 

METHOD 

Participants 

Experiment 1 included 23 participants (ages 18 to 30 years; 11 male), and Experiment 2 

included 25 new participants (ages 18 to 21 years; 13 male). An a priori power analysis based on 

effect sizes in previous studies (Golomb et al., 2014) estimated that we would need at least 22 

participants to detect feature errors with 80% power, given a .05 criterion of significance. We 

collected a few extra participants per experiment in anticipation of dropout due to poor eye-

tracking or task performance. Additional participants were excluded for not completing the full 

experimental session (two from Experiment 1; three from Experiment 2) or not successfully 

performing the task (<50% probability of pTCTO from the Simple Model described below; two 

from Experiment 2). All participants reported normal or corrected-to-normal visual acuity and 

color vision, received course credit or a payment of US$10 per hour, and provided informed 

consent in accordance with The Ohio State University institutional review board. 

Stimuli and Procedure 

Stimuli were presented on a 21-inch flatscreen CRT monitor with a refresh rate of 85 Hz 

and screen resolution of 1280  1024 pixels, using Matlab and the Psychophysics Toolbox 

(Brainard, 1997). Subjects were positioned with a chinrest approximately 60 cm from the 

monitor, and eye position was tracked using an Eyelink 1000 eye-tracking system. The monitor 

was color-calibrated with a Minolta CS-100 colorimeter. 
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Figure 1 illustrates an example trial sequence for the three critical conditions (Hold, Shift, 

and Split) for both experiments. In Experiment 1, each trial began with the presentation of a 

central fixation dot (white, diameter of 0.6º). Once subjects were accurately fixating for 1,000 

ms, as determined by real-time eye tracking, the trial continued as follows: 

For Hold and Shift trials, a single spatial cue (black 4º  4º square outline) was presented 

at one of four possible stimulus locations (the corners of an imaginary square centered on 

fixation, 7.4º eccentricity) for 250 ms. For Hold trials, the spatial cue was followed by a 1,100-

ms delay period in which only the fixation dot was visible on the screen. For Shift trials, the cue 

was followed by a similar 1,000-ms delay, after which a second cue appeared in a different, 

adjacent location (never the diagonal location) for 50 ms, followed by a 50-ms delay. 

Participants were instructed to covertly attend to the cued location and shift their attention if a 

second location was cued, such that they were always attending to the most recently cued 

location. For Split trials, two spatial cues were presented simultaneously at two adjacent 

locations for 250 ms, followed by a 1,100-ms delay period. Participants were instructed to attend 

to both cued locations in Split trials. 

After the spatial pre-cue(s) and delay period, an array of four colored and oriented bars 

(0.75º  4º) appeared for 50 ms. One of these stimuli was the “target” (T), which appeared at the 

most recently cued location for Hold and Shift trials, or at one of the two cued locations for Split 

trials (randomly selected and indicated by a post-cue at the time of response). Of the three non-

target items, the critical non-target (N1) appeared at a location adjacent to the target, which was 

either initially cued in Shift trials or simultaneously attended in Split trials; the other adjacent 

non-target (N2) and the diagonal non-target (N3) were considered control items. In Hold trials, 
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both adjacent non-targets were never cued, so they were arbitrarily assigned as the “critical” N1 

or “control” N2. 

The color of the target item was chosen randomly on each trial from 180 possible colors, 

which were evenly distributed along a 360º circle in CIE L*a*b* coordinates with constant 

luminance (L* = 70, center at a* = 20, b* = 38, and radius 60; Zhang & Luck, 2008). The colors 

of the remaining stimuli were chosen so that the adjacent items (N1 and N2) were equidistant in 

opposite directions (90º clockwise or counterclockwise deviation along the color wheel, with 

direction randomly varying from trial to trial), and the item at the diagonal location (N3) was set 

180º away in color space. The orientation of the target item was also chosen randomly on each 

trial from a range of angles 0–180º, and N1 and N2 were likewise equidistant in opposite 

directions (45º clockwise or counterclockwise deviation), with N3 set 90º away. Feature values 

for color and orientation were set independently, as was the direction of deviation for each 

feature. The stimulus array was followed by 200 ms of masks (squares colored with a random 

color value at each pixel location, covering each of the four stimulus locations). 

Participants then made a joint continuous-report response, reporting the color and 

orientation of the target item. A single probe bar with random initial values for color and 

orientation was presented at the center of the screen. For Split trials, the probe stimulus was 

accompanied by a spatial post-cue (white 4º  4º square outline) indicating which of the two pre-

-cued locations was the target. Participants were instructed to adjust the color and orientation of 

the probe item to match the features of the target. The probe’s features were adjusted using two 

input dials (PowerMate USB Multimedia controllers, Griffin Technology, USA), one operated 

with each hand (left-color, right-orientation). Turning one dial caused the probe to rotate through 

the 180º range of possible orientations (steps of 1º); turning the other dial caused the probe’s 
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color to cycle through the 360º space of possible colors (steps of 2º). Participants could adjust the 

two dials in any order or simultaneously. To input their response, participants clicked down on 

either dial. Accuracy was stressed, and there was a time limit of 10 s. 

At the end of the trial, participants were shown feedback for 1,500 ms: The reported 

color-orientation response was shown in the center of the screen, and the actual target item was 

displayed in its original location. Eye-tracking feedback was presented as the percentage of 

deviant fixation samples (i.e., when the participant’s eye position deviated more than 2º from the 

central fixation location) between initial cue onset and probe onset. Eye-tracking feedback was 

intended to motivate participants to maintain central fixation; they were not told about trial 

exclusion criteria. 

Experiment 2 was identical to Experiment 1 except for two key changes (Figure 1B): 

First, we increased the possible range of stimulus locations, although only 4 locations were ever 

chosen on each trial. For each trial, the target location was randomly selected from one of 16 

locations (along an imaginary circle centered on fixation, 7.4º eccentricity), and the other three 

locations were arranged at +90º, –90º, and 180º away (four corners of an imaginary rotated 

square). Second, we added a location report at the end of Hold and Shift trials. (Split trials 

already included an explicit spatial post-cue, rendering a subsequent location report 

uninformative.) The location report was presented after the joint color-orientation report, but also 

as a continuous response: a single location probe (white 4º  4º square outline) was displayed at 

a random location along a white circle outline (7.4º eccentricity), and turning the right-hand dial 

rotated the placeholder through the 360º space of possible locations (steps of 2.25º). Participants 

were instructed to adjust the location of the probe to match the location of the target (i.e., the 

most recently cued location). Participants input their location response by clicking down on the 
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dial, with a time limit of 2 s. For location feedback on Hold and Shift trials, the reported location 

was displayed as a white outline on the same screen as color-orientation and eye-tracking 

feedback. 

In Experiment 1, each participant completed 7–10 blocks of intermixed Hold and Shift 

trials (112–160 trials of each condition) and 4–5 blocks of Split trials (128–160 trials), although 

the order of Hold/Shift or Split blocks was counterbalanced between participants. In Experiment 

2, participants completed 5–8 blocks of intermixed Hold and Shift trials (80–128 trials of each 

condition), always followed by 3–4 blocks of Split trials (96–128 trials). Hold and Shift trials 

were intermixed to ensure that participants had to attend to the first cue and could not simply 

wait for the second cue; Split trials were presented in separate blocks for ease of instruction. 

Both experiments began with fixation training and 8 Hold practice trials, as well as 12 Shift 

practice trials before the Hold/Shift blocks, and 12 Split trials before the Split blocks. Trials were 

discarded if they contained over 15% deviant fixation samples between initial cue onset and 

probe onset (Experiment 1: 3.3%; Experiment 2: 8.8%)1 or if subjects made no dial adjustments 

before inputting their response (Experiment 1: 0.1%; Experiment 2: 2.5%). 

 
1 We checked whether participants maintained fixation immediately before and after array onset 

for the trials that were included by calculating the percentage of deviant eye-tracking samples 

from 200 ms before array onset to probe onset: Experiment 1: 0.4% and Experiment 2: 0.6%. In 

contrast, trials that were discarded had 52–60% deviant fixations during this period. 
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Figure 1. Example trial sequences for (A) Experiment 1 and (B) Experiment 2. Participants were 
cued to covertly attend to a spatial pre-cue that remained stable (Hold) or dynamically shifted 
from one location to another (Shift), before reproducing both the color and orientation (i.e., joint 
continuous-report) of the cued target item. In Split trials, participants were pre-cued to attend to 
two locations simultaneously, before reporting the features of the post-cued target item. In 
Experiment 2, the four array positions could be rotated, and participants additionally reported 
the location of the target item (on Hold and Shift trials only). For each row, the final panel 
(dotted outline) denotes which array position corresponds to T, N1, N2, and N3. On Hold trials, 
N1 and N2 are arbitrarily assigned. 

 

Joint-Feature Analyses 

On each trial, response error was calculated as the angular deviation between the 

continuous probe report and the cued target item, for each feature separately (𝜃𝐶 = color error, 

range –180º to 180º; 𝜃𝑂= orientation error, range –90º to 90º; 𝜃𝐿= location error, range –180º to 

180º). In Shift and Split trials, although the direction of N1 varied randomly in relation to T 
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(clockwise or counterclockwise in terms of spatial location, color, or orientation space), we 

aligned the responses on each trial so that errors toward the N1 feature were always coded as 

positive deviations (+90º or +45º), and errors toward N2 as negative deviations (–90º or –45º). 

To quantify the amount of object-feature binding, we employed a mixture modeling 

approach (Bays, Catalao, & Husain, 2009; Bays et al., 2011; Golomb et al., 2014; Zhang & 

Luck, 2008). Within each single feature dimension (Table 1), responses could be attributed to 

either reporting the target (T, a von Mises distribution centered on the target feature value), 

misreporting one of the three non-targets (N1, N2, N3, separate von Mises distributions centered 

on each non-target feature value), or random guessing (U, a uniform distribution across all 

feature values). Critically, we modeled color and orientation as joint probability distributions, 

fitting responses from both feature dimensions simultaneously (see Bays et al., 2011).  

For Experiment 1, we evaluated two types of joint color-orientation mixture models: In 

the Full Joint Model, we modeled the five types of feature reports described above (T, N1, N2, 

N3, and U) for each dimension, resulting in 25 response combinations of color (5) and 

orientation (5) (Table 2). This resulted in a model with 29 parameters (including parameters for 

the concentrations C and O (𝜎 = √1/𝜅) and means C and O of the target). Due to this large 

number of parameters, the Full Model required data to be collapsed across subjects to achieve 

reliable model fits. Thus, to conduct within-subject statistics for our primary analyses, data from 

individual subjects were fit with the Simple Joint Model, which only attributes responses to T, 

N1, or U within each dimension, resulting in 9 response combinations of color (3) and 

orientation (3) (Table 2) plus 4 parameters for concentrations and means. Since our focus here 

was on the effects of dynamic attention involving the T and critical N1 locations, the Simple 

Model drops parameters that involve N2 or N3 (which were theoretically less relevant, and had 
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very low probabilities in the Full Model results; see Table S2). In the Simple Model, the few 

responses to N2 or N3 items should be absorbed by U. Indeed, the results reported using the 

Simple Joint Model were confirmed at the population level with the Full Joint Model 

(Supplement S5). 

For both models, the joint distribution of responses was modeled as: 

𝑝(𝜃𝐶 , 𝜃𝑂) = ∑ 𝛼𝑚𝑝𝑚

𝑚

 

where 𝜃𝐶 and 𝜃𝑂 are the reported feature errors, and m is the number of joint color-orientation 

response combinations, with mFull = 1:25 or mSimple = 1:9. 𝛼𝑚 is the probability of each response 

combination, and 𝑝𝑚 represents the joint probability density distribution for that combination. 

Table 2 lists each of the m combinations and associated probability density functions. For 

example, the joint probability distribution of reporting the target color and the N1 non-target 

orientation would be pTCN1O = 𝜙𝜇𝐶,κ𝐶
𝜙𝜋

2
,κ𝑂

. 

For both models, joint-feature response distributions were fit using Markov chain Monte 

Carlo (MCMC), as implemented through custom Matlab scripts (available on Open Science 

Framework) using the MemToolbox (Suchow, Brady, Fougnie, & Alvarez, 2013) on the Ohio 

Supercomputer Center (Ohio Supercomputer Center, 1987). The MCMC procedure sampled 

three parallel chains across as many iterations as necessary to achieve convergence, according to 

the method of Gelman and Rubin (1992). We collected 15,000 post-convergence samples and 

used the posterior distributions to compute the maximum-likelihood estimates of each parameter, 

as well as its 95% highest posterior density interval (HDI). For our primary analyses using the 

Simple Model, we adopted a standard within-subject analytical approach: Parameter estimates 

were obtained separately for each individual subject and each trial type, then evaluated with 

frequentist significance testing. Post-hoc tests were evaluated with the appropriate Bonferroni-
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correction for multiple comparisons. These standard statistical comparisons were corroborated 

by analyses using the Full Model: Data were collapsed across all subjects within each 

experiment, and parameter estimates were obtained separately for each trial type. Parameter 

estimates from the Full Model were considered significantly different if their 95% HDIs did not 

overlap (Kruschke, 2011). 

For Experiment 2, we first evaluated the joint color-orientation feature reports with both 

the Simple Model and the Full Model, as described above. With the inclusion of the continuous 

location report, we also fit single-subject data with a single-dimension Location Model, which 

attributed location responses to TL, N1L, N2L, N3L, or UL, with flexible L and L of the target. 

We then took the joint modeling approach a step further, modeling the continuous responses 

from color, orientation, and location simultaneously as three-way joint probability distributions. 

Because a full triple joint model including all possible response types for all three dimensions 

would include an unwieldy number of parameters (131), we simplified the Triple Joint Model to 

focus on parameters of theoretical interest. Specifically, we examined whether reporting both the 

color and orientation of a specific item (feature-feature binding; e.g., N1CN1O) was also bound to 

the location of that specific item (feature-feature-location binding; e.g., location N1L). Thus, the 

Triple Model included only parameters for correlated feature-feature responses (i.e., TCTO, 

N1CN1O, N2CN2O, N3CN3O) or guessing (UCUO), crossed with the different types of location 

responses. Location reports were attributed to TL, N1L, N2L, or N3L; we did not include a random 

guessing component UL, as the corresponding pUL parameter from the single-dimension 

Location Model was found to be negligible (Table S8). Similarly, we did not include flexible 

parameters for means C, O, and O because the corresponding parameters in the Simple and 

Location Models were not significantly different from 0 (Tables S1, S8). Consequently, the 
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Triple Model included 20 response combinations of color-orientation (5) and location (4), and 3 

parameters for concentrations C, O, and L (Table 3). The joint distribution of responses was 

modeled as: 

𝑝(𝜃𝐶 , 𝜃𝑂 , 𝜃𝐿) = ∑ 𝛼𝑚𝑝𝑚𝑚 , 

where 𝜃𝐶 and 𝜃𝑂 are the reported color and orientation errors, 𝜃𝐿is the reported location 

error, 𝛼𝑚 is the probability of each response combination, and 𝑝𝑚 represents the combined 

probability density, with mTriple = 1:20. For example, the probability distribution of reporting the 

color and orientation of the target with the location of the critical N1 non-target would be 

pTCTON1L = 𝜙0,κ𝐶
𝜙0,κ𝑂

𝜙𝜋,κ𝐿
. Given the large number of parameters (23), the Triple Model was 

fit with data collapsed across all subjects and analyzed in the same way as the Full Model 

described above. Parameter estimates were obtained separately for Hold and Shift trial types 

(Split trials were not included in these analyses because there was no location report on these 

trials). 
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Table 1 

Mixture model response distributions within a single feature dimension 

Response type Color (C) Orientation (O) Location (L) 

Target (T) 𝜙𝜇𝐶,κ𝐶
 𝜙𝜇𝑂,κ𝑂

 𝜙𝜇𝐿,κ𝐿
 

Critical Non-target (N1) 𝜙𝜋,κ𝐶
 𝜙𝜋

2,κ𝑂
 𝜙𝜋,κ𝐿

 

Control Non-target (N2) 𝜙−𝜋,κ𝐶
 𝜙

−
𝜋
2

,κ𝑂
 𝜙−𝜋,κ𝐿

 

Diagonal Non-target (N3) 𝜙2𝜋,κ𝐶
 𝜙𝜋,κ𝑂

 𝜙2𝜋,κ𝐿
 

Random (U) 𝛾𝐶  𝛾𝑂 𝛾𝐿 

where  is a von Mises probability density function, with concentration 𝐶, 𝑂, or 𝐿 (standard 

deviation 𝜎 =  √1/𝜅), and means of 𝜇𝐶 or 𝜇𝐿, 90º, –90º, and 180º (color or location) or 𝜇𝑂, 45º, 

–45º, and 90º (orientation) for the target, critical non-target, and control and diagonal non-target 

features, respectively. 𝛾𝐶 , 𝛾𝑂, and 𝛾𝐿 are uniform distributions that reflects the probability of 

responding to the respective feature at random (guessing). 
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Table 2 

Simple and Full Joint Mixture Model response distributions combined across both non-spatial 

feature dimensions 

 Response type mSimple mFull 
Response 

combination 

Joint probability 

density 

Correlated Correlated target 1 1 TCTO 𝜙𝜇𝐶,κ𝐶
𝜙𝜇𝑂,κ𝑂

 

 Correlated swap 2 2 N1CN1O 𝜙𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
 

   3 N2CN2O 𝜙−𝜋,κ𝐶
𝜙

−
𝜋
2,κ𝑂

 

   4 N3CN3O 𝜙2𝜋,κ𝐶
𝜙𝜋,κ𝑂

 

Independent T* 
Illusory 

conjunction 
3 5 TCN1O 𝜙𝜇𝐶,κ𝐶

𝜙𝜋
2,κ𝑂

 

  4 6 N1CTO 𝜙𝜋,κ𝐶
𝜙𝜇𝑂,κ𝑂

 

   7 TCN2O 𝜙𝜇𝐶,κ𝐶
𝜙

−
𝜋
2,κ𝑂

 

   8 N2CTO 𝜙−𝜋,κ𝐶
𝜙𝜇𝑂,κ𝑂

 

   9 TCN3O 𝜙𝜇𝐶,κ𝐶
𝜙𝜋,κ𝑂

 

   10 N3CTO 𝜙2𝜋,κ𝐶
𝜙𝜇𝑂,κ𝑂

 

 Unbound guess 5 11 TCUO 𝜙𝜇𝐶,κ𝐶
𝛾𝑂 

  6 12 UCTO 𝛾𝐶𝜙𝜇𝑂,κ𝑂
 

Independent N* 
Illusory 

conjunction 
 13 N1CN2O 𝜙𝜋,κ𝐶

𝜙
−

𝜋
2,κ𝑂

 

   14 N2CN1O 𝜙−𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
 

   15 N1CN3O 𝜙𝜋,κ𝐶
𝜙𝜋,κ𝑂

 

   16 N3CN1O 𝜙2𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
 

   17 N2CN3O 𝜙−𝜋,κ𝐶
𝜙𝜋,κ𝑂

 

   18 N3CN2O 𝜙2𝜋,κ𝐶
𝜙

−
𝜋
2,κ𝑂

 

 Unbound guess 7 19 N1CUO 𝜙𝜋,κ𝐶
𝛾𝑂 

  8 20 UCN1O 𝛾𝐶𝜙𝜋
2

,κ𝑂
 

   21 N2CUO 𝜙−𝜋,κ𝐶
𝛾𝑂 

   22 UCN2O 𝛾𝐶𝜙
−

𝜋
2,κ𝑂

 

   23 N3CUO 𝜙2𝜋,κ𝐶
𝛾𝑂 

   24 UCN3O 𝛾𝐶𝜙𝜋,κ𝑂
 

Random guessing 9 25 UCUO 𝛾𝐶𝛾𝑂 
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where  is a von Mises probability density function, with concentration 𝐶 or 𝑂 (standard 

deviation 𝜎 =  √1/𝜅), and means of 𝜇𝐶, 90º, –90º, and 180º (color) or 𝜇𝑂, 45º, –45º, and 90º 

(orientation) for the target T, critical non-target N1, control non-target N2, and diagonal non-

target N3 features, respectively. 𝛾𝐶  and 𝛾𝑂 are uniform distributions that reflect the probability of 

responding at random. Joint response combinations are always written as color response first. 

Rows 1–4 describe correlated responses (reporting both features of the target object, or 

misreporting both features of the same non-target [correlated swap errors]); rows 5–12 describe 

independent T* errors (reporting one target feature and one non-target feature [illusory 

conjunctions], or reporting one target feature and guessing the other feature [unbound guesses]); 

and rows 13–25 describe the remaining errors (e.g., misreporting features from different non-

targets and guessing). The Simple Joint Model includes only the parameters as numbered by 

mSimple, whereas the Full Joint Model includes all 25 parameters, as numbered by mFull. 
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Table 3 

Triple Joint Mixture Model response distributions combined across color, orientation, and 

location dimensions 

Location response 
Non-spatial 

feature responses 
mTriple 

Response 

combination 
Joint probability density 

Target Correlated Target 1 TCTOTL 𝜙0,κ𝐶
𝜙𝜇𝑂,κ𝑂

𝜙𝜇𝐿,κ𝐿
 

 Correlated N1 2 N1CN1OTL 𝜙𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
𝜙𝜇𝐿,κ𝐿

 

 Correlated N2 3 N2CN2OTL 𝜙−𝜋,κ𝐶
𝜙

−
𝜋
2,κ𝑂

𝜙𝜇𝐿,κ𝐿
 

 Correlated N3 4 N3CN3OTL 𝜙2𝜋,κ𝐶
𝜙𝜋,κ𝑂

𝜙𝜇𝐿,κ𝐿
 

 Other 5 UCUOTL 𝛾𝐶𝛾𝑂𝜙𝜇𝐿,κ𝐿
 

Non-target N1 Correlated Target 6 TCTON1L 𝜙𝜇𝐶,κ𝐶
𝜙𝜇𝑂,κ𝑂

𝜙𝜋,κ𝐿
 

 Correlated N1 7 N1CN1ON1L 𝜙𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
𝜙𝜋,κ𝐿

 

 Correlated N2 8 N2CN2ON1L 𝜙−𝜋,κ𝐶
𝜙

−
𝜋
2,κ𝑂

𝜙𝜋,κ𝐿
 

 Correlated N3 9 N3CN3ON1L 𝜙2𝜋,κ𝐶
𝜙𝜋,κ𝑂

𝜙𝜋,κ𝐿
 

 Other 10 UCUON1L 𝛾𝐶 𝛾𝑂𝜙𝜋,κ𝐿
 

Non-target N2 Correlated Target 11 TCTON2L 𝜙𝜇𝐶,κ𝐶
𝜙𝜇𝑂,κ𝑂

𝜙−𝜋,κ𝐿
 

 Correlated N1 12 N1CN1ON2L 𝜙𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
𝜙−𝜋,κ𝐿

 

 Correlated N2 13 N2CN2ON2L 𝜙−𝜋,κ𝐶
𝜙

−
𝜋
2

,κ𝑂
𝜙−𝜋,κ𝐿

 

 Correlated N3 14 N3CN3ON2L 𝜙2𝜋,κ𝐶
𝜙𝜋,κ𝑂

𝜙−𝜋,κ𝐿
 

 Other 15 UCUON2L 𝛾𝐶𝛾𝑂𝜙−𝜋,κ𝐿
 

Non-target N3 Correlated Target 16 TCTON3L 𝜙𝜇𝐶,κ𝐶
𝜙𝜇𝑂,κ𝑂

𝜙2𝜋,κ𝐿
 

 Correlated N1 17 N1CN1ON3L 𝜙𝜋,κ𝐶
𝜙𝜋

2,κ𝑂
𝜙2𝜋,κ𝐿

 

 Correlated N2 18 N2CN2ON3L 𝜙−𝜋,κ𝐶
𝜙

−
𝜋
2,κ𝑂

𝜙2𝜋,κ𝐿
 

 Correlated N3 19 N3CN3ON3L 𝜙2𝜋,κ𝐶
𝜙𝜋,κ𝑂

𝜙2𝜋,κ𝐿
 

 Other 20 UCUON3L 𝛾𝐶 𝛾𝑂𝜙2𝜋,κ𝐿
 

where  is a von Mises probability density function, with concentration 𝐶, 𝑂, or 𝐿 (standard 

deviation 𝜎 =  √1/𝜅), and means of 0º, 90º, –90º, and 180º (color or location) or 0º, 45º, –45º, 

and 90º (orientation) for the target T, critical non-target N1, control non-target N2, and diagonal 

non-target N3 features, respectively. 𝛾𝐶  and 𝛾𝑂 are uniform distributions that reflect the 

probability of responding at random. 
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RESULTS 

By probing both color and orientation on each trial, we examined whether errors in 

recalling multiple features of the same object were correlated (and thus bound together) or 

independent (and unbound) under different conditions of covert spatial attention. Figure 2 

visualizes the joint distribution of responses by plotting individual trials in joint-feature space, 

where the vertical and horizontal axes correspond to the color and orientation errors, 

respectively. Figure 2A illustrates the predicted distributions for different types of hypothetical 

responses, and Figures 2B–C show the actual response distributions for each attention condition.  

“Object integrity” was inferred from contrasting correlated responses (i.e., reporting both 

the color and orientation of the same item) to independent responses (i.e., reporting only one 

feature of the target item) (Figure 2A). Correlated responses could stem from: 1) reporting both 

features of the correct target item (correlated target, TCTO), which would be represented as a two-

dimensional Gaussian density centered on the origin (0º error), or 2) misreporting both features 

of the same non-target item (correlated swap, denoted N1CN1O, N2CN2O, and N3CN3O), which 

would be represented as two-dimensional Gaussian densities along the positive-slope diagonal of 

joint-feature space. Failures in object-feature binding, on the other hand, would result in 

independent target errors, represented as a distribution of responses along the horizontal and 

vertical axes of joint-feature space (i.e., centered on zero error in one dimension but not the 

other). Independent target errors could be due to misbinding the features of a target and a non-

target item (illusory conjunction; e.g., TCN1O) or reporting only one feature of the target and 

guessing the other (unbound guess; e.g., TCUO). Finally, pure guessing (UCUO) would be 

represented as a two-dimensional uniform distribution of responses across the entire joint-feature 

space.  
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We quantified each of the error types above with joint-feature probabilistic models (Table 

2). The probabilistic models also allow for independent non-target errors, such as reporting the 

color of one non-target and the orientation of a different non-target (e.g., N1CN2O), or reporting 

only one feature of a non-target and guessing the other (e.g., N1CUO); however, such errors were 

relatively rare and not discussed further, but see Tables S1 and S2 for all parameter estimates. 

Scatterplots of the empirical data for each experiment, collapsed across all participants, for Hold, 

Shift, and Split trials, are presented in Figures 2B–C. The corresponding parameter estimates 

from the Simple Model are shown in Figure 3; below, we report within-subject statistics for the 

Simple Model, but comparison of 95% HDIs from the Full Model confirm these results and are 

reported in Table S2 (see also Supplement S5). 

 
Figure 2. Visualizations of color-orientation reports in joint-feature space, plotted as error 
relative to actual target feature values: color responses are shown along the x-axis, and 
orientation responses are shown along the y-axis. For visualization purposes, we have flattened 
joint-feature space; both feature dimensions are in fact circular, such that +180º is identical to –
180º in color space. The schematics in (A) show predicted distributions for possible response 
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types: Correlated target responses reflect reporting both features of the target item. Correlated 
swaps reflect reporting both features of the same non-target; see Figure 1 for legend of 
N1/N2/N3 labels across different conditions. Independent errors reflect reporting only one target 
feature. The scatterplots in (B–C) plot trial-by-trial error distributions separately for Hold, Shift, 
and Split trials, for Experiment 1 (B) and Experiment 2 (C). Each dot represents the 
corresponding color and orientation response for a single trial, aggregating across subjects. 

 

Experiment 1 

 Across all trial types, the vast majority of responses were attributed to reporting both 

features of the correct target item (correlated target responses; Figure 3A), as reflected in the 

scatterplots as a central density of responses at the origin (Figure 2B). However, the patterns of 

errors outside that central density differed as a function of attention condition. As predicted, Split 

attention degraded performance. Splitting attention across two locations resulted in greater 

feature errors, with significantly lower correlated target responses (pTCTO, Simple Model) in 

Split trials compared to Hold trials, t(22) = 4.20, p < .001, d = 0.88, and Shift trials, t(22) = 6.78, 

p < .001, d = 1.42. The standard deviations of both color (C) and orientation (O) responses 

were also greater for Split trials, ps < .001 (see Table S3 for all comparisons), indicating less 

precise feature reports when splitting spatial attention (Figure 3A). In contrast, shifts of attention 

from one location to another did not impact pTCTO or feature precision; pairwise t-tests revealed 

that these parameters were not significantly different between Hold and Shift trials, ps > .5 

(Table S3). 

Next we compared the different types of errors produced by shifts or splits of attention, 

comparing the probability of correlated N1CN1O swap errors (Simple Model) versus independent 

T* errors (e.g., TCN1O, UCTO, Simple Model). Because Split trials produced more non-TCTO 

responses overall, to compare across conditions we calculated these as proportions of “all errors” 

(non-TCTO responses) for each attention condition (Figure 3B). A repeated-measures ANOVA 

across condition (Hold, Shift, Split) and error type (correlated N1CN1O swap, independent T*) 
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revealed a significant interaction, F(2, 44) = 23.3, p < .001, 2 = .515. Split trials had the greatest 

proportion of independent T* errors (M = 72.8% of non-TCTO responses, SD = 17.4%) compared 

to Hold trials (M = 44.8%, SD = 22.9%) and Shift trials (M = 44.2%, SD = 19.6%), ps < .001 

(see Table S4 for all comparisons). In contrast, Shift trials had the greatest proportion of 

correlated N1CN1O swaps (M = 25.1% of non-TCTO responses, SD = 18.9%) compared to Hold 

trials (M = 6.5%, SD = 7.4%) and Split trials (M = 2.4%, SD = 5.4%) trials, ps < .001 (Table S4). 

This interaction is illustrated in the Figure 2B scatterplots where a sizeable cluster of errors is 

visible around N1CN1O for Shift trials, whereas for Split trials, errors are reflected as noise 

around the vertical and horizontal axes. In other words, dynamic splits of spatial attention 

resulted in failures of object-feature binding (more independent T* errors), while dynamic shifts 

of attention were more likely to maintain object integrity (more correlated TCTO responses and 

correlated N1CN1O swaps). 

When splits of spatial attention break down object-feature binding, what kinds of 

independent errors do participants make? In Split trials, unbound guesses (M = 60.2% of non-

TCTO responses, SD = 19.8%, Simple Model) occurred significantly more often than illusory 

conjunctions between T and N1 (M = 12.7%, SD = 13.7%, Simple Model), t(22) = 7.78, p < .001, 

d = 1.62. This suggests that participants were not simply encoding and reporting both features of 

both cued objects independently, as might be expected if the constituent features were processed 

as loose bundles of features and illusorily misbound (Vul & Rich, 2010). Instead, splitting 

attention across multiple objects seemed to induce a feature-load strategy in which one feature 

dimension was prioritized (e.g., Fougnie, Asplund, & Marois, 2010; Woodman & Vogel, 2008), 

such that participants reported only one feature of the target and guessed the other (Supplement 

S6). 
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Figure 3. Simple Joint Model maximum-likelihood parameter estimates for both experiments. 
The graphs in (A) present best-fit estimates for the probability of correlated target responses 

(TCTO) and the standard deviations of the TCTO distribution for color (C) and orientation (O) for 

each condition. The graphs in (B) present the proportion of erroneous responses (i.e., non-
TCTO) that can be attributed to correlated N1CN1O swaps, independent target errors (illusory 
conjunctions in light shading or unbound guesses in darker shading), and other errors (e.g., 
random guessing) for each condition. Shift trials had more N1CN1O swaps, while Split trials had 
more independent target errors. The Simple Model was fit separately for each subject and each 
condition, and then parameter estimates were averaged across subjects. Error bars represent 
95% confidence intervals. Results are shown separately for Experiments 1 (N=23) and 2 
(N=25). 

 

 In Shift trials, we found a greater proportion of correlated N1CN1O swap errors, consistent 

with the hypothesis that spatial attention had not yet shifted from the initially-cued N1 location 

to the correct target location on some trials. To confirm that correlated swap errors in Shift trials 

were specific to N1CN1O, we used the Full Model parameter fits to compare correlated swaps 

across all possible non-target locations (i.e., N1CN1O, N2CN2O, N3CN3O). In Shift trials, 
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participants were indeed more likely to misreport the entire feature-bound object at the initially-

cued location (pN1CN1O  = .028, 95% HDI [.021 .032]) compared to the other non-target 

locations (pN2CN2O = .001, 95% HDI [0 .004], pN3CN3O < .001, 95% HDI [0 .002]); parameter 

estimates were considered significantly different if their 95% HDIs did not overlap (Kruschke, 

2011). In contrast, in Hold trials, correlated swaps were distributed equally across the three non-

targets (Figure 4; 95% HDIs overlap).  

 
Figure 4. Full Joint Model maximum-likelihood estimates confirm that correlated swaps for Shift 
trials were highest for the initially-cued non-target (N1), while correlated swaps for Hold trials 
were equally distributed across all non-target items. For each correlated swap (N1CN1O, 
N2CN2O, N3CN3O), a violin plot illustrates the posterior distribution of each parameter over 
15,000 post-convergence samples. The white dots mark each parameter’s best-fit estimate, and 
the whiskers represent the 95% highest density interval. The Full Model was fit for each 
condition separately, collapsed across all subjects. Results are shown separately for 
Experiments 1 and 2. 

 

 We had expected Hold trials to have very few errors overall, since those trials involved 

only a single relevant spatial location. However, surprisingly, the Full Model parameter fits 

revealed that in Hold trials, participants made just as many total correlated swap errors 

(pN1CN1O + pN2CN2O + pN3CN3O = .039, 95% HDI [.029 .046]) as in Shift trials (.029, 95% HDI 

[.023 .035]). Why would Hold trials produce substantial correlated swap errors? One possible 

explanation is that participants occasionally made inadvertent attentional shifts on Hold trials; 
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because all non-target locations were equally irrelevant, these random “lapses” of spatial 

attention should lead to correlated swap errors for all non-target locations. To directly probe 

possible lapses of spatial attention and their impact on object-feature binding, we added a 

continuous location report to Experiment 2.  

 

Experiment 2 

In Experiment 2, we directly evaluated the role of spatial attention in the binding of non-

spatial visual features. Specifically, is an integrated object (i.e., intact feature-feature binding) 

anchored to its spatial location (i.e., intact feature-feature-location binding)? In addition to 

reporting the target’s color and orientation, participants also reported the target’s location on 

Hold and Shift trials. When participants correctly reported both features of the target, we 

expected them to correctly report its location. But when participants made a correlated swap 

error (i.e., reporting the color and orientation of a non-target), would they also report the 

incorrect location of that same non-target?  

For color and orientation feature reports, Experiment 2 replicated the same pattern of 

results as reported for Experiment 1 (Figures 2C, 3, 4; Tables S1, S2, S5). Figure 5A–B depicts 

the response distributions for the location reports that followed Hold and Shift trials; Split trials 

did not include a location report because location was already post-cued. Based on a single-

dimension Location Model (Table S8), participants primarily reported the target location (Hold: 

pTL = .887, Shift: pTL = .920) with high precision (Hold:  = 9.0º, Shift:  = 9.3º). Even on Shift 

trials, when the second cue was only flashed for 50 ms, participants were highly accurate at 

reporting that second location, indicating that participants were able to perceive the shift cue. 

Neither the probability of reporting the target location nor standard deviation was significantly 
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different between Hold and Shift trials, t(24) = 1.20, p = .240, d = 0.24 and t(24) = 1.07, p = 

.293, d = 0.22. However, the difference in the pattern of location errors is evident: a repeated-

measures ANOVA across condition (Hold, Shift) and error type (N1, N2, N3, U) revealed a 

significant interaction, F(3, 72) = 8.40, p < .001, 2 = .259. Post-hoc paired t-tests confirmed that 

in Shift trials, participants were more likely to misreport the initially-cued N1 location compared 

to N2, t(24) = 3.66, p = .001, d = 0.73, or N3, t(24) = 3.74, p = .001, d = 0.75, while in Hold 

trials, participants were equally likely to misreport any of the three non-target locations, ps > .14 

(see Table S9 for all comparisons). Thus, the pattern of location report errors mimicked the 

pattern of correlated swap errors for non-spatial features. 

Next, we directly investigated how these lapses of spatial attention (using reports of non-

target locations as a proxy) impact object-feature binding. We jointly modeled the three-way 

conjunction of color, orientation, and location with the Triple Model (see Table S10 for all 

parameter estimates) to test whether reporting both the color and orientation of a specific item 

(e.g., N1CN1O*) was bound to the location of that specific item (e.g., N1CN1ON1L). Figure 5C 

illustrates the joint color and orientation reports for Hold trials in the same scatterplot form as in 

Figure 2, but here plotted separately according to location response (coarsely coded as T, N1, 

N2, or N3) on that trial. Figure 6 shows the parameter estimates from the Triple Model, also 

grouped by their shared location component (e.g., *N1L), such that each feature-feature response 

type is plotted as a proportion of all the responses containing that location component. 
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Figure 5. Visualization of color, orientation, and location report errors. The graphs on the left 
show the location report data from Experiment 2, plotted as histograms showing frequency of 
report as a function of location errors relative to target location values, for Hold trials (A) and 
Shift trials (B). For both conditions, each trial was then coded into separate response bins 
(vertical gray lines) to produce the scatterplots on the right, which plot the trial-by-trial color and 
orientation error distributions of Hold (C) and Shift (D) trials in joint-feature space (x-axis: color; 
y-axis: orientation), split by each trial’s coded location. Data are combined across subjects. 
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As suggested by the scatterplots and confirmed with the Triple Model, the vast majority 

of all responses were attributed to fully-bound objects: correlated color-orientation-location 

reports (yellow outlined bars, Figure 6). When the correct target location was reported, 

participants overwhelmingly reported both non-spatial features of the target object (pTCTOTL = 

95.1% of TL responses, 95% HDI [.934 .960]; Figure 5C, top left). While there was a small 

proportion of random feature guessing (pUCUOTL), participants did not make correlated swap 

errors when spatial attention was properly maintained (e.g., pN1CN1OTL).  

But what about during lapses of spatial attention? When participants incorrectly reported 

the location of a non-target, the color and orientation errors appear to systematically cluster 

around that specific non-target’s features (Figure 5C). Thus, when spatial attention lapsed to a 

non-target location, the non-spatial feature reports reflected these location errors, with 

participants mostly reporting both the color and orientation of the item at the lapsed spatial 

location (pN1CN1ON1L = 73.5% of all *N1L responses, 95% HDI [.662 .831]; pN2CN2ON2L = 

73.4% of all *N2L responses, 95% HDI [.614 .858]; pN3CN3ON3L = 86.9% of all *N3L responses, 

95% HDI [.747 .898]; Figure 6). On these lapse trials, while there were small proportions of 

correct target reports (pTCTO*) and random guesses (pUCUO*), there were almost never 

correlated swap errors associated with another location. In other words, after lapses of spatial 

attention, participants still primarily reported fully-bound properties (color, orientation, and 

location), but for the lapsed non-target item instead of the correct target item. 
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Figure 6. Triple Joint Model maximum-likelihood estimates reveal that non-spatial feature-
feature binding (i.e., color-orientation) is linked to the reported spatial location, regardless of 
whether it is the correct target location. Color, orientation, and location responses from Hold 
trials in Experiment 2 were fit simultaneously as joint distributions. Parameter estimates are 
plotted separately, grouped according to each parameter’s location component: TL (top left), N1L 
(top right), N2L (bottom left), or N3L (bottom right). For each graph, each non-spatial feature 
response type (N1CN1O, N2CN2O, N3CN3O, UCUO) is calculated as a proportion of all responses 
specific to that location component. For each graph, the bar with the yellow outline signifies 
reporting the fully-bound color, orientation, and location of the same object. The Triple Model 
was fit for each condition separately, collapsed across all subjects. Error bars represent 95% 
highest density intervals. 

 

By simultaneously modeling all feature dimensions (i.e., color, orientation, location), we 

demonstrate that the locus of spatial attention seems to drive object-feature binding, even when 

spatial attention mistakenly shifts to or lingers at an incorrect, non-target location. How 

important, then, is the precision of spatial attention for successful object-feature binding? A 

strong interpretation of a spatially-driven binding mechanism would predict that the degree of 

successful feature-feature binding should increase with the precision of spatial attention. To test 

this, we performed a supplementary analysis that took location response error as a proxy for the 
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precision of spatial attention on a given trial, and then fit data from an expanding window of 

location error with a basic joint-feature mixture model (Supplement S11). As the magnitude of 

location error increased, correlated target responses decreased and independent target errors 

increased—suggesting that the degree of non-spatial object-feature binding was indeed related to 

spatial precision, which could provide further support for the idea that the spatial extent of visual 

attention is critical to the successful integration of non-spatial features. 

 

DISCUSSION 

 Our fundamental question was whether visual object integrity survives conditions of 

dynamic attention, by cueing covert spatial attention to shift and split across multiple objects 

with multiple features. We observed distinct patterns of object-feature binding: splitting attention 

across multiple locations degrades object integrity, while rapid shifts of spatial attention maintain 

bound objects, even when misreporting the wrong features. These reliable effects were consistent 

across both Simple and Full Models and replicated across two independent experiments, with 

large effect sizes. Moreover, we document a novel attentional phenomenon: inadvertent shifts, or 

“lapses” of spatial attention, result in erroneous feature reports, but object integrity is still 

preserved at the wrong location. Together, these findings emphasize the importance of a single 

focus of spatial attention for object-feature binding, even when that focus is dynamically moving 

across the visual field. 

 When spatial attention was cued to shift to a new task-relevant location, object-feature 

binding for the newly-cued target item was generally successful. We probed binding amidst the 

dynamic process of shifting attention, since shifts were cued almost immediately (50 ms) before 

array presentation; thus, intact object integrity for the target suggests that attention had rapidly 
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shifted and fully updated to the new task-relevant location by the time the array appeared on 

those trials. Critically, on trials with feature errors, there was an increase in reporting both 

features of the non-target that appeared at the initially-cued location (i.e., correlated N1CN1O 

swap errors). While these swap errors could stem from never seeing the shift cue on those trials, 

overall performance for location reports was highly accurate, with participants reporting the 

newly-cued location on 92% of Shift trials. In other words, participants were very good at seeing 

the shift cue. Thus, a more likely explanation is that these errors reflect the dynamic process of 

attentional updating, such that attention had not yet fully disengaged from the initially-cued 

location and re-engaged at the newly-cued location. For instance, previous work has 

demonstrated that incomplete shifts of attention can result in misreporting a single visual feature 

of a non-target (e.g., Golomb et al., 2014), but single-feature swaps could present as either 

correlated or independent errors when multiple features are probed. Here, we show that an 

incomplete shift of spatial attention preserves object integrity at the initially-attended location. 

There was no increase in independent errors, such as illusory conjunctions (i.e., swapping just 

one feature), contrary to what might be expected if attention spread across the two locations 

(Cohen & Ivry, 1989), or briefly activated both locations simultaneously (e.g., Khayat et al., 

2006). Instead, spatial attention seems to shift rapidly from one discrete location to another, 

binding together the visual features at each single, attended location (Nissen, 1985; Treisman & 

Gelade, 1980). 

In contrast, splitting attention across two locations resulted in more independent feature 

errors (i.e., reporting only one target feature) rather than correlated feature errors. The lack of 

correlated feature errors suggests that participants were not simply attending to one of the two 

cued locations, in hopes that it would be post-cued as the target, nor were they rapidly shifting 



OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION 

 34 

attention back and forth between the two cued locations, which would have also been unlikely 

given that the stimulus array was only presented for 50 ms (Jans, Peters, & de Weerd, 2010). Eye 

movements were also restricted throughout presentations of the cue, array, and mask. Instead, 

participants likely attended to both locations simultaneously (Cave, Bush, & Taylor, 2010), 

perhaps as separate and parallel foci (e.g., Eimer & Grubert, 2014) or within a larger, diffuse 

attentional window (e.g., Eriksen & St. James, 1986). Contrary to probabilistic accounts of 

independent feature sampling (Vul & Rich, 2010), binding errors here consisted primarily of 

unbound guesses rather than illusory conjunctions, as if only one feature dimension was 

prioritized (e.g., Woodman & Vogel, 2008). Even when participants did report both features of 

the target item, the cost of splitting attention was decreased precision for both color and 

orientation. These results are consistent with previous findings in visual working memory (which 

employ longer encoding and delay periods), in which remembering multiple multi-feature 

objects also results in feature independence (e.g., Bays et al., 2011; Fougnie & Alvarez, 2011) 

and decreased feature precision (e.g., Bays et al., 2011; Fougnie et al., 2010; Park, Sy, Hong, & 

Tong, 2017). 

Surprisingly, even when only one location was cued (Hold trials), participants sometimes 

failed to sustain spatial attention at that target location. By including a continuous location report 

in Experiment 2, we demonstrated that participants had occasional lapses of spatial attention and 

mistakenly identified a random non-target location as the true target location. We emphasize that 

these lapses of spatial attention are not simply lapses of sustained attention (i.e., momentarily 

disengaging from the task at hand; Reason, 1984); indeed, the systematic pattern of correlated 

swap errors during lapses of spatial attention demonstrates that participants remained on task and 

were not simply mind-wandering. In other words, participants were attending to a location, just 
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to the wrong location. Thus, simply seeing a spatial cue does not mean that spatial attention is 

perfectly maintained at that cued location. For example, when monitoring a red traffic light to 

turn green, a lapse of sustained attention might cause you to miss the light change and react more 

slowly, but it does not mean that you forgot the task or never understood the task. Likewise, a 

lapse of spatial attention does not necessarily mean participants forgot or never saw the cue, but 

rather that there was a momentary spatial fluctuation away from the actual cue’s location. While 

it is possible that they never saw the cue and randomly picked a location to attend to, this seems 

unlikely because the initial cue was presented for 250 ms; it seems more likely in the current task 

that lapses of spatial attention may have been anticipatory in nature—because Hold and Shift 

trials were randomly intermixed within blocks, participants may have inadvertently but 

proactively shifted covert attention to a non-cued location in anticipation of a second spatial cue. 

The lapses of spatial attention in the current task may also reflect the rhythmic nature of visual 

attention (see VanRullen, 2016). For instance, Fiebelkorn and colleagues (2013) demonstrated 

that when participants were cued to attend to a single location, they periodically monitored an 

uncued location at a frequency of 4 Hz. Importantly, rhythmic spatial attention in that study may 

have also been anticipatory in nature, as cue validity was 75% (i.e., the uncued location was still 

relevant). 

Importantly, the joint-feature errors that arose from these lapses of spatial attention were 

predictable: Participants systematically reported both the color and orientation of the non-target 

(i.e., correlated swap error) corresponding to that misidentified location. Just as correlated swap 

errors occurred after intentional shifts of spatial attention, correlated swap errors also occurred 

after inadvertent shifts—or lapses—of spatial attention. Lapses of spatial attention may, 

however, differ mechanistically from cued shifts of attention in this paradigm, given that 
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inadvertent shifts in Hold trials were self-directed, while intentional shifts in Shift trials were 

exogenously cued. The attentional effects of exogenous cueing are thought to be more transient 

and efficient, although the sustained effects of endogenous cueing may have more time to 

become more precise and focused (see Jans et al., 2010). Future work could investigate how 

exogenously- and endogenously-cued shifts of spatial attention might differentially affect object-

feature binding. 

Importantly, these fully-bound (feature-feature-location) object errors do not reflect 

traditional failures of feature binding (cf. Bays, 2016), but instead reflect the stubborn 

persistence of object-feature binding whenever any single location is attended, regardless of 

spatial relevance. Previous studies have argued that spatial location serves as the anchor for 

object-feature binding (e.g., Nissen, 1985; Reynolds & Desimone, 1999; Pertzov & Husain, 

2013; Schneegans & Bays, 2017; Treisman & Gelade, 1980; see also Wolfe & Cave, 1999). For 

example, Nissen (1985) presented color-shape-location combinations and cued either location 

(i.e., report color and shape) or color (i.e., report shape and location), while more recently, 

Schneegans and Bays (2017) presented colored and oriented bars in a continuous-report visual 

working memory task, and cued the target item by either orientation (i.e., report color and 

location) or color (i.e., report orientation and location). In both of these studies, when 

participants reported the incorrect location (i.e., a swap error), their reports of the non-spatial 

feature were strongly linked to that incorrect location. Although the current study was not 

designed to examine the specific mechanism by which binding occurs, the results of Experiment 

2 reinforce the critical role of spatial location in feature-binding, in addition to revealing the 

consequences for binding when spatial attention is dynamic. We also found little evidence of 

correlated feature-feature reports without also reporting their corresponding location, consistent 
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with a spatial-binding mechanism in which the non-spatial features of an object are each bound 

to its location and only transitively bound to each other via that shared location (e.g., Schneegans 

& Bays, 2017). Interestingly, some studies have reported feature-feature representations unbound 

from spatial location in visual working memory (e.g., Logie, Brockmole, & Jaswal, 2011; Saiki, 

2016; but see Pertzov & Husain, 2013). Combined with our results, this suggests that when 

multi-feature objects are perceived and encoded, object integrity is initially anchored to spatial 

location—but as object representations are uploaded to memory, direct feature-feature binding 

may survive without the location information. 

These findings may have broad implications for object perception, memory, and 

attentional mechanisms, shedding light on how we manage coherent representations of objects in 

the world. As spatial attention shifts from location to location, the visual features at each location 

can be rapidly bound together as cohesive objects. However, object integrity depends on a single 

and precise focus of spatial attention; splitting attention across multiple locations or increasing 

the spatial extent of attention comes at a cost. Thus, to avoid potential failures of object integrity, 

we may default to processing the visual world rapidly and serially (Jans et al., 2010). An 

intriguing question is whether such processing strategies might be adaptively learned. Our results 

raise potential implications for other types of dynamic attention (e.g., remapping across eye 

movements; Golomb et al., 2014), as well as individual differences in attentional abilities 

(Rosenberg et al., 2016) and attentional deficits (e.g., ADHD, cognitive aging).  
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