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OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION

Abstract

Visual object perception requires integration of multiple features; spatial attention is
thought to be critical to this binding. But attention is rarely static—how does dynamic attention
impact object integrity? Here we manipulated covert spatial attention and had participants
reproduce multiple properties (color, orientation, location) of a target item. Object-feature
binding was assessed by applying probabilistic models to the joint distribution of feature errors:
feature reports for the same object could be correlated (and thus bound together) or independent.
We found that splitting attention across multiple locations degrades object integrity, while rapid
shifts of spatial attention maintain bound objects. Moreover, we document a novel attentional
phenomenon, wherein participants exhibit unintentional fluctuations—*“lapses” of spatial
attention—yet nevertheless preserve object integrity, at the wrong location. These findings
emphasize the importance of a single focus of spatial attention for object-feature binding, even

when that focus is dynamically moving across the visual field.
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Our visual environment contains a multitude of objects, each composed of multiple visual
features (e.g., color, shape, texture) that must be integrated together into a cohesive object-level
representation, forming the basis for effective perception, memory, and action (e.g., Kahneman,
Treisman, & Gibbs, 1992). Spatial attention is thought to be crucial for this binding process,
acting as the “glue” that binds an object’s features together (Nissen, 1985; Reynolds &
Desimone, 1999; Treisman & Gelade, 1980). Thus, attending to a given location selects all of the
non-spatial features coinciding at that location and binds them into an integrated object
representation (e.g., Schoenfeld et al., 2003).

Visual object integrity is critical for interacting with the world. Successful object-feature
binding requires integration between different non-spatial features (i.e., feature-feature binding)
and between non-spatial features and spatial location (i.e., feature-location binding). Failures of
binding can be both detrimental and revealing (Treisman, 1996; Wolfe & Cave, 1999). For
example, limited attention can produce “illusory conjunctions”, such as when one views a green
square and a red circle, but reports a green circle (Treisman & Schmidt, 1982). Patients with
unilateral deficits in spatial attention also report more illusory conjunctions, suggesting that
object integrity depends on intact spatial extent (Robertson, 2003). Other studies have
demonstrated that spatial crowding can induce greater “swap” errors (see Bays, 2016), i.e.,
misreporting features from another location altogether (e.g., Emrich & Ferber, 2012). One
candidate model of object-feature binding posits that non-spatial features are randomly sampled
from a probabilistic window of spatial attention (Vul & Rich, 2010)—when the attentional
window is narrower and more precise, features are veridically bound as an integrated object, but
when the focus of spatial attention is more diffuse and encompasses multiple object locations,

features are encoded independently, resulting in inaccurate groupings of features and thus
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failures of object integrity. The strong consensus is that the ability to maintain a precise spatial
focus of attention is critical for preserving object integrity.

Visual attention, however, is rarely singular or static—nor do we want it to be. In the real
world, multiple objects with multiple features are simultaneously present in the environment, and
attention must dynamically shift and split across multiple goals and locations. How do these
dynamic changes in spatial attention impact visual object integrity?

Here, we examine object-feature binding while manipulating dynamic attention. We
applied a recent paradigm measuring distortions in feature perception under different conditions
of spatial attention (Golomb, L’Heureux, & Kanwisher, 2014), adapted to probe binding between
multiple feature dimensions. Participants were presented with an array of multi-feature objects
and were asked to reproduce both the color and the orientation of a target object (i.e., joint
continuous-report paradigm; Wilken & Ma, 2004; Bays, Wu, & Husain, 2011). In Experiment 1,
we manipulated attention with a spatial pre-cue that either remained stable, shifted from one
location to another, or was split across two locations simultaneously. Experiment 2 replicated
these conditions with the further addition of a continuous location report. We applied
probabilistic mixture models to assess whether errors in recalling multiple features of the same
object would be correlated—indicating that features were bound together (Bays et al., 2011).
This modeling approach allowed us to evaluate the fate of object integrity under common
conditions of dynamic attention (Experiment 1), and moreover, to directly examine the three-way
conjunction of feature-feature-location binding (Experiment 2).

We predicted that object-feature binding would be contingent on the spatial extent of
attention (Cohen & Ivry, 1989; Vul & Rich, 2010), such that splitting attention simultaneously

across two locations would expand the attentional window and disrupt object integrity. But what
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happens during shifts of spatial attention? Previous studies have demonstrated that spatial
attention does not update immediately, but rather may take 100-200 ms to fully disengage from
one location, move, and re-engage attention at a new location (e.g., Miiller, Teder-Sélejarvi, &
Hillyard, 1998). More recent work suggests that attention can be allocated to a new location
before it disengages from the previously attended location, resulting in a transient period in
which both locations are simultaneously attended (e.g., Eimer & Grubert, 2014; Khayat,
Spekreijse, & Roelfsema, 2006). Here, we probe binding during this critical period of spatial
updating and test two contrasting theories: If spatial attention shifts as a single “spotlight” from
location A to location B (Posner, Snyder, & Davidson, 1980), then the spatial extent of attention
should remain narrow, and object-feature binding should survive—for either object A or B.
Alternatively, a shift might result in temporarily highlighting both locations—e.g., spreading to
encompass both locations (“zooming” out; Eriksen & St. James, 1986) or briefly activating both
A and B simultaneously (e.g., Khayat et al., 2006; Golomb, Marino, Chun, & Mazer, 2011)—
such that we should expect greater independent feature errors.

We found that dynamic shifts and splits of attention lead to distinct patterns of object-
feature binding: rapid shifts of attention preserve object integrity, while splitting attention results
in failures of object integrity. We also document a novel attentional phenomenon, wherein
participants exhibit unintentional fluctuations—or “lapses”—of spatial attention, akin to
momentary fluctuations of sustained attention (Reason, 1984). While lapses of sustained
attention are typically defined as slowed responses in a vigilance task (e.g., Rosenberg et al.,
2016), lapses of spatial attention are here defined as identifying an incorrect location as the
target. By simultaneously modeling color, orientation, and location responses in Experiment 2,

we show that the vast majority of feature reports are correlated across all three dimensions,
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demonstrating that fully-bound objects survive both intentional shifts and inadvertent lapses of
spatial attention. Thus, object integrity is preserved when there is a single focus of spatial

attention, even if attention is at the wrong location.

METHOD

Participants

Experiment 1 included 23 participants (ages 18 to 30 years; 11 male), and Experiment 2
included 25 new participants (ages 18 to 21 years; 13 male). An a priori power analysis based on
effect sizes in previous studies (Golomb et al., 2014) estimated that we would need at least 22
participants to detect feature errors with 80% power, given a .05 criterion of significance. We
collected a few extra participants per experiment in anticipation of dropout due to poor eye-
tracking or task performance. Additional participants were excluded for not completing the full
experimental session (two from Experiment 1; three from Experiment 2) or not successfully
performing the task (<50% probability of pTcTo from the Simple Model described below; two
from Experiment 2). All participants reported normal or corrected-to-normal visual acuity and
color vision, received course credit or a payment of US$10 per hour, and provided informed
consent in accordance with The Ohio State University institutional review board.
Stimuli and Procedure

Stimuli were presented on a 21-inch flatscreen CRT monitor with a refresh rate of 85 Hz
and screen resolution of 1280 x 1024 pixels, using Matlab and the Psychophysics Toolbox
(Brainard, 1997). Subjects were positioned with a chinrest approximately 60 cm from the
monitor, and eye position was tracked using an Eyelink 1000 eye-tracking system. The monitor

was color-calibrated with a Minolta CS-100 colorimeter.
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Figure 1 illustrates an example trial sequence for the three critical conditions (Hold, Shift,
and Split) for both experiments. In Experiment 1, each trial began with the presentation of a
central fixation dot (white, diameter of 0.6°). Once subjects were accurately fixating for 1,000
ms, as determined by real-time eye tracking, the trial continued as follows:

For Hold and Shift trials, a single spatial cue (black 4° x 4° square outline) was presented
at one of four possible stimulus locations (the corners of an imaginary square centered on
fixation, 7.4° eccentricity) for 250 ms. For Hold trials, the spatial cue was followed by a 1,100-
ms delay period in which only the fixation dot was visible on the screen. For Shift trials, the cue
was followed by a similar 1,000-ms delay, after which a second cue appeared in a different,
adjacent location (never the diagonal location) for 50 ms, followed by a 50-ms delay.
Participants were instructed to covertly attend to the cued location and shift their attention if a
second location was cued, such that they were always attending to the most recently cued
location. For Split trials, two spatial cues were presented simultaneously at two adjacent
locations for 250 ms, followed by a 1,100-ms delay period. Participants were instructed to attend
to both cued locations in Split trials.

After the spatial pre-cue(s) and delay period, an array of four colored and oriented bars
(0.75° x 4°) appeared for 50 ms. One of these stimuli was the “target” (T), which appeared at the
most recently cued location for Hold and Shift trials, or at one of the two cued locations for Split
trials (randomly selected and indicated by a post-cue at the time of response). Of the three non-
target items, the critical non-target (N1) appeared at a location adjacent to the target, which was
either initially cued in Shift trials or simultaneously attended in Split trials; the other adjacent

non-target (N2) and the diagonal non-target (N3) were considered control items. In Hold trials,
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both adjacent non-targets were never cued, so they were arbitrarily assigned as the “critical” N1
or “control” N2.

The color of the target item was chosen randomly on each trial from 180 possible colors,
which were evenly distributed along a 360° circle in CIE L*a*b* coordinates with constant
luminance (L* = 70, center at a* = 20, b* = 38, and radius 60; Zhang & Luck, 2008). The colors
of the remaining stimuli were chosen so that the adjacent items (N1 and N2) were equidistant in
opposite directions (90° clockwise or counterclockwise deviation along the color wheel, with
direction randomly varying from trial to trial), and the item at the diagonal location (N3) was set
180° away in color space. The orientation of the target item was also chosen randomly on each
trial from a range of angles 0—180°, and N1 and N2 were likewise equidistant in opposite
directions (45° clockwise or counterclockwise deviation), with N3 set 90° away. Feature values
for color and orientation were set independently, as was the direction of deviation for each
feature. The stimulus array was followed by 200 ms of masks (squares colored with a random
color value at each pixel location, covering each of the four stimulus locations).

Participants then made a joint continuous-report response, reporting the color and
orientation of the target item. A single probe bar with random initial values for color and
orientation was presented at the center of the screen. For Split trials, the probe stimulus was
accompanied by a spatial post-cue (white 4° x 4° square outline) indicating which of the two pre-
-cued locations was the target. Participants were instructed to adjust the color and orientation of
the probe item to match the features of the target. The probe’s features were adjusted using two
input dials (PowerMate USB Multimedia controllers, Griffin Technology, USA), one operated
with each hand (left-color, right-orientation). Turning one dial caused the probe to rotate through

the 180° range of possible orientations (steps of 1°); turning the other dial caused the probe’s
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color to cycle through the 360° space of possible colors (steps of 2°). Participants could adjust the
two dials in any order or simultaneously. To input their response, participants clicked down on
either dial. Accuracy was stressed, and there was a time limit of 10 s.

At the end of the trial, participants were shown feedback for 1,500 ms: The reported
color-orientation response was shown in the center of the screen, and the actual target item was
displayed in its original location. Eye-tracking feedback was presented as the percentage of
deviant fixation samples (i.e., when the participant’s eye position deviated more than 2° from the
central fixation location) between initial cue onset and probe onset. Eye-tracking feedback was
intended to motivate participants to maintain central fixation; they were not told about trial
exclusion criteria.

Experiment 2 was identical to Experiment 1 except for two key changes (Figure 1B):
First, we increased the possible range of stimulus locations, although only 4 locations were ever
chosen on each trial. For each trial, the target location was randomly selected from one of 16
locations (along an imaginary circle centered on fixation, 7.4° eccentricity), and the other three
locations were arranged at +90°, —90°, and 180° away (four corners of an imaginary rotated
square). Second, we added a location report at the end of Hold and Shift trials. (Split trials
already included an explicit spatial post-cue, rendering a subsequent location report
uninformative.) The location report was presented after the joint color-orientation report, but also
as a continuous response: a single location probe (white 4° x 4° square outline) was displayed at
a random location along a white circle outline (7.4° eccentricity), and turning the right-hand dial
rotated the placeholder through the 360° space of possible locations (steps of 2.25°). Participants
were instructed to adjust the location of the probe to match the location of the target (i.e., the

most recently cued location). Participants input their location response by clicking down on the
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dial, with a time limit of 2 s. For location feedback on Hold and Shift trials, the reported location
was displayed as a white outline on the same screen as color-orientation and eye-tracking
feedback.

In Experiment 1, each participant completed 7—10 blocks of intermixed Hold and Shift
trials (112-160 trials of each condition) and 4-5 blocks of Split trials (128—160 trials), although
the order of Hold/Shift or Split blocks was counterbalanced between participants. In Experiment
2, participants completed 5—8 blocks of intermixed Hold and Shift trials (80—128 trials of each
condition), always followed by 3—4 blocks of Split trials (96—128 trials). Hold and Shift trials
were intermixed to ensure that participants had to attend to the first cue and could not simply
wait for the second cue; Split trials were presented in separate blocks for ease of instruction.
Both experiments began with fixation training and 8 Hold practice trials, as well as 12 Shift
practice trials before the Hold/Shift blocks, and 12 Split trials before the Split blocks. Trials were
discarded if they contained over 15% deviant fixation samples between initial cue onset and
probe onset (Experiment 1: 3.3%; Experiment 2: 8.8%)1 or if subjects made no dial adjustments

before inputting their response (Experiment 1: 0.1%; Experiment 2: 2.5%).

1 We checked whether participants maintained fixation immediately before and after array onset
for the trials that were included by calculating the percentage of deviant eye-tracking samples
from 200 ms before array onset to probe onset: Experiment 1: 0.4% and Experiment 2: 0.6%. In
contrast, trials that were discarded had 52—60% deviant fixations during this period.

11
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Figure 1. Example trial sequences for (A) Experiment 1 and (B) Experiment 2. Participants were
cued to covertly attend to a spatial pre-cue that remained stable (Hold) or dynamically shifted
from one location to another (Shift), before reproducing both the color and orientation (i.e., joint
continuous-report) of the cued target item. In Split trials, participants were pre-cued to attend to
two locations simultaneously, before reporting the features of the post-cued target item. In
Experiment 2, the four array positions could be rotated, and participants additionally reported
the location of the target item (on Hold and Shift trials only). For each row, the final panel
(dotted outline) denotes which array position corresponds to T, N1, N2, and N3. On Hold trials,
N1 and N2 are arbitrarily assigned.

Joint-Feature Analyses

On each trial, response error was calculated as the angular deviation between the
continuous probe report and the cued target item, for each feature separately (8, = color error,
range —180° to 180°; 8,= orientation error, range —90° to 90°; 8; = location error, range —180° to

180°). In Shift and Split trials, although the direction of N1 varied randomly in relation to T
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(clockwise or counterclockwise in terms of spatial location, color, or orientation space), we
aligned the responses on each trial so that errors toward the N1 feature were always coded as
positive deviations (+90° or +45°), and errors toward N2 as negative deviations (—90° or —45°).

To quantify the amount of object-feature binding, we employed a mixture modeling
approach (Bays, Catalao, & Husain, 2009; Bays et al., 2011; Golomb et al., 2014; Zhang &
Luck, 2008). Within each single feature dimension (Table 1), responses could be attributed to
either reporting the target (7, a von Mises distribution centered on the target feature value),
misreporting one of the three non-targets (N1, N2, N3, separate von Mises distributions centered
on each non-target feature value), or random guessing (U, a uniform distribution across all
feature values). Critically, we modeled color and orientation as joint probability distributions,
fitting responses from both feature dimensions simultaneously (see Bays et al., 2011).

For Experiment 1, we evaluated two types of joint color-orientation mixture models: In
the Full Joint Model, we modeled the five types of feature reports described above (7, NI, N2,
N3, and U) for each dimension, resulting in 25 response combinations of color (5) and
orientation (5) (Table 2). This resulted in a model with 29 parameters (including parameters for
the concentrations kc and ko (o = \/1_/K) and means pc and po of the target). Due to this large
number of parameters, the Full Model required data to be collapsed across subjects to achieve
reliable model fits. Thus, to conduct within-subject statistics for our primary analyses, data from
individual subjects were fit with the Simple Joint Model, which only attributes responses to 7,
N1, or U within each dimension, resulting in 9 response combinations of color (3) and
orientation (3) (Table 2) plus 4 parameters for concentrations and means. Since our focus here
was on the effects of dynamic attention involving the T and critical N1 locations, the Simple

Model drops parameters that involve N2 or N3 (which were theoretically less relevant, and had
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very low probabilities in the Full Model results; see Table S2). In the Simple Model, the few
responses to N2 or N3 items should be absorbed by U. Indeed, the results reported using the
Simple Joint Model were confirmed at the population level with the Full Joint Model
(Supplement S5).

For both models, the joint distribution of responses was modeled as:

P(QC' 60) = z AmPm

m

where 6. and 6, are the reported feature errors, and m is the number of joint color-orientation
response combinations, with mrui = 1:25 or msimple = 1:9. a,, 1s the probability of each response
combination, and p,, represents the joint probability density distribution for that combination.
Table 2 lists each of the m combinations and associated probability density functions. For
example, the joint probability distribution of reporting the target color and the N1 non-target

orientation would be pTcNI1o = ¢ . ¢§,Ko'

For both models, joint-feature response distributions were fit using Markov chain Monte

Carlo (MCMC), as implemented through custom Matlab scripts (available on Open Science
Framework) using the MemToolbox (Suchow, Brady, Fougnie, & Alvarez, 2013) on the Ohio
Supercomputer Center (Ohio Supercomputer Center, 1987). The MCMC procedure sampled
three parallel chains across as many iterations as necessary to achieve convergence, according to
the method of Gelman and Rubin (1992). We collected 15,000 post-convergence samples and
used the posterior distributions to compute the maximum-likelihood estimates of each parameter,
as well as its 95% highest posterior density interval (HDI). For our primary analyses using the
Simple Model, we adopted a standard within-subject analytical approach: Parameter estimates
were obtained separately for each individual subject and each trial type, then evaluated with

frequentist significance testing. Post-hoc tests were evaluated with the appropriate Bonferroni-
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correction for multiple comparisons. These standard statistical comparisons were corroborated
by analyses using the Full Model: Data were collapsed across all subjects within each
experiment, and parameter estimates were obtained separately for each trial type. Parameter
estimates from the Full Model were considered significantly different if their 95% HDIs did not
overlap (Kruschke, 2011).

For Experiment 2, we first evaluated the joint color-orientation feature reports with both
the Simple Model and the Full Model, as described above. With the inclusion of the continuous
location report, we also fit single-subject data with a single-dimension Location Model, which
attributed location responses to 7z, N1z, N21, N31, or UL, with flexible kL and pr of the target.
We then took the joint modeling approach a step further, modeling the continuous responses
from color, orientation, and location simultaneously as three-way joint probability distributions.
Because a full triple joint model including all possible response types for all three dimensions
would include an unwieldy number of parameters (131), we simplified the Triple Joint Model to
focus on parameters of theoretical interest. Specifically, we examined whether reporting both the
color and orientation of a specific item (feature-feature binding; e.g., N1cN1o) was also bound to
the location of that specific item (feature-feature-location binding; e.g., location N1r). Thus, the
Triple Model included only parameters for correlated feature-feature responses (i.e., 7cTo,
NlcNlo, N2cN2o, N3cN3o) or guessing (UcUo), crossed with the different types of location
responses. Location reports were attributed to 7z, N11, N21, or N3r; we did not include a random
guessing component UL, as the corresponding pUr parameter from the single-dimension
Location Model was found to be negligible (Table S8). Similarly, we did not include flexible
parameters for means pic, po, and po because the corresponding parameters in the Simple and

Location Models were not significantly different from 0 (Tables S1, S8). Consequently, the
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Triple Model included 20 response combinations of color-orientation (5) and location (4), and 3
parameters for concentrations kc, ko, and kL (Table 3). The joint distribution of responses was
modeled as:
p(Oc,00,6.) = Xom CmDms

where 0. and 6, are the reported color and orientation errors, 8, is the reported location
error, a,, is the probability of each response combination, and p,,, represents the combined
probability density, with m-pie = 1:20. For example, the probability distribution of reporting the
color and orientation of the target with the location of the critical N1 non-target would be
PTcTONIL = ¢gx Dox, P, - Given the large number of parameters (23), the Triple Model was
fit with data collapsed across all subjects and analyzed in the same way as the Full Model
described above. Parameter estimates were obtained separately for Hold and Shift trial types
(Split trials were not included in these analyses because there was no location report on these

trials).
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Exﬁiﬁé model response distributions within a single feature dimension
Response type Color (O) Orientation (O) Location (L)
Target (T) Ducxe Duoxo Purs,
Critical Non-target (N1) Prxe d)g,}co brx,
Control Non-target (N2) Drxe ¢_§,KO b,
Diagonal Non-target (N3) Domxe b bamx,
Random (U) Yc Yo YL

where ¢ is a von Mises probability density function, with concentration ¢, &, or x; (standard

deviation ¢ = m), and means of u. or y;, 90°,—90° and 180° (color or location) or y,, 45°,
—45°, and 90° (orientation) for the target, critical non-target, and control and diagonal non-target
features, respectively. ¢, yo, and y; are uniform distributions that reflects the probability of
responding to the respective feature at random (guessing).

17
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Table 2
Simple and Full Joint Mixture Model response distributions combined across both non-spatial

feature dimensions

Response Joint probability

Response type MSimple MFull combination density
Correlated Correlated target 1 1 TcTo DucccPuoxo
Correlated swap 2 2 NIcNlo br e d’g,xo
3 N2cN2o D_rxc ¢—§,Ko
4 N3cN3o P2mxccPro
Independent T* Coﬂ}‘dizgon 3 5 TeNIo Pucrc P,
4 6 NicTo ¢n,Kc¢uo,Ko
7 TeN2o PucrcP I,
8 N2cTo P-rccPuoo
9 TcN3o DucxePrxo
10 N3cTo G2mxcPuoo
Unbound guess 5 11 TcUo Ducxco
6 12 UcTo YePuoxo
Independent N* coﬂ}ﬁi?:gon 13 NIcN2o (nbn:,}ccd)_%,c 0
14 N2cNlo P-rxcPZ e,
15 NIcN3o0 Gr e Prco
16 N3cNlo PomicPL
17 N2cN3o b Prico
18 N3cN2o Pamic®_ T,
Unbound guess 7 19 NlcUo brxcYo
8 20 UcNlo Ye ¢g,xo
21 N2cUo b_nx Yo
22 UcN20 ved_z,,
23 N3cUo bonicYo
24 UcN3o YcPrxo
Random guessing 9 25 UcUo YcYo

18
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where ¢ is a von Mises probability density function, with concentration x or x;, (standard

deviation ¢ = ,/1/k), and means of u., 90°, —90°, and 180° (color) or u,, 45°, —45°, and 90°
(orientation) for the target T, critical non-target N1, control non-target N2, and diagonal non-
target N3 features, respectively. y. and y, are uniform distributions that reflect the probability of
responding at random. Joint response combinations are always written as color response first.
Rows 14 describe correlated responses (reporting both features of the target object, or
misreporting both features of the same non-target [correlated swap errors]); rows 5—12 describe
independent T* errors (reporting one target feature and one non-target feature [illusory
conjunctions], or reporting one target feature and guessing the other feature [unbound guesses]));
and rows 13-25 describe the remaining errors (e.g., misreporting features from different non-
targets and guessing). The Simple Joint Model includes only the parameters as numbered by
msimple, Whereas the Full Joint Model includes all 25 parameters, as numbered by mFui.

19
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Triple Joint Mixture Model response distributions combined across color, orientation, and

location dimensions

Location response fealju(r):_rseps ;t(i)?llses MTriple C(ﬁﬁgg;?gn Joint probability density
Target Correlated Target 1 TcToTL D0,ccProrcoPury,
Correlated N1 2 NIcNIoT. PraccPL o Pusc,
Correlated N2 3 N2cN2oTL P-rirccP 2 o Purc,
Correlated N3 4 N3cN3oTL D2 Pro Pupk,
Other 5 UcUoTL YcYoPuix,
Non-target N1 Correlated Target 6 TcToNIL DucicPuoxoPrxy
Correlated N1 7 NIcNIoNIL Pracc P i Prsc,
Correlated N2 8 N2cN2oNl1L ¢—n,xc ¢’_§,K o ¢71’,KL
Correlated N3 9 N3cN3oNIL D2mxcPrwco Pk,
Other 10 UcUoNIL YcYoPrx,
Non-target N2 Correlated Target 11 TcToN2L DucicePuoxoP-mx,
Correlated N1 12 NIcNI1oN2t <l>n,Kc¢g,K0 b,
Correlated N2 13 N2cN20oN2¢ ¢-n,KC¢_g,KO¢_n,KL
Correlated N3 14 N3cN3oN2L DomxccPrxo P-mx,,
Other 15 UcUoN2. YcYoP-nx,
Non-target N3 Correlated Target 16 TcToN3L DuciccPuoroPomx,
Correlated N1 17 NIcNIoN3L Pracc P i Pamic,
Correlated N2 18 N2cN20oN31 P-rirccP L, Pomic,
Correlated N3 19 N3cN3oN3L b2 Prco P,
Other 20 UcUoN3L YcYoPanx,

where ¢ is a von Mises probability density function, with concentration i, x, or x; (standard
deviation o = \/I/_K), and means of 0°, 90°, —90°, and 180° (color or location) or 0°, 45°, —45°,
and 90° (orientation) for the target T, critical non-target N1, control non-target N2, and diagonal
non-target N3 features, respectively. ¥, and y, are uniform distributions that reflect the
probability of responding at random.
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RESULTS

By probing both color and orientation on each trial, we examined whether errors in
recalling multiple features of the same object were correlated (and thus bound together) or
independent (and unbound) under different conditions of covert spatial attention. Figure 2
visualizes the joint distribution of responses by plotting individual trials in joint-feature space,
where the vertical and horizontal axes correspond to the color and orientation errors,
respectively. Figure 2A illustrates the predicted distributions for different types of hypothetical
responses, and Figures 2B—C show the actual response distributions for each attention condition.

“Object integrity” was inferred from contrasting correlated responses (i.e., reporting both
the color and orientation of the same item) to independent responses (i.e., reporting only one
feature of the target item) (Figure 2A). Correlated responses could stem from: 1) reporting both
features of the correct target item (correlated target, TcTo), which would be represented as a two-
dimensional Gaussian density centered on the origin (0° error), or 2) misreporting both features
of the same non-target item (correlated swap, denoted N1cN1o, N2cN2o, and N3cN3o), which
would be represented as two-dimensional Gaussian densities along the positive-slope diagonal of
joint-feature space. Failures in object-feature binding, on the other hand, would result in
independent target errors, represented as a distribution of responses along the horizontal and
vertical axes of joint-feature space (i.e., centered on zero error in one dimension but not the
other). Independent target errors could be due to misbinding the features of a target and a non-
target item (illusory conjunction; e.g., TcN1o) or reporting only one feature of the target and
guessing the other (unbound guess; e.g., TcUo). Finally, pure guessing (UcUo) would be
represented as a two-dimensional uniform distribution of responses across the entire joint-feature

space.
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We quantified each of the error types above with joint-feature probabilistic models (Table

2). The probabilistic models also allow for independent non-target errors, such as reporting the

color of one non-target and the orientation of a different non-target (e.g., N1cN20), or reporting

only one feature of a non-target and guessing the other (e.g., N1cUo); however, such errors were

relatively rare and not discussed further, but see Tables S1 and S2 for all parameter estimates.

Scatterplots of the empirical data for each experiment, collapsed across all participants, for Hold,

Shift, and Split trials, are presented in Figures 2B—C. The corresponding parameter estimates

from the Simple Model are shown in Figure 3; below, we report within-subject statistics for the

Simple Model, but comparison of 95% HDIs from the Full Model confirm these results and are

reported in Table S2 (see also Supplement S5).
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Figure 2. Visualizations of color-orientation reports in joint-feature space, plotted as error
relative to actual target feature values: color responses are shown along the x-axis, and
orientation responses are shown along the y-axis. For visualization purposes, we have flattened
joint-feature space; both feature dimensions are in fact circular, such that +180° is identical to —
180° in color space. The schematics in (A) show predicted distributions for possible response
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types: Correlated target responses reflect reporting both features of the target item. Correlated
swaps reflect reporting both features of the same non-target; see Figure 1 for legend of
N1/N2/N3 labels across different conditions. Independent errors reflect reporting only one target
feature. The scatterplots in (B—C) plot trial-by-trial error distributions separately for Hold, Shift,
and Split trials, for Experiment 1 (B) and Experiment 2 (C). Each dot represents the
corresponding color and orientation response for a single trial, aggregating across subijects.

Experiment 1

Across all trial types, the vast majority of responses were attributed to reporting both
features of the correct target item (correlated target responses; Figure 3A), as reflected in the
scatterplots as a central density of responses at the origin (Figure 2B). However, the patterns of
errors outside that central density differed as a function of attention condition. As predicted, Split
attention degraded performance. Splitting attention across two locations resulted in greater
feature errors, with significantly lower correlated target responses (p7cTo, Simple Model) in
Split trials compared to Hold trials, #(22) = 4.20, p < .001, d = 0.88, and Shift trials, #(22) = 6.78,
p <.001, d=1.42. The standard deviations of both color (cc) and orientation (Go) responses
were also greater for Split trials, ps <.001 (see Table S3 for all comparisons), indicating less
precise feature reports when splitting spatial attention (Figure 3A). In contrast, shifts of attention
from one location to another did not impact p7cTo or feature precision; pairwise z-tests revealed
that these parameters were not significantly different between Hold and Shift trials, ps > .5
(Table S3).

Next we compared the different types of errors produced by shifts or splits of attention,
comparing the probability of correlated N1cN1o swap errors (Simple Model) versus independent
T* errors (e.g., TcN1o, UcTo, Simple Model). Because Split trials produced more non-TcTo
responses overall, to compare across conditions we calculated these as proportions of “all errors”
(non-TcTo responses) for each attention condition (Figure 3B). A repeated-measures ANOVA

across condition (Hold, Shift, Split) and error type (correlated N1cN1o swap, independent T*)
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revealed a significant interaction, F(2, 44) = 23.3, p <.001, n2 =.515. Split trials had the greatest
proportion of independent T* errors (M = 72.8% of non-TcTo responses, SD = 17.4%) compared
to Hold trials (M = 44.8%, SD = 22.9%) and Shift trials (M = 44.2%, SD = 19.6%), ps < .001
(see Table S4 for all comparisons). In contrast, Shift trials had the greatest proportion of
correlated N1cN1lo swaps (M = 25.1% of non-TcTo responses, SD = 18.9%) compared to Hold
trials (M = 6.5%, SD = 7.4%) and Split trials (M = 2.4%, SD = 5.4%)) trials, ps <.001 (Table S4).
This interaction is illustrated in the Figure 2B scatterplots where a sizeable cluster of errors is
visible around N1cN1o for Shift trials, whereas for Split trials, errors are reflected as noise
around the vertical and horizontal axes. In other words, dynamic splits of spatial attention
resulted in failures of object-feature binding (more independent T* errors), while dynamic shifts
of attention were more likely to maintain object integrity (more correlated TcTo responses and
correlated N1cN1o swaps).

When splits of spatial attention break down object-feature binding, what kinds of
independent errors do participants make? In Split trials, unbound guesses (M = 60.2% of non-
TcTo responses, SD = 19.8%, Simple Model) occurred significantly more often than illusory
conjunctions between T and N1 (M = 12.7%, SD = 13.7%, Simple Model), #22) =7.78, p < .001,
d =1.62. This suggests that participants were not simply encoding and reporting both features of
both cued objects independently, as might be expected if the constituent features were processed
as loose bundles of features and illusorily misbound (Vul & Rich, 2010). Instead, splitting
attention across multiple objects seemed to induce a feature-load strategy in which one feature
dimension was prioritized (e.g., Fougnie, Asplund, & Marois, 2010; Woodman & Vogel, 2008),
such that participants reported only one feature of the target and guessed the other (Supplement

36).
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Figure 3. Simple Joint Model maximum-likelihood parameter estimates for both experiments.
The graphs in (A) present best-fit estimates for the probability of correlated target responses
(TcTo) and the standard deviations of the TcTo distribution for color (oc) and orientation (co) for
each condition. The graphs in (B) present the proportion of erroneous responses (i.e., non-
TcTo) that can be attributed to correlated N1cN1o swaps, independent target errors (illusory
conjunctions in light shading or unbound guesses in darker shading), and other errors (e.g.,
random guessing) for each condition. Shift trials had more N1cN1o swaps, while Split trials had
more independent target errors. The Simple Model was fit separately for each subject and each
condition, and then parameter estimates were averaged across subjects. Error bars represent
95% confidence intervals. Results are shown separately for Experiments 1 (N=23) and 2
(N=25).

In Shift trials, we found a greater proportion of correlated N1cN1o swap errors, consistent
with the hypothesis that spatial attention had not yet shifted from the initially-cued N1 location
to the correct target location on some trials. To confirm that correlated swap errors in Shift trials

were specific to N1cN 1o, we used the Full Model parameter fits to compare correlated swaps

across all possible non-target locations (i.e., N1cN1o, N2cN2o, N3cN3o). In Shift trials,
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participants were indeed more likely to misreport the entire feature-bound object at the initially-
cued location (pNIcNlo = .028,95% HDI [.021 .032]) compared to the other non-target
locations (pN2cN2o = .001, 95% HDI [0 .004], pN3cN3o < .001, 95% HDI [0 .002]); parameter
estimates were considered significantly different if their 95% HDIs did not overlap (Kruschke,
2011). In contrast, in Hold trials, correlated swaps were distributed equally across the three non-

targets (Figure 4; 95% HDIs overlap).
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Figure 4. Full Joint Model maximum-likelihood estimates confirm that correlated swaps for Shift
trials were highest for the initially-cued non-target (N1), while correlated swaps for Hold trials
were equally distributed across all non-target items. For each correlated swap (N1cN7o,
N2cN2o, N3cN30), a violin plot illustrates the posterior distribution of each parameter over
15,000 post-convergence samples. The white dots mark each parameter’s best-fit estimate, and
the whiskers represent the 95% highest density interval. The Full Model was fit for each
condition separately, collapsed across all subjects. Results are shown separately for
Experiments 1 and 2.

We had expected Hold trials to have very few errors overall, since those trials involved
only a single relevant spatial location. However, surprisingly, the Full Model parameter fits
revealed that in Hold trials, participants made just as many fofal correlated swap errors
(pNIcNlo+ pN2cN2o+ pN3cN3o = .039, 95% HDI [.029 .046]) as in Shift trials (.029, 95% HDI
[.023 .035]). Why would Hold trials produce substantial correlated swap errors? One possible

explanation is that participants occasionally made inadvertent attentional shifts on Hold trials;
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because all non-target locations were equally irrelevant, these random “lapses™ of spatial
attention should lead to correlated swap errors for all non-target locations. To directly probe
possible lapses of spatial attention and their impact on object-feature binding, we added a

continuous location report to Experiment 2.

Experiment 2

In Experiment 2, we directly evaluated the role of spatial attention in the binding of non-
spatial visual features. Specifically, is an integrated object (i.e., intact feature-feature binding)
anchored to its spatial location (i.e., intact feature-feature-location binding)? In addition to
reporting the target’s color and orientation, participants also reported the target’s location on
Hold and Shift trials. When participants correctly reported both features of the target, we
expected them to correctly report its location. But when participants made a correlated swap
error (i.e., reporting the color and orientation of a non-target), would they also report the
incorrect location of that same non-target?

For color and orientation feature reports, Experiment 2 replicated the same pattern of
results as reported for Experiment 1 (Figures 2C, 3, 4; Tables S1, S2, S5). Figure 5SA—B depicts
the response distributions for the location reports that followed Hold and Shift trials; Split trials
did not include a location report because location was already post-cued. Based on a single-
dimension Location Model (Table S8), participants primarily reported the target location (Hold:
pTr = 887, Shift: pTr = .920) with high precision (Hold: o = 9.0°, Shift: c = 9.3°). Even on Shift
trials, when the second cue was only flashed for 50 ms, participants were highly accurate at
reporting that second location, indicating that participants were able to perceive the shift cue.

Neither the probability of reporting the target location nor standard deviation was significantly
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different between Hold and Shift trials, #(24) = 1.20, p = .240, d = 0.24 and #24) = 1.07,p =
293, d = 0.22. However, the difference in the pattern of location errors is evident: a repeated-
measures ANOVA across condition (Hold, Shift) and error type (N1, N2, N3, U) revealed a
significant interaction, F(3, 72) = 8.40, p <.001, n2 = .259. Post-hoc paired #-tests confirmed that
in Shift trials, participants were more likely to misreport the initially-cued N1 location compared
to N2, #(24) = 3.66, p = .001, d = 0.73, or N3, #(24) = 3.74, p = .001, d = 0.75, while in Hold
trials, participants were equally likely to misreport any of the three non-target locations, ps > .14
(see Table S9 for all comparisons). Thus, the pattern of location report errors mimicked the
pattern of correlated swap errors for non-spatial features.

Next, we directly investigated how these lapses of spatial attention (using reports of non-
target locations as a proxy) impact object-feature binding. We jointly modeled the three-way
conjunction of color, orientation, and location with the Triple Model (see Table S10 for all
parameter estimates) to test whether reporting both the color and orientation of a specific item
(e.g., NIcN1o*) was bound to the location of that specific item (e.g., N/IcNIoNIr). Figure 5C
illustrates the joint color and orientation reports for Hold trials in the same scatterplot form as in
Figure 2, but here plotted separately according to location response (coarsely coded as T, N1,
N2, or N3) on that trial. Figure 6 shows the parameter estimates from the Triple Model, also
grouped by their shared location component (e.g., *N/1), such that each feature-feature response

type is plotted as a proportion of all the responses containing that location component.
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Figure 5. Visualization of color, orientation, and location report errors. The graphs on the left
show the location report data from Experiment 2, plotted as histograms showing frequency of
report as a function of location errors relative to target location values, for Hold trials (A) and
Shift trials (B). For both conditions, each trial was then coded into separate response bins
(vertical gray lines) to produce the scatterplots on the right, which plot the trial-by-trial color and
orientation error distributions of Hold (C) and Shift (D) trials in joint-feature space (x-axis: color;
y-axis: orientation), split by each trial's coded location. Data are combined across subjects.
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As suggested by the scatterplots and confirmed with the Triple Model, the vast majority
of all responses were attributed to fully-bound objects: correlated color-orientation-location
reports (yellow outlined bars, Figure 6). When the correct target location was reported,
participants overwhelmingly reported both non-spatial features of the target object (pTcToTL =
95.1% of T1 responses, 95% HDI [.934 .960]; Figure 5C, top left). While there was a small
proportion of random feature guessing (pUcUoT1), participants did not make correlated swap
errors when spatial attention was properly maintained (e.g., pNIcNI1oTr).

But what about during lapses of spatial attention? When participants incorrectly reported
the location of a non-target, the color and orientation errors appear to systematically cluster
around that specific non-target’s features (Figure 5C). Thus, when spatial attention lapsed to a
non-target location, the non-spatial feature reports reflected these location errors, with
participants mostly reporting both the color and orientation of the item at the lapsed spatial
location (pNIcN1oNI1L =73.5% of all *NI.responses, 95% HDI [.662 .831]; pN2cN2oN2L =
73.4% of all *N2rresponses, 95% HDI [.614 .858]; pN3cN3oN3L = 86.9% of all * N3 responses,
95% HDI [.747 .898]; Figure 6). On these lapse trials, while there were small proportions of
correct target reports (p7cTo*) and random guesses (pUcUo*), there were almost never
correlated swap errors associated with another location. In other words, after lapses of spatial
attention, participants still primarily reported fully-bound properties (color, orientation, and

location), but for the lapsed non-target item instead of the correct target item.
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Figure 6. Triple Joint Model maximum-likelihood estimates reveal that non-spatial feature-
feature binding (i.e., color-orientation) is linked to the reported spatial location, regardless of
whether it is the correct target location. Color, orientation, and location responses from Hold
trials in Experiment 2 were fit simultaneously as joint distributions. Parameter estimates are
plotted separately, grouped according to each parameter’s location component: T. (top left), N71¢.
(top right), N2, (bottom left), or N3 (bottom right). For each graph, each non-spatial feature
response type (N1cN71o, N2cN2o, N3cN3o, UcUo) is calculated as a proportion of all responses
specific to that location component. For each graph, the bar with the yellow outline signifies
reporting the fully-bound color, orientation, and location of the same object. The Triple Model
was fit for each condition separately, collapsed across all subjects. Error bars represent 95%
highest density intervals.

By simultaneously modeling all feature dimensions (i.e., color, orientation, location), we
demonstrate that the locus of spatial attention seems to drive object-feature binding, even when
spatial attention mistakenly shifts to or lingers at an incorrect, non-target location. How
important, then, is the precision of spatial attention for successful object-feature binding? A
strong interpretation of a spatially-driven binding mechanism would predict that the degree of
successful feature-feature binding should increase with the precision of spatial attention. To test

this, we performed a supplementary analysis that took location response error as a proxy for the
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precision of spatial attention on a given trial, and then fit data from an expanding window of
location error with a basic joint-feature mixture model (Supplement S11). As the magnitude of
location error increased, correlated target responses decreased and independent target errors
increased—suggesting that the degree of non-spatial object-feature binding was indeed related to
spatial precision, which could provide further support for the idea that the spatial extent of visual

attention is critical to the successful integration of non-spatial features.

DISCUSSION

Our fundamental question was whether visual object integrity survives conditions of
dynamic attention, by cueing covert spatial attention to shift and split across multiple objects
with multiple features. We observed distinct patterns of object-feature binding: splitting attention
across multiple locations degrades object integrity, while rapid shifts of spatial attention maintain
bound objects, even when misreporting the wrong features. These reliable effects were consistent
across both Simple and Full Models and replicated across two independent experiments, with
large effect sizes. Moreover, we document a novel attentional phenomenon: inadvertent shifts, or
“lapses” of spatial attention, result in erroneous feature reports, but object integrity is still
preserved at the wrong location. Together, these findings emphasize the importance of a single
focus of spatial attention for object-feature binding, even when that focus is dynamically moving
across the visual field.

When spatial attention was cued to shift to a new task-relevant location, object-feature
binding for the newly-cued target item was generally successful. We probed binding amidst the
dynamic process of shifting attention, since shifts were cued almost immediately (50 ms) before

array presentation; thus, intact object integrity for the target suggests that attention had rapidly
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shifted and fully updated to the new task-relevant location by the time the array appeared on
those trials. Critically, on trials with feature errors, there was an increase in reporting both
features of the non-target that appeared at the initially-cued location (i.e., correlated N1cN1o
swap errors). While these swap errors could stem from never seeing the shift cue on those trials,
overall performance for location reports was highly accurate, with participants reporting the
newly-cued location on 92% of Shift trials. In other words, participants were very good at seeing
the shift cue. Thus, a more likely explanation is that these errors reflect the dynamic process of
attentional updating, such that attention had not yet fully disengaged from the initially-cued
location and re-engaged at the newly-cued location. For instance, previous work has
demonstrated that incomplete shifts of attention can result in misreporting a single visual feature
of a non-target (e.g., Golomb et al., 2014), but single-feature swaps could present as either
correlated or independent errors when multiple features are probed. Here, we show that an
incomplete shift of spatial attention preserves object integrity at the initially-attended location.
There was no increase in independent errors, such as illusory conjunctions (i.e., swapping just
one feature), contrary to what might be expected if attention spread across the two locations
(Cohen & Ivry, 1989), or briefly activated both locations simultaneously (e.g., Khayat et al.,
2006). Instead, spatial attention seems to shift rapidly from one discrete location to another,
binding together the visual features at each single, attended location (Nissen, 1985; Treisman &
Gelade, 1980).

In contrast, splitting attention across two locations resulted in more independent feature
errors (i.e., reporting only one target feature) rather than correlated feature errors. The lack of
correlated feature errors suggests that participants were not simply attending to one of the two

cued locations, in hopes that it would be post-cued as the target, nor were they rapidly shifting
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attention back and forth between the two cued locations, which would have also been unlikely
given that the stimulus array was only presented for 50 ms (Jans, Peters, & de Weerd, 2010). Eye
movements were also restricted throughout presentations of the cue, array, and mask. Instead,
participants likely attended to both locations simultaneously (Cave, Bush, & Taylor, 2010),
perhaps as separate and parallel foci (e.g., Eimer & Grubert, 2014) or within a larger, diffuse
attentional window (e.g., Eriksen & St. James, 1986). Contrary to probabilistic accounts of
independent feature sampling (Vul & Rich, 2010), binding errors here consisted primarily of
unbound guesses rather than illusory conjunctions, as if only one feature dimension was
prioritized (e.g., Woodman & Vogel, 2008). Even when participants did report both features of
the target item, the cost of splitting attention was decreased precision for both color and
orientation. These results are consistent with previous findings in visual working memory (which
employ longer encoding and delay periods), in which remembering multiple multi-feature
objects also results in feature independence (e.g., Bays et al., 2011; Fougnie & Alvarez, 2011)
and decreased feature precision (e.g., Bays et al., 2011; Fougnie et al., 2010; Park, Sy, Hong, &
Tong, 2017).

Surprisingly, even when only one location was cued (Hold trials), participants sometimes
failed to sustain spatial attention at that target location. By including a continuous location report
in Experiment 2, we demonstrated that participants had occasional lapses of spatial attention and
mistakenly identified a random non-target location as the true target location. We emphasize that
these lapses of spatial attention are not simply lapses of sustained attention (i.e., momentarily
disengaging from the task at hand; Reason, 1984); indeed, the systematic pattern of correlated
swap errors during lapses of spatial attention demonstrates that participants remained on task and

were not simply mind-wandering. In other words, participants were attending to a location, just
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to the wrong location. Thus, simply seeing a spatial cue does not mean that spatial attention is
perfectly maintained at that cued location. For example, when monitoring a red traffic light to
turn green, a lapse of sustained attention might cause you to miss the light change and react more
slowly, but it does not mean that you forgot the task or never understood the task. Likewise, a
lapse of spatial attention does not necessarily mean participants forgot or never saw the cue, but
rather that there was a momentary spatial fluctuation away from the actual cue’s location. While
it is possible that they never saw the cue and randomly picked a location to attend to, this seems
unlikely because the initial cue was presented for 250 ms; it seems more likely in the current task
that lapses of spatial attention may have been anticipatory in nature—because Hold and Shift
trials were randomly intermixed within blocks, participants may have inadvertently but
proactively shifted covert attention to a non-cued location in anticipation of a second spatial cue.
The lapses of spatial attention in the current task may also reflect the rhythmic nature of visual
attention (see VanRullen, 2016). For instance, Fiebelkorn and colleagues (2013) demonstrated
that when participants were cued to attend to a single location, they periodically monitored an
uncued location at a frequency of 4 Hz. Importantly, rhythmic spatial attention in that study may
have also been anticipatory in nature, as cue validity was 75% (i.e., the uncued location was still
relevant).

Importantly, the joint-feature errors that arose from these lapses of spatial attention were
predictable: Participants systematically reported both the color and orientation of the non-target
(i.e., correlated swap error) corresponding to that misidentified location. Just as correlated swap
errors occurred after intentional shifts of spatial attention, correlated swap errors also occurred
after inadvertent shifts—or lapses—of spatial attention. Lapses of spatial attention may,

however, differ mechanistically from cued shifts of attention in this paradigm, given that

35



OBJECT-FEATURE BINDING UNDER DYNAMIC ATTENTION

inadvertent shifts in Hold trials were self-directed, while intentional shifts in Shift trials were
exogenously cued. The attentional effects of exogenous cueing are thought to be more transient
and efficient, although the sustained effects of endogenous cueing may have more time to
become more precise and focused (see Jans et al., 2010). Future work could investigate how
exogenously- and endogenously-cued shifts of spatial attention might differentially affect object-
feature binding.

Importantly, these fully-bound (feature-feature-location) object errors do not reflect
traditional failures of feature binding (cf. Bays, 2016), but instead reflect the stubborn
persistence of object-feature binding whenever any single location is attended, regardless of
spatial relevance. Previous studies have argued that spatial location serves as the anchor for
object-feature binding (e.g., Nissen, 1985; Reynolds & Desimone, 1999; Pertzov & Husain,
2013; Schneegans & Bays, 2017; Treisman & Gelade, 1980; see also Wolfe & Cave, 1999). For
example, Nissen (1985) presented color-shape-location combinations and cued either location
(i.e., report color and shape) or color (i.e., report shape and location), while more recently,
Schneegans and Bays (2017) presented colored and oriented bars in a continuous-report visual
working memory task, and cued the target item by either orientation (i.e., report color and
location) or color (i.e., report orientation and location). In both of these studies, when
participants reported the incorrect location (i.e., a swap error), their reports of the non-spatial
feature were strongly linked to that incorrect location. Although the current study was not
designed to examine the specific mechanism by which binding occurs, the results of Experiment
2 reinforce the critical role of spatial location in feature-binding, in addition to revealing the
consequences for binding when spatial attention is dynamic. We also found little evidence of

correlated feature-feature reports without also reporting their corresponding location, consistent
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with a spatial-binding mechanism in which the non-spatial features of an object are each bound
to its location and only transitively bound to each other via that shared location (e.g., Schneegans
& Bays, 2017). Interestingly, some studies have reported feature-feature representations unbound
from spatial location in visual working memory (e.g., Logie, Brockmole, & Jaswal, 2011; Saiki,
2016; but see Pertzov & Husain, 2013). Combined with our results, this suggests that when
multi-feature objects are perceived and encoded, object integrity is initially anchored to spatial
location—but as object representations are uploaded to memory, direct feature-feature binding
may survive without the location information.

These findings may have broad implications for object perception, memory, and
attentional mechanisms, shedding light on how we manage coherent representations of objects in
the world. As spatial attention shifts from location to location, the visual features at each location
can be rapidly bound together as cohesive objects. However, object integrity depends on a single
and precise focus of spatial attention; splitting attention across multiple locations or increasing
the spatial extent of attention comes at a cost. Thus, to avoid potential failures of object integrity,
we may default to processing the visual world rapidly and serially (Jans et al., 2010). An
intriguing question is whether such processing strategies might be adaptively learned. Our results
raise potential implications for other types of dynamic attention (e.g., remapping across eye
movements; Golomb et al., 2014), as well as individual differences in attentional abilities

(Rosenberg et al., 2016) and attentional deficits (e.g., ADHD, cognitive aging).
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