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ABSTRACT
�is paper introduces a new single-pass reservoir weighted-sampling
stream aggregation algorithm, Priority-Based Aggregation (PBA).
While order sampling is a powerful and e�cientmethod forweighted
sampling from a stream of uniquely keyed items, there is no current
algorithm that realizes the bene�ts of order sampling in the context
of stream aggregation over non-unique keys. A naive approach to
order sample regardless of key then aggregate the results is hope-
lessly ine�cient. In distinction, our proposed algorithm uses a
single persistent random variable across the lifetime of each key in
the cache, and maintains unbiased estimates of the key aggregates
that can be queried at any point in the stream. �e basic approach
can be supplemented with a Sample and Hold pre-sampling stage
with a sampling rate adaptation controlled by PBA.�is approach
represents a considerable reduction in computational complexity
compared with the state of the art in adapting Sample and Hold
to operate with a �xed cache size. Concerning statistical proper-
ties, we prove that PBA provides unbiased estimates of the true
aggregates. We analyze the computational complexity of PBA and
its variants, and provide a detailed evaluation of its accuracy on
synthetic and trace data. Weighted relative error is reduced by 40%
to 65% at sampling rates of 5% to 17%, relative to Adaptive Sample
and Hold; there is also substantial improvement for rank queries.
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1 INTRODUCTION
1.1 Motivation
We consider a data stream comprising a set of (key, value) pairs
(ki ,xi ). Exact aggregation would entail computing the total value
Xk =

P
i :ki=k xi for each distinct key k in the stream. For many
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applications, this is unfeasible due to the storage required to ac-
commodate a large number of distinct keys. �is constraint has
motivated an extensive literature on computing summaries of data
streams. Such summaries can be used to serve approximate queries
concerning the aggregates through estimates DXk of Xk , typically
accomplished by assigning resources to the more frequent keys.

�is problem of stream aggregation has drawn the a�ention of
researchers in Algorithms, Data Mining, and Computer Network-
ing, who have proposed a number of solutions that we review in
Section 2. Nevertheless, applications of this problem continue to
emerge in new se�ings that bring their own challenges and con-
straints. �ese include: streams of transactional data generated
by user activity in Online Social Networks [16], transactional data
from customer purchases in online retailers [31], and streams of
status reports from customer interfaces of utility service providers
reported via domestic Internet service [29].

A well-established application for real-time streams of opera-
tional tra�c measurements collected by Internet Service Providers
(ISPs) has gathered renewed interest in the context of So�ware De-
�ned Networks (SDN) [41]. �ese provide the opportunity to move
beyond industry standard summaries based on Sampled NetFlow
and variants [8]. Data Center operators increasingly wish to control
tra�c at a �ner space and time granularity than has been typical
for Wide Area Networks, requiring per �ow packet aggregates over
time scales of seconds or shorter [28, 38]. An important goal is
to balance tra�c loads over multiple network paths, and between
servers. Two distinct analysis functions can support this goal:
• Heavy Hi�er Identi�cation. Heavy Hi�ers (HHs) are �ows or

groups of �ows that contain a disproportionate fraction of packets
and/or bytes. �ese may be present in the exogenous loads, or
may be indicative of underlying problems in the load balancing
mechanisms [5].
• General Purpose Summarization. (key, aggregate) summaries

over �ows or groups for �ows can be further aggregated over arbi-
trary subpopulation selectors, e.g., for what-if analyses for load bal-
ancing. �is aggregation capability is present in Stream Databases
developed to run on high speed tra�c measurement systems [15].

Sampling is an a�ractive summarization method for supporting
applications including those just described. First, sample sets can
serve downstream applications designed to work with the original
data, albeit with approximate results. Second, sampling supports
retrospective queries using selectors formulated a�er the summary
was formed. �is enables sum queries over subpopulations whose



constituent keys are not individually heavy hi�ers. Finally, sam-
pling can o�en be tuned to meet speci�c goals constraints on mem-
ory, computation and accuracy that match data characteristics to
query goals. We distinguish between two types of space constraint.
�e working storage used during the construction of the summary
may be limited. An example is stream summarization of Internet
tra�c by routers and switches, where fast memory used to aggre-
gate packet �ows is relatively expensive [34]. But the �nal storage
used for the �nished summary generally has a smaller per item re-
quirement than the working storage. A �nal storage constraint can
apply, for example, when storage must be planned or pre-allocated
for the summary, or when the size of the summary is limited in
order to bound the response time of subsequent queries against it.

Reservoir Sampling [39] is commonly used to obtain a �xed size
sample. In stream aggregation reservoir sampling, an arriving item
(k,x ) is used to modify the current aggregate estimate DXk or Xk
if k is in the reservoir, e.g., by adding x to DXk . If k is not in the
reservoir, and the capacity ofm is already used, a random decision
is made whether to discard the arriving item, or to instantiate a
new aggregate for k while discarding one of the items currently in
the reservoir. In general, discard probabilities are not uniform, but
are weighted as a function of aggregate size to realize estimation
goals for subsequent analysis. In addition, estimates of retained
items must be adjusted in order to maintain statistical properties of
the aggregate estimates, such as unbiasedness. �e time complexity
to process an arriving item and adjust the estimates of the retained
items is a crucial determinant for the computational feasibility of
stream aggregation. Fixed size summaries are essential in cases
where the stream load can vary signi�cantly over time and is not
otherwise controlled. A prime example comes from Internet tra�c
measurement, where the o�ered load can varying signi�cantly both
due to time-of-day variation, and due to exogenous events such as
routing changes. Reservoir sampling acts to adapt the sampling to
variations in the rate of arriving items, e.g. to take a periodic �xed
size sample per router interface.

Order sampling has been proposed as a mechanism to imple-
ment uniform and weighted reservoir sampling in the special case
that items have unique keys [23]. In order sampling, all sampling
decisions depend on a family of random order variables generated
independently for each arriving item. For arrival at a full reservoir
of capacitym, from them + 1 candidate items (those currently in
the reservoir and the arriving item) the item of lowest order is
discarded. Several order sampling schemes have been proposed
to ful�ll di�erent weighted sampling objectives; including Prob-
ability Proportional to Size (PPS) sampling [37] also known as
Priority Sampling [17], and Weighted Sampling without Replace-
ment [12, 18, 36]. Stream order sampling can be implemented as
a priority queue in increasing order [17]. While order sampling
can be applied directly to an unaggregated stream and samples
aggregated post-sampling, this is clearly wasteful of resources.

1.2 Contribution and Summary of Results
�is paper proposes Priority-BasedAggregation (PBA), a new sampling-
based algorithm for stream aggregation built upon order sampling
that can provide unbiased estimates of the per key aggregates. PBA
and its variants provide greater accuracy across a variety of heavy

hi�er and subpopulation queries than competitive methods in data
driven evaluations. Our speci�c contributions are as follows:
Estimation Accuracy. PBA is a weighted sampling algorithm de-
veloped from Priority Sampling that yields a stream summary in
the form of unbiased estimates of all aggregates in the stream. A
modi�cation of PBA uses biased estimation to reduce error for
smaller aggregates, while having a negligible impact on accuracy
for larger aggregates. In experimental comparisons with a compara-
ble sampling based method, Adaptive Sample and Hold [9, 19], our
methods reduced weighted relative estimation error over all keys
by between 38% and 65% at sampling rates between 5% and 17%
when applied to synthetic and network tra�c traces. �e accuracy
for rank queries was also improved.
Computational Complexity. To the best of our knowledge, PBA is
the �rst algorithm to employ order sampling based on a single
random variable per key in the context of stream aggregation. �is
enables PBA to achieve low computational complexity for updates.
It is average O (1) to process each arrival that is either added to a
current aggregate, or that presents a new key that is not selected for
sampling. �e exception comes when an arriving key not currently
in storage replaces an existing key; the complexity of this step is
worst case O (logm) in a reservoir of capacitym. Retrieval of the
estimates is O (1) per key.
Priority-Based Adaptive Sample and Hold (PBASH). We incorporate
the well known weighted Sample and Hold [19] algorithm as a pre-
sampling stage, for which the sampling probabilities are controlled
from the adaptation of the PBA second stage. �is enables us to
exploit the computational simplicity of the original (unadaptive)
Sample and Hold algorithm while taking advantage of the relatively
low computational adaptation costs of PBA, as compared with
existing versions of Adaptive Sample and Hold [9, 27].

�e outline of the rest of paper is as follows. In Section 2 we
review related work to give a more detailed motivation for our
approach and set the scene for our later experimental evaluations.
Section 3 describes the PBA algorithm and establishes unbiased-
ness of the corresponding estimators. Section 4 describes four
optimizations of these basic algorithms. Section 4.1 describes De-
ferred Update for which we show that the unbiasing of estimates
that must be performed on all aggregates a�er another is discarded
can be deferred, for each such aggregate until an item with match-
ing key arrives. Section 4.2 describes pre-aggregation of successive
items with the same key in the input stream. Section 4.3 describes
the use of Sample and Hold as an initial sampling stage, and how its
adaptation is controlled from PBA. Section 4.4 describes a scheme
to reduce estimation errors for small aggregates through the in-
troduction of bias. Section 5 speci�es the algorithm incorporating
these optimizations, describes our implementation, and reports
on computational and space complexity. Section 6 describes data
driven evaluations, before we conclude in Section 7. Proofs are
deferred to Section 8.

2 RELATEDWORK
In the earliest work in reservoir sampling k items from a stream
of distinct keys [39], the nth item is chosen with probability 1/n,
giving rise to a uniform sample. To approximately count occur-
rences in a stream with repeated keys, Concise Samples [21] used



uniform sampling, maintaining a count of sampled keys. In net-
work measurement Sampled NetFlow [8] takes a similar approach
maintaining an aggregate of weights rather than counts. In Count-
ing Samples [21], previously unsampled keys are sampled with a
certain probability, and if selected, all matching keys increment the
key counter with probability 1. Sample and Hold [19] is a weighted
version of the same approach. Both schemes can be extended to
adapt to a �xed cache size, by decreasing the sampling probability
and resampling all current items until one or more is ejected. �e
set of keys cached byASH is a PPSWR sample (sampling probability
proportional to size without replacement), also known as bo�om-k
(order) sampling with exponentially distributed ranks [12, 13, 36].
�e comparisons of this paper use the form of ASH for Frequency
Cap Statistics from [9], applied in the case of unbounded cap; see
also an equivalent form in [10]. �e number of deletion steps from
a reservoir of sizem in a stream of length n is O (n logm) and each
such deletion step must process O (m) items, based on generation
of new randomizers variables for each item. By contrast, PBA re-
quires only a single randomizer per key, and is able to maintain
items in a priority queue from which discard cost in only O (logm).
Concerning memory usage, PBA requires maintenance of larger
working storage per item, while the implementation of ASH in
[9] temporarily requires a similar amount during the discard step.
Final storage requirements are the same. Step Sampling [11] is a
related approach in which intermediate aggregates are exported.

Beyond sampling, many linear sketching approaches have been
proposed; see e.g. [3, 14, 22, 24, 25]. More recently, Lp methods
have been proposed in which each key is sampled with probability
proportional to a power of its weight [4, 26, 33]. A general approach
to sketch frequency statistics in a single pass is proposed in [6], with
applications to network measurement in [30]. A drawback of sketch
methods is that for a given accuracy, their space is logarithmic in the
size of the key domain, which can be problematic for large domains
such as IP addresses. Retrieval of the full set of aggregates (as
opposed to query on speci�c keys) is costly, requiring enumerating
the entire domain for each sketch; tuning of the sketch for speci�c
queries, e.g., using dyadic ranges, is preferable. In our case, the full
summary can be read directly in O (m) time. Space factors in the
sketch-based methods also grow polynomially with the inverse of
the bias, whereas our method enables unbiased estimation. Beyond
these comments, we do not perform an explicit comparison with
sketch-based methods, instead referring the reader to a comparative
evaluation of sketches with ASH for subpopulation queries in [10].

Finally, weighted reservoir priority sampling from graph streams
of unique edges has recently been developed in [2], building on the
conditionally independent edge sampling [1].

3 PRIORITY-BASED AGGREGATION
3.1 Preliminaries on Priority Sampling
Priority Samplingm items from a set ofn > mweights {xi : i 2 [n]}
is accomplished as follows. For each item i generate ui uniformly
in (0, 1], and compute its priority ri = xi/ui . Retain the (random)
topm priority items, and for each such item de�ne the estimateDxi = max{xi , z}, where z is the (m + 1)st largest priority. For the
remaining n �m items de�ne Dxi = 0. �en for each i , E[Dxi ] = xi
where the expectation is taken of the distribution of the {ui : i 2

[n]}. Priority sampling can be implemented as reservoir streams
sampling, taking the �rstm items, then processing the remaining
n �m items in turn, provisionally adding each to the reservoir then
using the above algorithm to discard one item.

3.2 Algorithm Description
We consider a stream of items {(kt ,xt )}t 2T where T = [|T |] =
{1, 2, . . . , |T |} ⇢ N. xt > 0 is a size and k a key that is a member
of some keyset K . Let

Xk,t =
X

st,ks=k
xs (1)

denote the total size of items with key k arriving up to time t whose
key is k . Let Kt denote the set of unique keys arriving up to and
including time t . We aim to construct a �xed size random summary
{DXk,t : k 2 DKt } where DKt ⇢ Kt with |DKt |  m which provides
unbiased estimates over all of Kt E[DXk,t ] = Xk,t for all k 2 Kt .
Implicitly DXk,t = 0 for k < DKt .

To accomplish our goal we extend Priority Sampling to include
aggregation over repeated keys. Sampling will be controlled by a
family of weights {Wk,t : k 2 DKt }. �ese generalize the usual �xed
weights of priority sampling in that they can be both random and
time dependent, although within certain constraints that we will
specify. �e arrival (k,x ) = (kt ,xt ) is processed as follows:
(1) If the arriving key is in the reservoir, k 2 DKt�1 then we increase
Xk,t = Xk,t�1 + x , leave the sample keyset unchanged, DKt = DKt�1,
and await the next arrival.

(2) If the arriving key is not in the reservoir, k < DKt�1, then we
provisionally admitk to the sample set forming DK 0t = DKt�1[{k }. We
initialize DXk,t to x , qk to 1, and generate the random uk uniformly
on (0, 1]. �en:

(a) If |DK |  m we set DKt = DK 0t and await the next arrival.
(b) Otherwise |DK | > m, we discard the key

k⇤ = argmink 0 2DKtWk 0,t /uk 0

from DK 0t and set z⇤ =Wk⇤,t /uk⇤ . For each remaining k 0 2 DK set
qk 0,t = min{qk 0,t�1,Wk,t /z

⇤} and DXk 0,t = DXk 0,t�1qk,t�1/qk 0,t .
While the description above is convenient for mathematical analy-
sis, we defer a formal speci�cation to Section 5, where Algorithms 1
and 2 incorporate optimizations described in Section 4 that improve
performance relative to a literal implementation of steps (1), (2),
(2a), (2b) above.

3.3 Unbiased Estimation
We now establish unbiasedness of DXk,t whenWk,t is the cumulative
increase in the size in k since k was last admi�ed to the sample. For
each key k let Tk denote the set of times t at which k was admi�ed
to a full reservoir, i.e.,

Tk = {t : k , DKt�1, k 2 DKt , |DKt�1 | =m} (2)

When k 2 DKt�1, let �k,t = max[0, t �1]\Tk denote the most recent
time prior to t at which k was admi�ed to the reservoir, and for the
arriving key kt we set �kt ,t = t prior to admission.



Let T 0 = {t : kt < DKt�1} ✓ T denote the times at which the
arriving key was not in the current sample. Let �t = max[0, t � 1]\
T 0 denote the most recent time prior to t that an arriving key was
not the sample. For an integer interval Y we will use the notation
Y 0 = T 0 \ Y . For any t 2 T and k 2 DK 0t , uk was generated at time
�k,t . If k is discarded from DK 0t , a subsequent arrival of k in an item
will have a new independent uk generated.

Our �rst version of PBA is governed by the exact weightsWk,t
that the total size in key k of arrivals since k was most recently
admi�ed to sample, i.e.,

Wk,t = Xk,t � Xk,�k,t�1 =
X

s 2[�k,t ,t ]:ks=k
xs (3)

Note thatWk,t can bemaintained in the sample set by accumulation.
For each t 2 T 0 and i 2 DK 0t let

zi,t = min
j 2DK 0t \{i }

Wj,t

uj
. (4)

and zs denote the unrestricted minimum zs = minj 2DK 0t
Wj,t
uj . �e

conditions under which i 2 DK 0t survives sampling are

{i 2 DKt } = {i 2 DK 0t } \ {Wi,t /ui > zi,t } (5)

As a consequence zi,s = zs if i 2 DKs . For t 2 T 0 de�ne

qk,t = min{1, min
s 2[�k,t ,t ]0

Wk,s/zs } (6)

and
Qk,t =

(
qk,t if k = kt
qk,t /qk,�t , otherwise (7)

For k 2 Kt , de�ne DXk,t iteratively by

DXk,t =
8>>><>>>:

DXk,t�1 + �k,kt xt t < T 0

(DXk,t�1 + �k,kt xt )/Qk,t t 2 T 0, k 2 DKt
0, otherwise

(8)

where �i, j = 1 if i = j and 0 otherwise. �e proof of the unbiased-
ness of DXk,t is deferred to Section 8.

T������ 3.1. DXk,t is unbiased: E[DXk,t ] = Xk,t .

We have also proved that replacingWk,t with an a�ne function
of the current estimator DXk,t also yields an unbiased estimator at
the next time slot. �is has the utility of reducing memory usage
since a separateWk,t per aggregate is not needed. However, we also
found in experiments that this estimator was not so accurate. For
both variants of the estimator, we can derive unbiased estimators
of Var(DXk,t ), �ese can be used to establish con�dence intervals
for the estimates. Due to space limitations we omit further details
on all the results summarized in this paragraph.

4 OPTIMIZATIONS
4.1 Deferred Update
For each i , qi,t is computed as the minimum over s ofWi,s/zs . As it
stands, this is more complex that the corresponding computation in
Priority Sampling for �xed weightsWi , whereWi/z⇤t is computed
once for each arrival. By comparison, it appears that in principle,
we must update qi,t for all i 2 Kt at each t 2 T 0. We now establish
that for each key k , qk,t needs only be updated when an item with

key k arrival, i.e.., at t for which kt = k . Updates for times t inT 0 for
which kt , kt can be deferred until the �rst time t 0 > t for which
kt 0 = k , or whenever an estimate of DXk,t needs to be computed.
�is property is due to the constancy of the �xed weights between
updates and the monotonicity of the sequence z⇤t . For t 2 T 0 let
z⇤t = maxs 2[0,t ]0 {zs }.

Let dt denote the key that is discarded from DK 0t�1 at time t 2
T 0, i.e., {dt } = DK 0t�1 \ DKt . When t 2 T 0 and i 2 DKt de�ne q⇤k,t
recursively by

q⇤i,t = min{q⇤i,�t ,Wi,t /z
⇤
t } (9)

unless kt = i in which case q⇤i,t = min{1,Wi,t /z⇤t }. �e proof of
the following result is detailed in Section 8.

T������ 4.1. (i) t 2 T implies z⇤t = zt .
(ii) qi,t = q⇤i,t for all t where these are de�ned..

�eorem 4.1 enables computational speedup as compared with
updating each key probability at each t 2 T 0. Since z⇤t is monotonic
in t , we only need to update the probabilities qi,t for links i whose
weight increases a�er admi�ing a key at time t . Likewise, we per-
form a �nal update at the end of the stream, or at any intermediate
time when an estimate is required.

4.2 Pre-aggregation
Pre-aggregation entails summingweights over consecutive instances
of the same key before passing to PBA. Pre-aggregation saves on
computational complexity of updating priorities, instead of updat-
ing a single counter. �is also results in an unbiased estimator
whose variance at least as large as PBA.

4.3 Priority-Based Adaptive Sample and Hold
Sample and Hold [19] with a �xed parameter is a simple method
to preferentially accumulate large aggregates. However, in this
form, Sample and Hold cannot adapt to variable load or a �xed
bu�er. Adaptive Sample and Hold (ASH) [19, 27] using resamples
to selectively discard from the reservoir. We propose to retain the
advantages of Sample and Hold within an adaptive framework by
using it as a front end to PBA, with its sampling parameters adapted
directly from the time-varying threshold of PBA.

We call this coupled system Priority-Based Adaptive Sample
and Hold (PBASH). When an arriving item (k,x ) �nds its key k is
not in the current sample DKt , the item is sampled with probability
pt (x ) = min{1,w/z⇤t } where the current threshold z⇤t provides scale
that takes into account the current retention probabilities for items
in the reservoir. In order to preserve unbiasedness, theweight of any
such item is normalized to x/pt (x ) = max{x , z⇤t }. Subsequent items
in the aggregate that �nd their key already stored are selected with
probability 1 and their sizes passed to PBA without any such initial
normalization. Unbiasedness of the �nal estimate then follows from
the chain rule for condition expectations (see e.g [40]) since PBA
provides an unbiased estimate of the unbiased estimate produced
by the ASH stage. We note that ASH pre-sampler uses the PBA
data structure to determine whether a key is in storage. All key
insertion and deletions are handled by PBA component. We specify
PBASH formally in Algorithm 2 of Section 5



Abbrev. Description Reference
PBA Priority-Based Aggregation Alg. 1
PBA-EF PBA w/ Error Filtering Alg. 1
PBASH Priority-Based Adaptive Sample & Hold Alg. 2
PBASH-EF PBASH w/ Error Filtering Alg. 2
ASH Adaptive Sample & Hold [9, 27]
SH Sample & Hold (Non-Adaptive) [19]

Table 1: Nomenclature for Algorithms

4.4 Trading Bias for MSE: Error Filtering
Unbiased estimation of aggregates is e�ective for larger aggre-
gates since averaging over estimated contributions to the aggregate
reduces error. Smaller aggregates do not enjoy this property, mo-
tivating supplementary approaches to reduce error. A strawman
approach is to count the number of estimates terms in the aggre-
gate, and use this value as a criterion to adjust or exclude small
aggregates. Another strawman approach �lters based on estimated
variance, excluding aggregates with a high estimated relative vari-
ance. �e disadvantage of these approaches is that they require
another counter. Instead, we are drawn to �nd mechanisms to
accomplish this goal that do not require extra storage.

Our approach is quite simple: we ignore the contribution of
the �rst item of every newly instantiated aggregate to its estimate,
although in all other respects, sampling proceeds as before. �us,
while the renormalized item weight does not contribute to the
aggregate estimator DXk , the unnormalized item weight does con-
tribute toWk used in�eorem 3.1. �e resulting estimator is clearly
biased since it underestimates the true aggregate on average, but
reduces as the experiments reported in Section 6 will show.

5 ALGORITHMS AND IMPLEMENTATION
5.1 Algorithm Details
�e family of PBA algorithms using true weights is described in
Algorithm 1. (Our nomenclature for the Algorithms in given in
Table 1). Pre-aggregation over consecutive items bearing the same
key (see Section 4.2) takes place in lines 2–8. �e pre-aggregates
are passed to the main loop in line 9. In the main loop, deferred
update (Section 4.1 takes place before aggregation to an existing
key in lines 15–16. Otherwise, a new key entry is instantiated in
lines 18–20. With error �ltering (Section 4.4), the �rst update of
the estimate is omi�ed at line 19. When a new key arrives at the
full reservoir, selection of a key for discard takes place in lines 23-
25. In our implementation, we break this step down further. �e
aggregates are maintained in a priority queue implemented as a
heap. An incoming new key is rejected if its priority is less than
the current minimum priority; see Section 5.3. A�er the stream
has been processed, remaining deferred updates to the estimates
occur in lines 10–11. �is step could also be performed for any or
all aggregates in response to a query. Algorithm 2 describes the
modi�cations to the main loop for PBASH. A new pre-aggregate
key is instantiated only if it passes the Sample and Hold admission
test at line (7).

Algorithm 1: PBA: Priority-Based Aggregation w/ Optional
Error Filtering
Input :Stream of keyed weights (k,x )
Output :Estimated keyed weights {(k,a(k )) : k 2 K }

1 Procedure PBA(m)
2 K = ;; z⇤ = 0; kold = �rst key k
3 while (new keyed weight (knew,xnew)) do
4 if (knew = kold) then
5 xtot += xnew
6 else
7 mainloop(kold,xtot)
8 kold = knew; xtot = xnew

9 mainloop(knew,xtot)
10 foreach (k 0 2 K ) do
11 update(k 0, z⇤)
12 end
13 Procedure mainloop(k,x)
14 if (k 2 K) then
15 update(k, z⇤)
16 a(k ) += x ;w (k ) += x
17 break
18 K = K [ {k };w (k ) = x ; q(k ) = 1
19 a(k ) = x ; // Omit if Error Filter
20 generate u (k ) uniformly in (0, 1]
21 if (|K |  m) then
22 break
23 k⇤ = argmink 0 2K {w (k 0)/u (k 0)}
24 z⇤ = max{z⇤,w (k⇤)/u (k⇤)}
25 K = K \ {k⇤};
26 Delete a(k⇤), u (k⇤), q(k⇤),w (k⇤)

27 Procedure update(k̃, z̃)
28 a(k̃ ) = a(k̃ ) ⇤ q(k̃ )
29 q(k̃ ) = min{q(k̃ ),w (k̃ )/z̃}
30 a(k̃ ) = a(k̃ )/q(k̃ )

Algorithm 2: Priority-Based Adaptive Sample and Hold
PBASH w/ Optional Error Filtering; mainloop only

1 Procedure mainloop(k,x)
2 if (k 2 K) then
3 update(k, z⇤)
4 a(k ) += x ;w (k ) += x
5 break
6 Generate r uniformly in (0, 1]
7 if r < min(1,x/z⇤) then
8 K = K [ {k }
9 a(k ) = max(x , z⇤) // Omit if Error Filter

10 w (k ) = x
11 q(k ) = 1
12 generate u (k ) uniformly in (0, 1]
13 if (|K |  m) then
14 break
15 k⇤ = argmink 0 2K {w (k 0)/u (k 0)}
16 z⇤ = max{z⇤,w (k⇤)/u (k⇤)}
17 K = K \ {k⇤};
18 Delete a(k⇤), u (k⇤), q(k⇤),w (k⇤)



Figure 1: Weighted relative error over all keys as a function
of distinct key count in reservoir sizem = 1, 000.

Figure 2: Scatter plot of estimated vs. true aggregates for 104
distinct keys sampled into reservoir sizem = 500.

5.2 Data Management & Implementation
Details

In common with other stream aggregation schemes for (key, value)
pairs, PBA requires e�cient access to the aggregate corresponding
to the incoming key k . Hash-tables provide an e�cient means to
achieve this, with the hash h(k ) of the key k referencing a loca-
tion where the aggregate, or in general its unbiased estimator is
maintained. PBA also maintains priorities as a priority queue. We
implement this as a heap. �e question then arises of to e�ciently
combine the heap and hash aspects of the aggregate store.

We manage this with a combined structure called a HashHeap.
�is comprises two components. �e �rst is a hash table that maps
a key k to a pointer � (k ) into the second component. �e second
component is a min-heap that maintains an entry (k,w,a,q) for
each aggregate in storage, where k is the key, u is the uniform
random variable associated with k , w the current incremented
weight since last admission, a the current unbiased estimate, and
q the current sampling probability. �e heap is ordered by the
priority r = w/u which is computed as required, with u generated
by hashing on the key. �e heap is implemented in an array so that
parent and child o�sets can be computed from the current o�set of
a key in the standard way.
Collision Resolution. In our design, keys are maintained in the
heap, not in the hash. Collision identi�cation and resolution is
performed by following a key k to its position � (k ) in the heap. We
illustrate for key insertion using linear probing, which has been
found to be extremely e�cient for suitable hash functions [35].
Let h denote the hash function. Suppose key k is to be accessed.
To �nd the o�set of key k in the heap we probe the pointer hash
table from h(k ) until we �nd the pointer � whose image in the
hash table is k . Probing to a vacant slot in the hash table indicates
the key is not in the heap. For insertion, the o�set of the required

location in the heap is stored in the vacant slot in the hash table.
Our approach is similar to one in [32], the di�erence being that
in that work they key is maintained in the hash table, while each
heap entry maintains a pointer back to is a corresponding hash
entry. Our approach avoids storage for this second pointer, instead
of computing it as needed from the key maintained in the heap.

5.3 Computational and Storage Costs
Aggregation to an existing key is O (1) average. All aggrega-
tion operations for a key k are increasing its weightw and hence
also for its priority. Aggregation requires realignment of the heap,
which is performed by bubbling down. i.e. swapping an element
with its smallest priority child until it no longer has a larger priority
than the child. �e pointer o�sets of the children are computed
from the key k as outlined above. �e average cost for aggregation
operation is O (1). For simplicity, we assume a perfectly balanced
tree of depth h and that the key to be aggregated is uniformly dis-
tributed in the heap. �en the average bubble down cost is no worse
than

Ph
`=0 2

`�h (h � `)  2.

Rejection of New Keys is O (1) worst case. When an arriving
item (k,x ) is not present in reservoir, its priority is computed and
compared with the lowest priority item in the heap. Access to this
item is O (1). If arriving item has lower priority it is discarded. �e
estimates of the remaining itemsmust be updated, but as established
in Section 4.1, each update for a given key can be deferred until the
next arrival bearing that key.
Insertion/eviction for New Key is O (logm) worst case. If the
arriving item has higher priority than the root item, the later is
discarded, the new item inserted at the root, then bubble down to
its correct position in the heap. �is has worst case cost O (logm)
for a reservoir of sizem.



Retrieval isO (1) per aggregate. Any aggregate must undergo a
�nal deferred update prior to retrieval, incurring an O (1) cost.
Storage Costs. Final Storage. PBA, PBASH and ASH all have
the same �nal storage cost, requiring a (key, estimate) pair for all
stored aggregated. Working Storage: PBA and PBASH are most
costly for working storage, requiring additional space per item for
q,w and the HashHeap pointer. �e quasirandom number u can
be computed on demand by hashing. �ese are maintained during
stream aggregation, but discarded at the end.

6 EVALUATION
�is section comprises a performance evaluation for PBA and
PBASH for accuracy and space and time complexity. We used
both synthetic trace with features mimicking observed statistical
behavior of network tra�c, and real-word network traces frommea-
sured network denial of service a�acks. �ese traces are chosen
to represent dynamic network tra�c, and serve to stress-test the
summarization algorithms in their ability to adapt to dynamic con-
ditions. �e evaluation represents measurement of network tra�c
over short time scales (at the time scale of seconds or shorter) that
are if increasing interest for use in �ne-scale tra�c management in
data center networks [28].

6.1 Traces and Evaluation Metrics
Trace Data and Platform. �e simulations ran on a 64-bit desk-
top equipped with an Intel® Core™ i7-4790 Processor with 4 cores
running at 3.6 GHz, each trial taking several seconds to tens of
seconds.
Trace 1: Synthetic Trace. �is trace was generated �rst by specifying
a key set ranging in size from 6 ⇥ 103 to 2 ⇥ 104, and then for each
key generating a set of unit weighted items whose number is drawn
independently from a Pareto distribution with parameter 1.2. �e
items are presented in random order. �is trace is motivated by the
observed heavy-tailed distribution of packets per �ow aggregate in
network tra�c [20].
Trace 2: Network Trace with Distributed Denial of Service A�ack
(DDoS). �is trace is used to emulate the e�ect of network �ooding
with small packets �e traces is a 1-second CAIDA trace with
4.7 ⇥ 105 packets and 62299 distinct tuples (srcIP, dstIP, srcPort,
dstPort, protocol) randomly mixed by 1-second DDoS traces [7]
with packet sending rate from 1.6 ⇥ 104 to 6.0 ⇥ 106 packets per
second and distinct tuples from 6.4 ⇥ 103 to 4.5 ⇥ 105. �e average
size of one packet in the CAIDA trace is 495.5 Bytes and that of the
DDoS trace is 65.5 Bytes.
Trace 3: Dynamic Network Trace. �e trace adds noise to a 15-second
CAIDA trace. For each second, let the total byte volume be V , we
generate a random probabilityp 2 (0, 1), andpV noise from another
CAIDA trace is added to the original 1-second trace.

Evaluation Metrics. �e following metrics are measured against
reservoir size, set as an independent variable, averaged over 100
trials. For each trial, we randomize the order of the items in the
traces. In addition, we randomly regenerate Trace 1 for each trial.
Execution time: �is is the average time per packet over a trace
Subpopulation Accuracy: Our accuracy metric is the Weighted Rel-
ative Error (WRE), which we apply in two forms. �e �rst is the

average
P
k |DXk � Xk |/Pk Xk where the sum runs over all distinct

keys k . To evaluate accuracy for subpopulation queries we use a
similar metric

P
S |DX (S ) �X (S ) |/PS XS where X (S ) =

P
k 2S xk is

the subset sum over a keyset S , and the sum runs over randomly
chosen keysets S ⇢ K of a given size t .
Ranking Accuracy: We compute accuracy for top-R dense rank
queries. In dense ranking, items with the same value receive the
same rank, and ranks are consecutive. �is avoids permutation
noise of equal value; we also round estimates so as to reduce sta-
tistical noise. Let DN (R) (respectively) and N (R) denote the set of
keys with true (respectively estimated) dense rank  R. �en for a
top-R rank query, the precision and recall are

Prec(R) =
|N (R) \ DN (R) |

DN (R)
and Rec(R) =

|N (R) \ DN (R) |
N (R)

(10)

6.2 Accuracy Comparisons
Figure 1 illustrates error metrics for PBA, PBASH, and ASH in a
reservoir of sizem = 1, 000 processing items from the synthetic
Trace 1. �e number of distinct keys varies from 6,000 to 20,000,
representing a key sampling rate ranging from 17% down to 5%,
WRE was reduced, relative to ASH, by about 40% for PBA and
PBASH, by 53–57% for PBA-EF, and by 58–65% for PBASH-EF. As
shown, PBASH and PBASH-EF are able to achieve lower WRE
than a best-case (non-adaptive) Sample and Hold (SH) in which the
sampling rate is chosen so as minimize WRE.

To be�er understand the di�erence in error between PBA, PBA-
EF and ASH, we drill down within an individual experiment. Fig-
ure 2 is a sca�er plot of estimated vs. true aggregate for the two
methods for a synthetic trace containing 104 distinct keys sampled
into a reservoir of size 500, i.e., a key sampling rate of 5%. �e �gure
shows how PBA improves estimation accuracy for smaller weight
keys, ASH having a larger additive error (note the logarithmic verti-
cal axis). As expected, PBA-EF further reduces the estimation error
for small aggregates, typically underestimating the true value.
Rank Estimation. We evaluate rank estimation performance,
focusing on algorithms involving Error Filtering since rankings
should be less sensitive to bias than variability. Figure 3 shows a
sca�er plot of estimates vs. actual dense ranks at 5% sampling for
PBASH-EF and ASH. Although both perform well for low ranks
(larger aggregates), we observe increasing rank noise for ASH in
mid to low ranks. �e horizontal clusters in each case correspond
to aggregates not sampled; there are noticeably more of these of
lower true rank for ASH than PBA-EF. Figure 4 shows precision
and recall for top-R rank queries. Precision is noticeably be�er for
PBASH-EF, particularly for middle ranks.
Subpopulation Weight Estimation. Figure 5 shows WRE for
subpopulations over 100 random selected subpopulations as a func-
tion of subpopulation size. For small subpopulations up to size 100,
PBA and derived methods provide up to about a 60% reduction in
WRE relative to ASH. �e WREs of the unbiased methods (PBA,
PBASH, ASH) behave similarly for larger subpopulation sizes due
to averaging, while the bias of the error �ltering methods persist.
Network dynamics. We study the e�ect in accuracy on an emu-
lated DDoS a�ack with Trace 2. Figure 6 shows the e�ect on WRE
as the DDoS tra�c rate increases, in a reservoir of size 5,000. �e



Figure 3: Scatter of Estimated, Actual dense ranks, PBASH
and ASH. 5% sampling; data as Figure 2.

Figure 4: Scatter of Prec(R), Recall(R) for dense ranks, rank
R on colormap. 5% sampling; data as Figure 2.

Figure 5: WRE as a function of subpopulation size over
100 trials for 104 distinct keys sampled into reservoir size
m = 500.

Figure 6: WRE formixedDDos traces at varying packet send-
ing rates, and reservoir size 5, 000.

number of distinct keys increases in proportion to the a�ack tra�c
rate, with legitimate tra�c representing a smaller proportion of the
total. PBA and PBASH achieve lower error than ASH, even as er-
rors for all methods increase, and PBASH-EF (not shown) achieves
60% reduction in error compared with ASH. Figure 7 shows a time
series of WRE for the dynamic tra�c of Trace 3, with samples
taken over successive 250ms windows in a reservoir size 5,000. PBA
and PBASH have smaller �uctuations in WRE in response to the
dynamics than ASH achieving similar reduction as before.

6.3 Computational Complexity
Figure 8 shows the processing time per packet of PBA, PBASH and
ASH. No optimizations of ASH were used beyond the speci�cation
in [9]. With this proviso, the O (m) cost for key eviction from
reservoir sizem for ASH appears evident through the initial linear
growth of the time per packet. �e noticeably lower growth for
PBA and PBASH are expected due to itsO (logm) time for inserting
a new key a�er eviction of a current key. Since insertion/eviction is
the most costly part for all algorithms we display the experimental



Figure 7: �e impact of tra�c dynamics by adding random
noise when the reservoir size is 5, 000.

Figure 8: �e time complexity compared to ASH with vary-
ing reservoir sizes and 104 distinct keys.

Figure 9: �e number of insertions when the reservoir size
is from 100 to 1, 000.

number of these for each algorithm in Figure 9. PBASH has about
half the insertions of ASH, another factor in its smaller per packet
time. PBASH also has a smaller number of insertions than PBA.
�is is to be expected, since the PBASH pre-sampling stages causes
fewer keys to be admi�ed to the reservoir.

7 CONCLUSIONS
Weighted sample-based algorithms are a �exible approach to stream
summarization, whose outputs can be readily utilized by down-
stream applications for queries on ranks and subpopulations. �is
paper provides a new set of algorithms, Priority-Based Aggregation
and its variants) of this type. PBA is designed around a single ran-
dom variable per key aggregate, allowing considerable speed-up
in a �xed cache, and it also improves accuracy for a given sample
size, compared with state-of-the-art methods.

8 PROOFS OF THE THEOREMS
P���� �� T������ 3.1. For each k we proceed by induction on

t � sk = min{s : ks = k } and establish that

E[DXk,t |DXk,t�1,C] � Xk,t = DXk,t�1 � Xk,t�1 (11)

for all membersC of a covering partition (i.e., a set of disjoint events
whose union is identically true). Since DXk,sk�1 = Xk,sk�1 = 0 we
conclude that E[DXk,t ] = Xk,t .

For sk  s  s 0 letAk (s ) = {k < DKs�1} (noteAk (sk ) is identically
true), let Bk (s, s 0) denote the event {k 2 DKs . . . , DKs 0 }, i.e., that k is
in sample at all times in [s, s 0] . �en for each t � sk the collection
of events formed by {Ak (s )Bk (s, t � 1) : s 2 [sk , t � 1]}, and Ak (t )
is a covering partition.

(i) Conditioning on Ak (t ) On Ak (t ), kt , k implies DXk,t =DXk,t�1 = 0 = Xk,t � Xk,t�1. On the other hand kt = k implies
t 2 T 0. Further conditioning on zk,t = minj 2DKj,t�1

Wj,t�1/uj then
(8) tells us that

P[k 2 DKt |Ak (t ), zk,t ] = P[Wk,t /uk  zk,t ] = qk,t (12)

and hence regardless of zk,t we have

E[DXk,t |Xk,t�1,Ak (t ), zk,t ] = DXk,t�1 + Xk,t � Xk,t�1 (13)

(ii) Conditioning on Ak (s )Bk (s, t � 1) any s 2 [sk , t � 1]. Under
this condition k 2 DKt�1 and if furthermore kt 2 DKt�1 then t < T 0

and the �rst line in (8) holds. Suppose instead kt < Kt�1 so that
t 2 T 0. LetZk (t , s ) = {zk,r : r 2 [s, t]0}. Observing that

P[Bk (t , s ) |Ak (s ),Zk (t , s )] = P[\r 2[s,t ]0 {zk,r 
Wk,r
uk
}] = qk,t

then

P[k 2 DKt |Bk (t � 1, s )Ak (s ),Zk (t , s )] (14)

=
P[Bk (t , s ) |Ak (s ),Zk (t , s )]

P[Bk (t � 1, s ) |Ak (s ),Zk (t � 1, s )]
=

qk,t
qk,�t

= Qk,t



and hence

E[DXk,t |DXk,t�1,Ak (s ),Zk (t , s )] = DXk,t�1 (15)

independently of the conditions on the LHS of (15). AS noted above,
k 2 DKt�1 on B (t � 1, s ) hence Xk,t = Xk,t�1 and we recover (11).
Since we now established (11) over all members C of a covering
partition, the proof is complete. ⇤

P���� �� T������ 4.1. t 2 T means the arriving kt , dt is
admi�ed to the reservoir and hence

zt =
Wdt ,t
udt

�
Wdt ,s
udt

� zs (16)

for all s 2 [�dt ,t , t]
0. �e �rst inequality follows becauseWdt ,s

is nondecreasing on the interval [�dt ,t , t]
0. �e second inequality

follows because the key dt survives selection throughout [�dt ,t , t]
0

and hence its priority cannot be lower than the threshold zs for any
s in that interval. Since dt was admi�ed at �dt ,t , then d�dt ,t , dt
and hence we apply the argument back recursively to the �rst
sampling timem + 1. �is establishes zt � z⇤t and hence zt = z⇤t .

(ii) i is admi�ed to DKt if t 2 T with i = kt , dt and hence by
(i), qi,t = min{1,Wi,t /zt } = min{1,wi,i/z⇤t } = q⇤i,t . We establish
the general case by induction. Assume t 2 T 0 and qi,s = q⇤i,s for
all s 2 [�i,t ,�t ]0, and consider �rst the case that zt > z⇤�t t . �en
z⇤t = zt hence q⇤i,t = qi,t . If instead zt  z⇤�t then z⇤�t = z⇤t and

Wi,t
zt
� Wi,t

z⇤t
� Wi,�t

z⇤t
=
Wi,�t
z⇤t

(17)

�us we can replace zt by z⇤t but use of either leaves the iter-
ated value unchanged, since by the induction hypothesis, both are
greater than qi,�t Wi,�t /z

⇤
i,�t ⇤
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