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Understanding the Efficiency of Social Media based Crisis Communication during Hurricane 

Sandy 

Abstract 

Rapid communication during extreme events is one of the critical aspects of successful disaster 

management strategies. Due to their ubiquitous nature, social media platforms are expected to offer a 

unique opportunity for crisis communication. In this study, about 52.5 million tweets related to hurricane 

Sandy posted by 13.75 million users are analyzed to assess the effectiveness of social media 

communication during disasters and identify the contributing factors leading to effective crisis 

communication strategies. Efficiency of a social media user is defined as the ratio of attention gained over 

the number of tweets posted. A model is developed to identify more efficient users based on several 

relevant features. Results indicate that during a disaster event, only few social media users become highly 

efficient in gaining attention. In addition, efficiency does not depend on the frequency of tweeting activity 

only; instead it depends on the number of followers and friends, user category, bot score (controlled by a 

human or a machine), and activity patterns (predictability of activity frequency). Since the proposed 

efficiency metric is easy to evaluate, it can potentially detect effective social media users in real time to 

communicate information and awareness to vulnerable communities during a disaster.   
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1. Introduction and motivation 1 

Extreme weather events have become common in recent decades (NELSON, 2013). Globally, natural 2 

disasters cause  $520 billion equivalent loss and are responsible for taking 26 million people below 3 

poverty line (The World Bank, 2016). Since 1980, the United States alone has spent more than $1.5 4 

trillion for managing 219 weather and climate related disasters which had overall damages exceeding $1 5 

billion (NOAA National Centers for Environmental Information (NCEI) U.S., 2018). Hurricanes along 6 

with other natural disasters in 2017 are expected to cause 135 billion US dollar insured cost (Munich RE, 7 

2018). Effective disaster management plays a critical role in reducing the cost of a disaster with 8 

implications in its four phases including mitigation, preparedness, response and recovery operations. 9 

Households and communities  require appropriate resources to meet different needs in these phases of 10 

disaster management (Comfort, Ko, & Zagorecki, 2004). To mitigate loss of lives and infrastructure 11 

damage, proper preparedness and organized response strategies are crucial. Information availability about 12 

the time and severity of an incident can greatly help disaster preparedness, response and recovery 13 

operations. Particularly for responding organizations, effective information sharing and coordination are 14 

critical (Bharosa, Lee, & Janssen, 2010; Yates & Paquette, 2011). Access to information enhances the 15 

efficiency of response actions and increases coordination throughout the network of responding 16 

organizations (Comfort et al., 2004).  17 

Online social media platforms facilitate fast and easy exchange of information through sharing, 18 

discussion, and communication producing a huge amount of digital content (C.-M. Huang, Chan, & 19 

Hyder, 2010). Social media data has been used to investigate many research topics such as human 20 

mobility (Hasan & Ukkusuri, 2014; Hasan, Zhan, & Ukkusuri, 2013), transportation (Chen, Frei, & 21 

Mahmassani, 2014; Chen, Mahmassani, & Frei, 2017; Ni, He, & Gao, 2017; Rashidi, Abbasi, Maghrebi, 22 

Hasan, & Waller, 2017; Zhang, He, Gao, & Ni, 2018), marketing (Alalwan, Rana, Dwivedi, & 23 

Algharabat, 2017; Ashley & Tuten, 2015; Misirlis & Vlachopoulou, 2018), tourism and hospitality 24 

(Leung, Law, van Hoof, & Buhalis, 2013), public health (Kass-Hout & Alhinnawi, 2013), disaster 25 
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management (Q. Huang & Xiao, 2015; Kryvasheyeu et al., 2016; Simon, Goldberg, & Adini, 2015) and 1 

so on. Risk communication during a disaster plays a critical role in encouraging people to take protective 2 

measures (Paton, 2008).  The causal sequence of risk communication includes perceived  risk to 3 

interactive searching to protective actions (Demuth et al., 2018; Mileti & Fitzpatrick, 1992). The reasons 4 

why risk communication sometimes does not work as expected include the failure to accommodate the 5 

relationship among the complexity of hazards, peoples' lack of experience of hazards, and the need to rely 6 

on others to acquire pertinent information (Paton, 2008). 7 

Online social media can play a vital role in spreading timely updates about emergency and 8 

colleting feedback from the affected population. Emergency evacuation plan such as evacuation timing, 9 

mode and route choice depends on many different factors (Hasan, Mesa-Arango, & Ukkusuri, 2013; 10 

Murray-Tuite & Wolshon, 2013; Sadri, Ukkusuri, & Murray-Tuite, 2013; Sadri, Ukkusuri, Murray-Tuite, 11 

& Gladwin, 2014). Information from social media about situational awareness can influence shaping 12 

these decisions (Martín, Yago, Zhenlong Li, 2017).  13 

Thus, a wide range of international, state, and local organizations have successfully used social 14 

media tools during disasters gaining broader interests among policy makers on how social media might be 15 

used to improve disaster response and recovery capabilities (Lindsay, 2011; Reuter & Kaufhold, 2017). 16 

For instance, during Hurricane Sandy, social media played an important role by sharing information, 17 

when the affected regions had limited access to traditional media (Kaufman, S., C. Qing, N. Levenson, 18 

2012). Most recently, during hurricanes Harvey (Oyeniyi, 2017) and Irma (MacMillan, 2017) many 19 

government and local officials have used social media to disseminate information and recovery messages. 20 

When using social media for information dissemination during disasters, it is critical to know 21 

what makes an information provider more efficient and effective. However, studying the efficiency and 22 

effectiveness of social media users in disseminating information has been a challenging task. Such a study 23 

would require appropriate metrics applied over a large collection of disaster communication data. On the 24 

other hand, essential components of social communication such as human choices, disaster warning 25 
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propagation and risk communication in large-scale social networks cannot be reproduced within the limits 1 

of typical social experiments.   2 

Increasing use of social media in disasters will require a better understanding of the effectiveness 3 

of information spreading to an affected community. Finding the factors of information spreading is 4 

crucial for understanding the dynamics of social media systems. A better understanding of the underlying 5 

factors will provide insights into effective crisis communication strategies. Users more efficient in 6 

spreading information can play an important role during crisis, since user activities can draw a significant 7 

amount of attention to relevant topics/content from other users. Understanding the interplay among user 8 

activities, network properties and the attention received will help to identify the contributing factors in 9 

successful crisis communication in emergency situations (Sadri, Hasan, Ukkusuri, & Cebrian, 2017; 10 

Sadri, Hasan, Ukkusuri, & Lopez, 2017). Thus, understanding the influence of social media users has 11 

significant implications in a disaster management context. In marketing research, studies (Ashley & 12 

Tuten, 2015; Hu & Liu, 2004; Misirlis & Vlachopoulou, 2018) have proposed different metrics for social 13 

media based marketing strategies. Although these studies provide insights on how a brand can use social 14 

media for customer appeal and engagement, their findings may not be transferable to a disaster context. 15 

During a disaster, many agencies, individuals, and influencers participate in information dissemination in 16 

a very short period of time depending on the intensity and spread of the disaster. For this reason, 17 

efficiency in spreading the information or gaining attention is vital for a successful crisis communication 18 

strategy. Although influence of social media users has been studied in many different contexts, efficiency 19 

of information/awareness spreading in a disaster context still needs to be investigated.  20 

Previous studies have focused on the popularity of content instead of analyzing the effects of user 21 

behaviors on how other users respond to them (Vaca, Aiello, Jaimes, & Milano, 2014). Moreover, to the 22 

best of our knowledge, few studies have considered user categories and activity patterns while measuring 23 

the efficiency of information spreading in the context of disaster management. In social media dynamics, 24 

information diffusion creates sudden bursts of connections (e.g., friends or followers) by creating new 25 
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edges or deleting existing edges (Myers & Leskovec, 2014). Similarly, during a disaster, information 1 

diffusion about situational awareness drives significant changes in the underlying social media 2 

connections of friends and followers. Such bursts in new followers may happen due to common interest 3 

(textual similarity) (Myers & Leskovec, 2014)  or attention (Vaca et al., 2014) to users or information 4 

source. In this study, using Twitter data, we analyze the efficiency of social media users in information 5 

spreading in the context of hurricane Sandy. We investigate user activity against the attention gained in 6 

pre-disaster, during (warning and response phase) and post-disaster periods. The efficiency of a user is 7 

defined as the ratio between attention gained over the number of tweets within a period. The research 8 

questions and contributions of this work can be summarized as follows:  9 

• Does a more active social media user gain more attention? What combinations of user activity 10 

will facilitate such attention in pre-disaster, during disaster and post-disaster periods? This study 11 

allows us to understand the correlation between activity and attention gained during these three 12 

phases of a disaster. 13 

• How does user efficiency dynamics change over the pre, during and post disaster phases? We 14 

show that during disaster specially in hurricane declaration and landfall days users have higher 15 

average efficiency than that of pre-disaster and post disaster period.  16 

• What are the factors contributing to user efficiency? How can efficient users be classified based 17 

on their activities and features? We present a model to classify efficient users highlighting the 18 

features contributing to user efficiency in disaster periods.   19 

2. Background and Related Work 20 

Social media, the computer mediated technology is now one of the most integrated parts of our daily life. 21 

These technological advancements have transformed the view of disaster management professionals on 22 

disseminating information as well as interacting with affected communities. For instance, previous studies 23 

on disaster management found that having a strong social network increases the likelihood of a person 24 

responding to a warning message (Aguirre, Wenger, & Vigo, 1998). During crisis, warning message like 25 



   

5 
 

evacuation decisions can be made anywhere and often with little advanced warning time (Murray-Tuite & 1 

Wolshon, 2013). Eye-witnessed information sources provide local and rapid updates during disaster and 2 

thus can be more helpful than official news for the decision makers (Palen, Vieweg, Liu, & Hughes, 2009; 3 

Shklovski, Palen, & Sutton, 2008).  4 

Previous studies (Kapoor et al., 2018; Shiau, Dwivedi, & Yang, 2017) on social media theories 5 

(Ngai, Tao, & Moon, 2015), core knowledge (Shiau, Dwivedi, & Lai, 2018), and applications investigated 6 

the behaviors of social media users. In addition, researchers have investigated social media use in disasters 7 

from different perspectives (J. Kim & Hastak, 2018; Stieglitz, Mirbabaie, Ross, & Neuberger, 2018).  8 

Studying 2013 Oklahoma tornado, it is shown that Twitter data can reveal relevant information as an 9 

additional data source for better understanding of individual behavior during a crisis (Ukkusuri, Zhan, Sadri, 10 

& Ye, 2014). Visual analytics of microblog data can display public behavior in disaster events (Chae et al., 11 

2014). Mobility patterns can be inferred from geo-tagged tweets (Hasan & Ukkusuri, 2014; Hasan, Zhan, 12 

et al., 2013; Sadri, Hasan, & Ukkusuri, 2017). Communities can be detected from user interactions on 13 

Twitter (Hasan, Zhan, et al., 2013; Sadri, Hasan, & Ukkusuri, 2017). Social media users can be used as 14 

social network sensors to increase disaster awareness (Kryvasheyeu & Chen, 2015). Furthermore, social 15 

media data can be used to rapidly assess disaster damage, as it was shown that per capita damages were 16 

strongly correlated with per capita twitter activity during hurricane Sandy (Kryvasheyeu et al., 2016).   17 

Activities of social media users are greatly influenced by content production and sharing 18 

activities (Vaca et al., 2014). Most of the past studies focused on the popularity or propagation of the 19 

content in social media such as popular tweets (Hong, Dan, & Davison, 2011; Mathioudakis, Koudas, & 20 

Marbach, 2010), Flickr picture (Cha, Mislove, & Gummadi, 2009), YouTube video (Figueiredo, 21 

Benevenuto, Almeida, Fabr, & Almeida, 2011), Twitter hashtag (Lehmann, Gonçalves, Ramasco, & 22 

Cattuto, 2012) etc. Scale free networks and affinity affect the propagation of information (Wu, Huberman, 23 

Adamic, & Tyler, 2004) but basic measures such as the raw number of social connections are not a good 24 

predictor for influence (Asur, Huberman, Szabo, & Wang, 2011; Romero & Huberman, 2011). In addition 25 
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to the graph properties of user networks, the popularity and influence of a twitter account depend on the 1 

personality and emotion of the human being behind that account (Quercia, Ellis, Capra, & Crowcroft, 2 

2011). Stai et al. (Stai, Milaiou, Karyotis, & Papavassiliou, 2018) proposed an epidemic model to 3 

understand temporal dynamics of information diffusion in Twitter, explaining the burst like behaviors due 4 

to information diffusion (Myers & Leskovec, 2014). Vaca et al. (Vaca et al., 2014) observed that a 5 

combination of different type of social and content-producing activity is necessary to attract attention in 6 

social media. Using Sina-Weibo data during two typhoons, this study (Dong, Li, Zhang, & Cai, 2018) 7 

explores the information diffusion considering individual and network perspective. Analyzing the 8 

reposting behavior in Weibo.com during Yiliang earthquake, Li et. al have studied the propagation pattern 9 

of different types of information (J. Kim & Hastak, 2018). Kim et. al have analyzed the network 10 

characteristics of city of Baton Rouge Facebook page during 2016 Louisiana flood (J. Kim & Hastak, 11 

2018). They have found higher information diffusion in Facebook than Twitter.  A study (J. Kim, Bae, & 12 

Hastak, 2018) on storm Cindi using twitter data explores the role of four types of twitter users in 13 

emergency information diffusion. According to this study, news and weather agencies are the dominant 14 

twitter users as information sources whereas the public and organizations are the dominant twitter users as 15 

information diffusers.  Despite these efforts, what factors contribute to attract attention in social media 16 

during a disaster, remains an open question.  17 

In this study, Twitter data before, during and after Hurricane sandy have been analyzed to 18 

understand the factors contributing to the overall efficiency of a user in crisis communication. A model is 19 

also proposed to classify efficient users based on their attributes. This method has potential to be used to 20 

identify effective social media users during disasters for rapid communications.  21 

3. Data 22 

Hurricane Sandy, a late season post-tropical cyclone was the deadliest and most destructive hurricane of 23 

the 2012 Atlantic hurricane season. On October 20, Sandy’s origin was primarily associated with a 24 

tropical wave that was assessed as a high potential for it to become a tropical cyclone within 48 hours 25 
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(Blake et al., 2013). The hurricane was first classified and officially assigned its name as Sandy on 1 

October 22 (Kryvasheyeu & Chen, 2015). After leaving a trail of damage over Jamaica, Cuba, and 2 

Bahamas, Sandy made its landfall on the United States at 23:30 UTC on 29 October 2012 near 3 

Brigantine, New Jersey. Sandy was responsible for 147 direct fatalities and damage in excess of $50 4 

billion, including 650,000 destroyed or damaged buildings (Blake et al., 2013). Sandy received a lot of 5 

media coverage both in traditional media and social media.  6 

The dataset was collected from the publicly accessible data via doi:10.5061/dryad.15fv2 7 

(DRYAD repository) (Kryvasheyeu & Chen, 2015). Kryvasheyeu et al. (Kryvasheyeu & Chen, 2015) 8 

collected the dataset through an analytics company Topsy Labs who deals with Twitter data. The 9 

collected data contains tweets posted between October 15, 2012 and November 12, 2012.  This duration 10 

covers the period before the formation of the hurricane to after the landfall in the United States. The 11 

dataset contains user id, timestamp, tweet text, tweet id, user followers count, user friends count, 12 

sentiment scores and locations. In total, there were 52,493,130 tweets from 13,745,659 unique twitter 13 

users. This dataset includes tweets containing some specific keywords relevant to hurricane Sandy and its 14 

impact such as (“sandy”, “hurricane”, “storm”, “superstorm”, “flooding”, “blackout”, “gas”, “power”, 15 

“weather”, “climate”, etc.). The full list of keywords used is provided in Table S1 in the original paper. 16 

We use the dataset to understand the efficiency for the hurricane related tweets (all 52.55 million). We 17 

have also filtered the raw data with the word “sandy” to get sandy specific tweets. After applying the 18 

filter, we obtain around 4.51 million messages from 1.39 million users. We use this filtered data to 19 

understand efficiency dynamics for sandy specific tweets. 20 

4. Methods 21 

For the best possible use of social media in crisis communication, it is important to know how an 22 

emergency manager should engage with social media users, traditional media, and the targeted 23 

population. For crisis communication in blogsphere, Jin et al. (Jin & Liu, 2010) proposed a conceptual 24 

model called Blog-Mediated Crisis Communication Model (BMCC). We have adopted and revised this 25 
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framework as Social-Mediated Crisis Communication Model (SMCC) to incorporate social media  (Liu, 1 

Jin, Briones, & Kuch, 2012). Influential social media creators/users and social media followers are  2 

important components of this social mediated crisis communication model. Our study focuses on an 3 

empirical study that are related to the component highlighted by a dotted red box in Figure 1 (left part). 4 

This study has three main phases as shown in Figure 1(right part). First, we define efficiency of gaining 5 

attention over social media activity. Second, we explore the dynamics of activity, attention and efficiency 6 

dynamics in pre-disaster, during disaster and post-disaster period using hurricane Sandy data. Third, we 7 

also study the factors that contribute to gain efficiency by adopting Linear regression model and ordered 8 

logit model. In the rest of this section we describe the phases of this study in details. 9 

 
Fig 1. Social Mediated Crisis Communication Model (SMCC) (adopted from (Liu et al., 2012)) 

and Study Work Flow 

 10 

4.1 Activity, Attention, and Efficiency Metrics in Twitter 11 

We define attention as the number of new followers received and activity as the number of tweets or new 12 

followee added. From the point of view of a particular user, the term “new follower received” means the 13 

users that start to follow this particular user, and the term “new followee added” means the users that this 14 
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particular user starts to follow. For this study, tweet frequency is selected as an activity metric since this is 1 

the most frequent activity among all types of users; whereas followee addition is very low or zero for 2 

some organizational and personal users. A well-connected user (high initial followers in our study) has a 3 

large audience, thus a tweet posted by a well-connected user can reach to many users. But the existing 4 

followers may not be the targeted users during an emergency, thus not creating sudden burst in new 5 

connections (friends, followers etc.) as study (Myers & Leskovec, 2014) shows that information diffusion 6 

creates sudden burst in new connections. For that reason, we have used new follower gain as attention and 7 

existing followers as one of the factors. To measure the performance of the users in gaining attention, we 8 

use a metric called as efficiency. As shown in Equation (1), efficiency 𝜂 of a user u for the time frame 9 

(𝑡𝑖  𝑡𝑜 𝑡𝑗  ) is defined as the ratio between total attention received and total activity performed within that 10 

time frame.  11 

𝜂𝑢(𝑡𝑖 , 𝑡𝑗) =   
∑ 𝑎𝑡𝑡𝑘(u)

𝑡𝑗

𝑘=𝑡𝑖

∑ 𝑎𝑐𝑡𝑘(u)
𝑡𝑗

𝑘=𝑡𝑖

                                                                                   (1) 12 

where 𝑎𝑡𝑡𝑘(u) and 𝑎𝑐𝑡𝑘(u) represent, in time period k by user u, attention gained and activities posted, 13 

respectively.  14 

Although, equation similar to (1) are commonly used in fields like physics and economics, Vaca 15 

et al. (Vaca et al., 2014) used this term in a social media setting. Unlike most of the fields where 16 

efficiency is upper bounded to 1, it can take any value. Higher efficiency values indicate better 17 

engagement and higher influence in social media communication.    18 

4.2 Extraction of User Features 19 

From raw data, for all the tweets of each unique user activity frequency, initial follower count, initial 20 

followee count, total follower received, total followee added by the user and efficiency metrics were 21 

computed for a selected time interval. To measure the regularity of a user’s activity approximate entropy 22 

of activities has been estimated. Approximate entropy is a statistical parameter that can quantify the 23 
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predictability or regularity of a time series data. A repetitive pattern of fluctuation in a time series makes 1 

it more predictable than a time series without such patterns. Approximate entropy calculates the 2 

likelihood that similar patterns of observation will not found in the data in the subsequent observations. 3 

Thus, a higher value of approximate entropy implies less regularity and a smaller value indicates strong 4 

regularity (W.-S. Kim, Yoon, Bae, & Soh, 2005). Approximate entropy has been used in many fields such 5 

as medical data (Srinivasan, Eswaran, & Sriraam, 2007), finance (S. Pincus & Kalman, 2004), 6 

psychology (SM Pincus & Goldberger, 1994), complex system analysis (PINCUS, 1991) etc. Daily 7 

activity frequencies of a user for the whole analysis period were used as an input. Approximate entropy 8 

was best fitted as it has low computational demand, applicable on small observation (points < 50) and can 9 

be applied in real-time. The detailed procedure of computing approximate entropy can be found in this 10 

study (Srinivasan et al., 2007). Furthermore, since a significant number of users are being operated 11 

autonomously (bot) (Ferrara, Varol, Davis, Menczer, & Flammini, 2014) , we have collected the bot score 12 

using truthy botornot-python API to evaluate whether a user account is controlled by human or machine 13 

(Davis, Varol, Ferrara, Flammini, & Menczer, 2016). 14 

4.3 Contributing Features to Efficiency 15 

To find the linear relationship between different variables and the outcome variable, univariate and 16 

multivariate linear regressions were fitted with the extracted variables. The general form of such models 17 

is shown in Equations (2) -(4).  18 

 19 

𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜀                                       (2) 20 

𝑌 = 𝜃0 + 𝜃1𝑋 + 𝜃2𝑋2 + 𝜃3𝑋3 + 𝜀                                                (3) 21 

𝑌 = 𝜃0 + 𝜃1𝑋1 + 𝜃2𝑋2 + 𝜃3𝑋3 + ⋯ + 𝜃𝑘𝑋𝑘 + 𝜀                          (4) 22 

 23 

https://github.com/truthy
https://github.com/truthy/botornot-python
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Here Y is efficiency, treated as a dependent variable; X, X1, X2 etc. are the independent variables 1 

affecting efficiency; 𝜃0 is a constant term; and 𝜃1, 𝜃2, 𝜃3 are the coefficients of the corresponding 2 

variables. While univariate linear regression describes the relationship of each independent variable with 3 

the dependent variable, a multiple linear regression model reveals the relationship of the combined effect 4 

of the explanatory variables. The independent variables in the best models are considered as the most 5 

influential and explanatory variables in determining efficiency. The best model is selected based on the 6 

adjusted R squared value. 7 

Users are categorized based on their aggregate efficiency during the whole period. Besides 8 

understanding the effect of predictor variables in continuous change in efficiency, we estimate an ordered 9 

logit model to understand the effect of the extracted features in predicting the category of the efficiency of 10 

a user. An ordered logit or proportional odd model was chosen as the outcome variable is ordered from 11 

low efficiency to high efficiency. This model gives the output as the probability or odd of falling an 12 

outcome in an efficiency category. The basic equation (Derr, 2013; Torres-reyna, 2012; Washington, S.P., 13 

Karlaftis, M.G. and Mannering, 2010) for interpreting this model is given in Equation (5). 14 

 15 

log [
𝑝𝑖

1−𝑝𝑖
] = 𝑎𝑖 +  𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑘𝑥𝑘                            (5) 16 

𝑤ℎ𝑒𝑟𝑒, 𝑝𝑖 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≤ 𝑖  17 

𝑎𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≤ 𝑖 18 

b1, b2, etc. are the co-efficient whereas x1, x2, x3 are the explanatory independent variables. The best 19 

model is selected based on its AIC value.  20 

5. Results 21 
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5.1 Distributions of User Features 1 

This section describes the features collected for a user. Figure 2 shows the distributions of activity, 2 

followers followees, bot score, and activity entropy found in the data.  3 

 

 

Fig 2. (a) Activity, (b) Follower ,(c) Followee Distributions (d) Bot Score and (e) Activity Entropy. 

Both X axis and Y axis are plotted in log scale for (a), (b), and (c). Counter cumulative probability 

(CCDF) is plotted in Y axis which represents the probability of a value x of being greater than the 

corresponding value in X axis. Both X axis and Y axis are plotted in normal scale for (d) and (e). 
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Here the follower and followee counts are based on the counts when a user was first observed in 1 

the data set. The activity distribution is based on the total number of tweets observed during the whole 2 

period in our dataset. Bot score and activity entropy distribution are plotted using values from 646,563 3 

users. A bot score represents the likelihood of being a bot. An extreme value (0 or 1) represents more 4 

confidence of the bot-ness of the user. Higher the value, higher the likelihood of being a bot. In our study, 5 

we have used 0.5 as a threshold to separate bot-like behavior.  6 

The empirical distributions of activity, initial followers and followees were best fitted to truncated 7 

power law among the fitted distributions shown in Figure 2(a), (b) and (c). For bot score and activity 8 

entropy, empirical distributions are best fitted to log-normal distribution. Log likelihood ratio tests were 9 

used to find the goodness of fit for the fitted power law, lognormal and truncated power law distributions. 10 

 11 

5.2 Correlations between Activity and Attention 12 

Activity frequency and followee added play roles in gaining attention. Attention gains may also vary over 13 

time and context. Figure 3 shows attention gains for different ranges of activities in pre, during and post 14 

disaster periods. Though the duration of pre (9 days), during (10 days) and post (10 days) periods disaster 15 

are almost same, followers received is the highest during disaster period compared to other two periods 16 

(compare the maximum values of the z scales in Figure 3).   17 

 18 
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Fig 3. Correlations between Activity and Attention in (a) Pre-Disaster Period (Oct 14, 2012 to Oct 22, 1 

2012), (b) During Disaster (Oct 23, 2012 to Nov 1, 2012) Period and (c) Post Disaster Period (Nov 2, 2 

2012 to Nov 11, 2012). The X-axis and Y-axis represent the range of number of tweets and number of 3 

followees, respectively. The Z axis shows the average number of followers received by the users falling in 4 

the corresponding x and y bin as color intensity. The Z axis values are shown in log scale. 5 

 6 

In general, we do not observe any particular trend between activity frequency and gaining 7 

attention in the pre and post-disaster periods. Unlike pre and post disaster periods, during the disaster, 8 

higher activities tend to help gaining higher attention. Very high activity frequencies (activity>700) in pre 9 

and post disaster periods are not necessarily associated with a high number of followers received. During 10 

pre and post disaster periods, users with activity frequency less than 700 have received the highest 11 

number of followers (black rectangles in Figure 3); whereas during the disaster, the highest number of 12 

followers was gained for a user with activity frequency greater than 700. Followee added less than 100 13 

has no impact in gaining attention but users adding followees greater than 100 have received higher 14 

attention during all the three phases. Another observation is that, the highest number of followers received 15 

in three phases occurred for the users with activities greater than 100. To study more in depth, we have 16 

studied user daily and aggregate efficiency based on different features and categories at different phases.    17 

   18 

5.3 User Efficiency Analysis  19 

Daily efficiency of a user is calculated by dividing the total follower gain by the total number of tweets of 20 

that day. Similarly, aggregate efficiency is calculated by dividing total daily follower gain by the total 21 

tweet in that period. Users are categorized based on their active days. Only the users who had at least one 22 

activity on each of the three periods (pre, during, post disaster) are selected in these categories. Figure 4 23 

shows the daily efficiency distribution for the users categorized by their active days. It is found that a 24 
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significant number of users have daily efficiency value equal to or less than zero. As the number of active 1 

day increases, the probability of having a user with efficiency less than or equal to zero decreases. It also 2 

shows that the probability of having efficiency less than or equal to zero is maximum for the users who 3 

were active less than 8 days. Although, the probability of having daily efficiency greater than 10 is low 4 

across all category of users, this probability increases as the number of active days for a user increases.  5 

 6 

Fig 4. Daily Efficiency Distribution for the Users Categorized by Active Days. X-axis shows the daily 7 

efficiency and Y-axis shows the cumulative probability which means the probability of being daily 8 

efficiency is equal or less than of the corresponding daily efficiency of X-axis. X-axis are plotted in log 9 

scale. 10 

 11 
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We further investigate, for each user, how daily efficiency varies over time. To find if there is any 1 

trend in the data, we have categorized users based on their overall efficiency values (i.e., ratio of sum of 2 

daily attention and activity measured over the whole observation period). We calculate average daily 3 

efficiency by taking the average of the daily efficiencies of the users for a particular category. For 4 

hurricane related tweets, average daily efficiency for the first two categories (overall efficiency less than 5 

or equal to zero) does not change that much (see the inset plot in Fig S1). But daily efficiency for the 6 

highly efficient users provide an interesting insight. Users had higher values of average daily efficiency 7 

during hurricane declaration and landfall days (Fig S1). The spikes on hurricane declaration and landfall 8 

days indicate that some users received higher attention for their activities on those days. But this trend 9 

shows a significant number of spikes even before the formation of Sandy and also long after its landfall. 10 

This indicates that some users might be gaining attention due to tweets unrelated to Sandy. To confirm, 11 

we analyze only Sandy related tweets (having ‘sandy’ within the text of the tweet) and found that 12 

efficiency was maximum just after the declaration day (October 23,2012) and decayed readily with a 13 

spike at landfall date (see Fig 5). It indicates that users were highly efficient in spreading the awareness 14 

about Sandy on the day after its declaration. We do not observe any efficiency curve before declaration 15 

because the term ‘sandy’ was not present before declaration.   16 
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 1 

Fig 5. Average Daily Efficiency of the users categorized by efficiency values (for Sandy specific 2 

tweets). X-axis shows the time in date and Y-axis shows the average daily efficiency. Users are 3 

categorized by their overall efficiency values. 4 

 5 

To determine what type of users became highly efficient spreading the awareness during 6 

hurricane declaration and landfall, we extract the top 5 efficient users for both hurricane related tweets 7 

and Sandy specific tweets. Fig S2 shows the daily efficiency values for the top 5 efficient users on 8 

hurricane Sandy declaration and landfall days and top 5 efficient users over the whole data coverage 9 

period. We find that majority of them are either political users or have no significant association with 10 

hurricane updates (see Table S1). However, analysis on Sandy specific tweets reveals significant spikes 11 

close to landfall day (see Fig 6). We find that these highly efficient users are either storm update centers 12 

or weather reporter having close association with hurricane updates (see Table S2).  It highlights the 13 

importance of an appropriate filtering step when identifying highly efficient users, specific to a disaster. 14 
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Tweets collected for a general disaster context may contain ambiguous words (e.g., power, weather, 1 

recovery etc.) overlapping with other highly conversed contexts.  2 

 3 

Fig 6. Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for Sandy specific 4 

tweets) 5 

 6 
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5.4 User Attributes Contributing to Efficiency 1 

To identify the contributing factors for an efficient spreading of awareness, it is important to know the 2 

relationship between each feature and efficiency metric. Similar to the previous section, we analyze 3 

separately for hurricane related and Sandy specific tweets for understanding the factors in gaining 4 

attention in crisis communication. For hurricane related tweets, Fig 7 shows the relationship between 5 

efficiency and each of the variables of followee add, initial follower and initial followee, considering two 6 

types of users: bot (bot score >=0.5) and non-bot (bot score <0.5). In addition, the relationship between 7 

efficiency and active days has been modeled considering user categories based on activity entropy. The 8 

result shows good correlation (R2 >0.5) between efficiency and initial follower for the non-bot users. 9 

From Figure 7, we find that efficiency is positively associated with all the variables. In all cases, R2 values 10 

are lower for bot users compared to non-bot users. This reflects that efficiency of bots cannot be well 11 

predicted with a single variable. Similar associations have been found for Sandy specific tweets (see S3 12 

Fig).  13 

 14 
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 1 

Fig 7. Correlations between Efficiency and Different User Attributes (for hurricane related tweets) 2 

To determine the combined effects of the explanatory variables, we estimate a multivariate linear 3 

regression model. We have used an interaction term to capture the additional effect on efficiency of a 4 

non-bot user (bot score <0.5) compared to a bot user (bot score >0.5). Table 1 presents the results of the 5 

model involving hurricane related tweets. All the variables are significant at 90 percent significance level. 6 

It is found that efficiency increases with initial number of followers (0.002), bot score of bot users 7 

(11.622), initial number of followee of non-bot users (-0.004+0.007=0.003); while it decreases with total 8 

activity (-0.039), initial number of followees of bot users (-0.004), bot score of non-bot users (11.622 -9 

14.419=-2.797). A negative coefficient (-36.754) for activity entropy implies that entropy values have 10 

negative correlation with efficiency and users having a predictable activity pattern (lower entropy values) 11 

have higher efficiency values. The model estimated over Sandy specific tweets show similar results (see 12 
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Table S3) except that total activity is not statistically significant in this case and bot score (1.053 for bot 1 

user, 1.053+0.521=1.573 for non-bot user) and activity entropy (0.704) are positively correlated with 2 

efficiency.  3 

 From the regression analysis, we find how different user features influence a user’s efficiency. 4 

However, while considering overall efficiency as an outcome, a minor change in efficiency does not 5 

provide any significant information about the user’s performance in gaining attention. Thus, we have 6 

categorized efficiency into five classes: negative (efficiency<0), zero (efficiency=0), low 7 

(0<efficiency<=5), moderate (5<efficiency<=10) and high (efficiency>10) as shown in Figure 5. The 8 

outcome variable thus turned into an ordered categorical variable. In the hurricane related sample about 9 

6%, 56%, 32%, 3%, and 3% of the users fall within the negative, zero, low, moderate and high efficiency 10 

category, respectively. We have estimated an ordered logit model using the same 582605 observations 11 

(see Table 1). All the parameters shown in the results are statistically significant at 99% significance 12 

level.  13 

TABLE 1 Model Results for hurricane related tweets 14 

Linear Regression Model  Ordered Logit Model 

Explanatory variable Parameter 

Estimate 

t statistic  Parameter 

Estimate  

Odds Ratio Estimates 

Point 

Estimate 

95% Wald 

Confidence 

Limits 

Intercept 5 na -5.0145    

Intercept 4 na -4.2164    

Intercept 3 na -1.1988    

Intercept 2 na 2.2357    

Constant 0.758 1.712 Na 
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Total activity -0.039 -6.767 -0.0110 0.989 0.989 0.989 

Followee add 0.098 77.845 0.00926 1.009 1.009 1.009 

Initial follower 0.002 698.21 1.000 1.000 1.000 1.000 

Initial followee -0.004 -53.3 1.000 1.000 1.000 1.000 

Active days na 0.2951 1.343 1.340 1.347 

Activity entropy -36.754 -15.493 -1.9523 0.142 0.128 0.157 

Bot score 11.622 9.793 -0.3974 0.672 0.648 0.697 

Bot_Score*NonBotUser -14.419 -10.041 Na 

Initial_followee*NonBotU

ser 

0.007 37.423 Na 

Number of observations 582,605 582,605 

Adjusted R2 0.47   

AIC    1244359.6 

Note: na= not applicable, any variable included in one mode but not included in the other one is because 1 

we did not find it significant. 2 

For the interpretation of this result, a negative coefficient of total activity (-0.0110) indicates that 3 

if all other variables in the model remain constant, for an increase in the number of tweets, a user is more 4 

likely to be in a lower level of efficiency. Similar to the results from the regression model, users with a 5 

predictable tweeting pattern (-1.9523), (i.e., smaller entropy value) are more likely to be in a higher 6 

efficiency category. Moreover, we find that users with higher number of active days (0.2951) and followee 7 

added (0.00926) are more likely to be in a higher category of efficiency. In contrast, users with higher total 8 

activity (-0.0110) and bot score (-0.3974) are less likely to be in higher category efficiency. An ordered 9 

Logit model estimated over the Sandy specific tweets shows similar association except that total activity is 10 

not statistically significant and activity entropy is positively correlated with efficiency (see Table S3). A 11 
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higher number of initial follower (1.00) or initial followee (1.00) does not result in higher or lower 1 

efficiency category for both hurricane related and Sandy specific tweets. 2 

6. Discussion 3 

During a hurricane, affected people turns to social media for updates and assistance from individuals and 4 

organizations. In addition, emergency management agencies use social media to organize and direct 5 

resources where needed. These interactions among social media users and agencies create dynamics in 6 

communication that varies over different phases of a disaster. We explore the dynamics of crisis 7 

communication using hurricane Sandy Twitter data. We define an efficiency metric as the ratio between 8 

attention received (gaining new followers) and activity (posting tweets/retweets) in a given time interval. 9 

From the activity-attention analysis, we find that higher (>100) followee addition causes higher attention 10 

(follower received) in all three (pre-disaster, during disaster and post-disaster) phases of a hurricane. High 11 

reciprocity (e.g., mutual follower-followee relationship) among social media users might be responsible 12 

for such attention gain. For instance, during a hurricane, individuals may follow each other to get updates 13 

and to get connected for taking common decisions (e.g., evacuation)  (Sadri, Hasan, & Ukkusuri, 2017). 14 

 In social media platforms, all users may not get equal attention for their activities. Based on the 15 

efficiency values, we categorize five (negative, zero, low, moderate, high) types of Twitter users. 16 

Majority of the users in our dataset are in the first three categories (negative, zero, low). A negative 17 

(overall efficiency <0) value of the efficiency metric means that the user lost followers during the analysis 18 

period. This also confirms previous studies (Myers & Leskovec, 2014) that information diffusion creates 19 

sudden burst in creating new connections or deleting existing connections. The zero (overall efficiency 20 

=0) efficiency category represents no change in attention dynamic despite their activities 21 

(tweeting/retweeting). The low (0<overall efficiency≤5) and moderate (5<overall efficiency≤10) 22 

efficiency categories, however, do not show any trend in the efficiency dynamics during different phases 23 

of the hurricane. For high efficiency (overall efficiency>10) category, the dynamics of efficiency metric 24 

shows that efficiency is the highest just after the official declaration of a hurricane (see Figure 5), which 25 
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indicates the promptness of public reaction and participation in information sharing or consumption 1 

during an upcoming disaster. After the highest peak, the efficiency of the highly efficient users has a 2 

decreasing trend with a peak on landfall day and some peaks in the recovery period (see Figure 5). This 3 

shows that highly efficient users have consistently gained attention from a pre-disaster period to a post-4 

disaster period with the most attention gained right after the hurricane declaration. 5 

Individuals are likely to follow those users who post relevant news and updates. Investigating the 6 

users who made Sandy specific tweets (see Table S2), we find that majority of the top 5 efficient users are 7 

storm related organizations, that post relevant news and information about the hurricane. This confirms 8 

our hypothesis that individuals follow users who publishes relevant updates about the hurricane. In case 9 

of unfiltered data, top 5 users (see Table S1) are mostly political users (political campaign of US 10 

presidential election 2012 was going on at that time). This finding also indicates the importance of 11 

appropriate filtering to retrieve more relevant information from social media data. 12 

We have estimated models to determine the key attributes that make a user more efficient in 13 

gaining attention in an emergency situation. Our estimated models show that higher activity frequency is 14 

likely to decrease efficiency, which is similar to the findings of this study (Vaca et al., 2014) on 15 

microblogging data. We have also found that increasing followee is likely to increase the efficiency of 16 

gaining attention, similar to the finding of this study  (Cha, Haddai, Benevenuto, & Gummadi, 2010) that 17 

influential users need to maintain constant engagement. Initial number of followers has a positive (very 18 

small coefficient) effect in the regression model but does not result in higher or lower efficiency category 19 

in the logit model (odds ratio =1), indicating that a higher number of initial followers may increase 20 

efficiency but not enough to change the efficiency category. A previous study (Cha et al., 2010) also 21 

found that a high number of initial followers may represent popularity but not in terms of user 22 

engagement. 23 

Interestingly, in the regression model initial number of followee has a positive coefficient for a 24 

non bot user but a negative coefficient for a bot user. It indicates that for an individual user (operated by a 25 
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human) a higher number of initial followee helps gain attention. But for a bot user (e.g., an organizational 1 

account), a higher number of initial followee has a negative effect in gaining efficiency. However, in 2 

terms of efficiency category, initial followee does not result in higher or lower efficiency category in the 3 

logit model (odds ratio=1).  4 

From the estimated models, bot score shows mixed results for hurricane related tweets and Sandy 5 

specific tweets. For Sandy specific model, bot score has a positive coefficient for gaining efficiency, 6 

which indicates the potential of using a bot account to generate, response, and share hurricane specific 7 

content during a disaster to gain higher efficiency. However, for hurricane related tweets, bot score has a 8 

positive coefficient for bot users, but a negative coefficient for non-bot users. It means that an account 9 

which is already acting like a bot is likely to have higher efficiency by increasing bot-like hurricane 10 

related activity. In contrast, a non-bot account is likely to have lower efficiency for increasing bot-like 11 

activity related to hurricane.   12 

In addition, for the Sandy specific model, active days and activity entropy have negative and 13 

positive coefficients, respectively. This implies that less active days with irregular but specific topic 14 

focused posts are likely to help gaining efficiency. On the other hand, from the hurricane related model, 15 

we see that active days and activity entropy have positive and negative coefficients, respectively. This 16 

means that more active days with regular hurricane related posts are likely to help gaining efficiency. As 17 

hurricane related contents contain a lot of topics, regular and predictive activity pattern related to 18 

hurricane can help maintaining constant engagement, an important factor for influence as found in other 19 

studies (Cha et al., 2010) .  20 

In summary, the results of this study indicate the nature and dynamics of efficiency of attention 21 

gain from a pre-disaster period to a post-disaster period.  These findings also shed light on the important 22 

factors to gain efficiency—adding valuable insights to social-mediated crisis communication theory and 23 

literature. Practitioners such as emergency managers and public-relation managers can also find 24 
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implications towards adopting better communication strategies. A detailed discussion on the contribution 1 

and practical implications of our results are given in the following sections.  2 

6.1 Contributions to theory/literature 3 

Social media usage during disasters has changed the way how organizations manage crisis 4 

communication. People are increasingly using social media during a crisis and thus crisis communication 5 

professionals need to understand—how to optimize activity and engagement to maximize the spreading of 6 

situational awareness messages. In addition, monitoring and responding to the content of influential social 7 

media creators are important to efficiently communicate with the targeted people, correcting any 8 

misinformation and rumors. Thus, interconnection among the organization, influential social media 9 

creators and the followers are a very important component in the social-mediated crisis communication 10 

(see Figure 1). To date, in the context of blog mediated crisis communication model, few studies (Liu et 11 

al., 2012) investigated the metrics to evaluate the influence of a blog. These metrics include blog 12 

characteristics, blogger credibility, interconnectivity, frequency of updates, consistency with the 13 

organization’s crisis response, etc.  However, these studies mainly focus on typical blogsphere content 14 

and are not tuned for social media platforms such as Twitter, Facebook etc. Recent studies on social 15 

media influence mainly focus on the content not on the users. In our study, we have proposed a simple 16 

attention-based efficiency measure and have considered features such as activity frequency, activity 17 

pattern, active days, number of friends and followers, followee add, bot score etc. to identify efficient 18 

users. Here, the features, activity frequency and number of friends/followers in social media contexts can 19 

be considered similar to frequency of updates and inter-connectivity in the context of blogs. Many 20 

organizations use Twitter bot for tweeting, reposting, and messaging now a days. We adopt the bot score 21 

feature in our study to capture the effect of automation level in gaining attention efficiency. This study 22 

thus provides an empirical evidence on the dynamics of efficiency from a pre-disaster to a post-disaster 23 

period. It also provides insights on the influence of different efficiency factors that can help better 24 

understand social mediated crisis communication. 25 
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6.2 Implications for Practice  1 

This study also provides valuable insights for practitioners such as crisis communication and public 2 

relation managers. From efficiency dynamics, we can understand when influential users get more 3 

attention (see figure 5). Crisis managers should monitor social media more during these times to ensure 4 

dissemination of authentic and most recent news. The findings from the contributing factors analysis 5 

provide insight about activity optimization strategies to get more attention during crisis communication. 6 

Some of the implications of this study are given below 7 

 Activity Frequency: Influential individuals and relevant organizations post (tweet) or repost 8 

(retweet) about different situational awareness during a disaster. These users need to optimize their 9 

posting frequency as increased activity frequency has a negative effect in gaining attention efficiency (see 10 

Table 1 and Table s3). Crisis managers thus need to maintain their activity only to post meaningful 11 

updates rather than posting redundant and unimportant messages.  12 

 Followee add: A crisis communication manager aims to maximize the information spreading to as 13 

many new users as possible. The crisis manager also needs to monitor social media content to prevent 14 

misinformation/rumors. We have found that followee addition has a positive effect in getting attention 15 

efficiency. So, a crisis manager can follow other users during a crisis, especially the influential users, who 16 

are likely to help gain more attention to emergency messages.  17 

 Initial follower: A highly connected user can reach to many users and thus can disseminate 18 

information to a larger audience. We have found  (see Table 1 and Table s3) that a high number of initial 19 

followers are likely to help to be efficient in gaining attention from the users who are not a follower yet. 20 

An organizational account with a greater number of followers is more likely to spread information faster. 21 

Similarly, a crisis communication manager can monitor users with high connectivity (followers) as these 22 

users are likely to be the influential users during a crisis.  23 
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Bot Score: Social bots are programmed to create posts in social media platforms autonomously. 1 

Approximately 15 percent of Twitter accounts are bots rather than humans (Newberg, 2017). Although 2 

there are evidences that social bots have been used to manipulate public opinion, creating false impression 3 

and misinformation especially during elections, a social bot has many good applications such as 4 

disseminating weather news, crisis information, evacuation alerts etc. During emergencies a social bot can 5 

disseminate information about situational awareness and respond to the users seeking help or information. 6 

During emergencies, social media managers handle unprecedented amount of activities, and because of 7 

lack of trained personnel only few people work hard to manage the activities during such events (Oyeniyi, 8 

2017).  The main task of a social media crisis manager is to disseminate information by posting in social 9 

media platforms (Oyeniyi, 2017).  Social bots can reduce the workload during crisis by automating some 10 

of the routine tasks so that a crisis manager can monitor social media posts to reduce 11 

misinformation/rumors. According to our findings, bot score has a positive effect in gaining efficiency for 12 

bot users (bot score > 0.5) (see Table 1 and Table S3)—suggesting that users having bot characteristics 13 

are more likely to be efficient in gaining attention. If a user account/organization has a high bot score or 14 

already using automation, using social bots to generate and disseminate messages are likely to help gain 15 

more attention from new users (not follower yet). However, for a non-bot user (bot score < 0.5), bot score 16 

has a mixed effect (see Table 1 and Table S3). Thus, if an emergency manager uses a non-bot account to 17 

disseminate information, adopting a social bot may not help gain higher attention efficiency (see Table 18 

S3). 19 

7. Conclusions 20 

In this study, we have analyzed twitter posts related to hurricane Sandy to understand the effectiveness of 21 

social media-based communication during disasters. Effective crisis communication can ensure faster 22 

information dissemination to vulnerable communities who need timely information about disaster 23 

preparedness, evacuation warning, and recovery operations. To measure the effectiveness of a social 24 

media user in communicating information or awareness, we have estimated the efficiency of gaining 25 
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attention within a specific time period as the ratio of follower gained over tweet frequency within the 1 

same time period. We consider that new follower gained represents attention received and tweet 2 

frequency represents activities made.  As our data contains tweets from both pre and post-disaster periods, 3 

a comparison of user efficiencies in gaining attention among these periods has been possible.  4 

Analyzing daily efficiencies in gaining attention, we have found that users had higher efficiency 5 

during the critical periods in hurricane Sandy such as declaration and landfall days. This indicates the 6 

potential of social media-based crisis communication since higher attention to related information may 7 

help in providing situational awareness to vulnerable population. It might be the case that during Sandy 8 

some users’ efficiency became abnormally high because a high number of users started following them 9 

for hurricane related updates. These social media users could become one of the major sources of 10 

information for spreading hurricane awareness during future hurricanes. 11 

During a disaster, general social media users seek information from other users for a timely 12 

update. When sharing information, some users gain more attention than the others. Thus, it’s critical to 13 

understand what user features influence the process of gaining attention. For understanding the 14 

contributing features, we have estimated a regression and an ordered logit model considering overall 15 

efficiency and efficiency category, respectively as a dependent variable. We have found that higher 16 

activities relating to hurricanes are not necessarily associated with higher efficiencies. However, users 17 

with predictable tweeting patterns have gained higher efficiency values. We have also found that a higher 18 

bot score (typically associated with an organizational account) results in lower efficiencies. We have 19 

observed some differences on the effect of few user attributes on efficiency values for models estimated 20 

over general hurricane related tweets and Sandy specific tweets. User efficiencies in gaining attention for 21 

a crisis event are directly related with information spreading capacity of a system. A better understanding 22 

of the factors will provide insights on crisis communication both at organizational and individual levels. 23 

These insights will also help emergency agencies when using social media as a disaster communication 24 

tool.  25 
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Thus, our findings have significant importance in social media communication specially in 1 

disaster communication. For attaining high efficiency in spreading disaster related information, concerned 2 

organizational or personal accounts can plan their activity considering the factors which will maximize 3 

the chance to attain higher attention from the targeted population in social media. Also, prior to a major 4 

disaster event concerned authorities can select some efficient social media users for disseminating 5 

information about situational awareness; a model based on user features could find the efficient users for 6 

this task.   7 

7.1 Limitations and Future Research Directions  8 

Our study has several limitations which can be improved in future. For example, bot scores were not 9 

collected during the period of hurricane Sandy; rather we have collected them at the time of our analysis. 10 

Bot scores could be different during hurricane Sandy than in the present.  We assume that all the tweets 11 

analyzed here were related to hurricane Sandy. User efficiency considering specific topics (e.g., 12 

evacuation) of a tweet should be analyzed in the future. We have not checked the bot scores of the newly 13 

gained followers. The newly gained followers may be social bots instead of human accounts. Studies are 14 

needed to understand – how attention to situational awareness messages actually turn into action. For 15 

example, we need to investigate if information related to evacuation order is disseminated to affected 16 

people, how they respond to such orders. Finally, our results are based on only one event; data from 17 

multiple events should be analyzed to better understand the influence of social media during a crisis 18 

event.   19 
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Supporting information 1 

A 2 

Fig S1.  Average Daily Efficiency of the users categorized by efficiency (for hurricane related 3 

tweets). X-axis shows the time in date and Y-axis shows the average daily efficiency. Users are 4 

categorized by their overall efficiency values. 5 
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 1 

Fig S2. Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for hurricane related 2 

tweets).  3 
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1 

Fig S3. Relationship between Efficiency and Different User Attributes (for sandy specific tweets) 2 

 3 

Table S1. Top 5 efficient users with user type and bot score during hurricane declaration and hurricane 4 

landfall. This analysis is based on the unfiltered (hurricane related tweets) data.   5 

 6 

Hurricane Declaration Hurricane Landfall 

Screen Name User Type 
Bot 

Score 
Screen Name User Type 

Bot 

Score 

@M3VOY 
Radio 

Operator 
0.62 @carrolltrust Organization 0.43 
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@TonioMilano Personal 0.48 @hiphopencounter Organization 0.76 

@megynkelly 
Anchor at 

NBC News 
0.36 @migcfc Personal 0.06 

@BloodRedPatriot Organization  0.73 @trio Organization 0.55 

 1 

Table S2. Top 5 efficient users with user type and bot score during hurricane declaration and landfall. 2 

This analysis is based on the data which have the word sandy in the tweet.   3 

 4 

Hurricane Declaration Hurricane Landfall 

Screen Name User Type 
Bot 

Score 
Screen Name User Type 

Bot 

Score 

Not Found NA NA @NHC_Atlantic Organization 0.43 

@breakingstorm Organization 0.66 @cnnbrk Organization 0.51 

@NHC_Atlantic Organization 0.43 @Jimcantore 
Broadcast 

Meteorologist 
0.37 

@Jimcantore 
Broadcast 

Meteorologist 
0.37 @BreakingNews Organization 0.60 

@kkstormcenter 
Weather 

reporter 
0.71 @breakingstorm Organization 0.66 

Note: Not found indicates that the user made tweets during Sandy but its screen name was not found 5 

when searched during our analysis.     6 

 7 

TABLE S3 Model Results for Sandy specific tweets 8 
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Linear Regression Model  Ordered Logit Model 

Explanatory variable Parameter 

Estimate 

t statistic  Parameter 

Estimate  

Odds Ratio Estimates 

Point 

Estimate 

95% Wald 

Confidence 

Limits 

Intercept 5 na -6.6001    

Intercept 4 na -3.7514    

Intercept 3 na 4.6505    

Intercept 2 na 5.3600    

Constant -.073 -.453 na 

Total activity -0.001 -1.265 na na na na 

Followee add 0.003 5.411 0.00359 1.004 1.003 1.004 

Initial follower 0.0001 231.54 0.000035 1.00 1.00 1.00 

Initial followee -6.85E-5 -6.219 -2.71E-06 1.000 1.000 1.000 

Active days na -0.1312 0.877 0.852 0.903 

Activity entropy .704 1.940 1.2244 3.402 1.726 6.708 

Bot score 1.053 3.735 2.115 8.289 5.227 13.145 

Bot_Score*NonBotUse

r 

.521 1.655 na 

Initial_followee*NonBo

tUser 

-5.27E-5 -1.794 na 

Number of 

observations 

15,792  15,792 

Adjusted R2 0.77   

AIC   7513.390 
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Note: na= not applicable, any variable included in one mode but not included in the other one is because 1 

we did not find it significant. 2 

 3 

 4 
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