

# **Understanding the Efficiency of Social Media based Crisis Communication during Hurricane**

## **Sandy**

### **Abstract**

Rapid communication during extreme events is one of the critical aspects of successful disaster management strategies. Due to their ubiquitous nature, social media platforms are expected to offer a unique opportunity for crisis communication. In this study, about 52.5 million tweets related to hurricane Sandy posted by 13.75 million users are analyzed to assess the effectiveness of social media communication during disasters and identify the contributing factors leading to effective crisis communication strategies. Efficiency of a social media user is defined as the ratio of attention gained over the number of tweets posted. A model is developed to identify more efficient users based on several relevant features. Results indicate that during a disaster event, only few social media users become highly efficient in gaining attention. In addition, efficiency does not depend on the frequency of tweeting activity only; instead it depends on the number of followers and friends, user category, bot score (controlled by a human or a machine), and activity patterns (predictability of activity frequency). Since the proposed efficiency metric is easy to evaluate, it can potentially detect effective social media users in real time to communicate information and awareness to vulnerable communities during a disaster.

**Keywords:** crisis communication; hurricane warning; evacuation; social media; Twitter; hurricane Sandy; disaster management.

1    **1.    Introduction and motivation**

2    Extreme weather events have become common in recent decades (NELSON, 2013). Globally, natural  
3    disasters cause \$520 billion equivalent loss and are responsible for taking 26 million people below  
4    poverty line (The World Bank, 2016). Since 1980, the United States alone has spent more than \$1.5  
5    trillion for managing 219 weather and climate related disasters which had overall damages exceeding \$1  
6    billion (NOAA National Centers for Environmental Information (NCEI) U.S., 2018). Hurricanes along  
7    with other natural disasters in 2017 are expected to cause 135 billion US dollar insured cost (Munich RE,  
8    2018). Effective disaster management plays a critical role in reducing the cost of a disaster with  
9    implications in its four phases including mitigation, preparedness, response and recovery operations.  
10   Households and communities require appropriate resources to meet different needs in these phases of  
11   disaster management (Comfort, Ko, & Zagorecki, 2004). To mitigate loss of lives and infrastructure  
12   damage, proper preparedness and organized response strategies are crucial. Information availability about  
13   the time and severity of an incident can greatly help disaster preparedness, response and recovery  
14   operations. Particularly for responding organizations, effective information sharing and coordination are  
15   critical (Bharosa, Lee, & Janssen, 2010; Yates & Paquette, 2011). Access to information enhances the  
16   efficiency of response actions and increases coordination throughout the network of responding  
17   organizations (Comfort et al., 2004).

18            Online social media platforms facilitate fast and easy exchange of information through sharing,  
19   discussion, and communication producing a huge amount of digital content (C.-M. Huang, Chan, &  
20   Hyder, 2010). Social media data has been used to investigate many research topics such as human  
21   mobility (Hasan & Ukkusuri, 2014; Hasan, Zhan, & Ukkusuri, 2013), transportation (Chen, Frei, &  
22   Mahmassani, 2014; Chen, Mahmassani, & Frei, 2017; Ni, He, & Gao, 2017; Rashidi, Abbasi, Maghrebi,  
23   Hasan, & Waller, 2017; Zhang, He, Gao, & Ni, 2018), marketing (Alalwan, Rana, Dwivedi, &  
24   Algharabat, 2017; Ashley & Tuten, 2015; Misirlis & Vlachopoulou, 2018), tourism and hospitality  
25   (Leung, Law, van Hoof, & Buhalis, 2013), public health (Kass-Hout & Alhinnawi, 2013), disaster

1 management (Q. Huang & Xiao, 2015; Kryvasheyev et al., 2016; Simon, Goldberg, & Adini, 2015) and  
2 so on. Risk communication during a disaster plays a critical role in encouraging people to take protective  
3 measures (Paton, 2008). The causal sequence of risk communication includes perceived risk to  
4 interactive searching to protective actions (Demuth et al., 2018; Miletic & Fitzpatrick, 1992). The reasons  
5 why risk communication sometimes does not work as expected include the failure to accommodate the  
6 relationship among the complexity of hazards, peoples' lack of experience of hazards, and the need to rely  
7 on others to acquire pertinent information (Paton, 2008).

8           Online social media can play a vital role in spreading timely updates about emergency and  
9 collecting feedback from the affected population. Emergency evacuation plan such as evacuation timing,  
10 mode and route choice depends on many different factors (Hasan, Mesa-Arango, & Ukkusuri, 2013;  
11 Murray-Tuite & Wolshon, 2013; Sadri, Ukkusuri, & Murray-Tuite, 2013; Sadri, Ukkusuri, Murray-Tuite,  
12 & Gladwin, 2014). Information from social media about situational awareness can influence shaping  
13 these decisions (Martín, Yago, Zhenlong Li, 2017).

14           Thus, a wide range of international, state, and local organizations have successfully used social  
15 media tools during disasters gaining broader interests among policy makers on how social media might be  
16 used to improve disaster response and recovery capabilities (Lindsay, 2011; Reuter & Kaufhold, 2017).  
17 For instance, during Hurricane Sandy, social media played an important role by sharing information,  
18 when the affected regions had limited access to traditional media (Kaufman, S., C. Qing, N. Levenson,  
19 2012). Most recently, during hurricanes Harvey (Oyeniyi, 2017) and Irma (MacMillan, 2017) many  
20 government and local officials have used social media to disseminate information and recovery messages.

21           When using social media for information dissemination during disasters, it is critical to know  
22 what makes an information provider more efficient and effective. However, studying the efficiency and  
23 effectiveness of social media users in disseminating information has been a challenging task. Such a study  
24 would require appropriate metrics applied over a large collection of disaster communication data. On the  
25 other hand, essential components of social communication such as human choices, disaster warning

1 propagation and risk communication in large-scale social networks cannot be reproduced within the limits  
2 of typical social experiments.

3 Increasing use of social media in disasters will require a better understanding of the effectiveness  
4 of information spreading to an affected community. Finding the factors of information spreading is  
5 crucial for understanding the dynamics of social media systems. A better understanding of the underlying  
6 factors will provide insights into effective crisis communication strategies. Users more efficient in  
7 spreading information can play an important role during crisis, since user activities can draw a significant  
8 amount of attention to relevant topics/content from other users. Understanding the interplay among user  
9 activities, network properties and the attention received will help to identify the contributing factors in  
10 successful crisis communication in emergency situations (Sadri, Hasan, Ukkusuri, & Cebrian, 2017;  
11 Sadri, Hasan, Ukkusuri, & Lopez, 2017). Thus, understanding the influence of social media users has  
12 significant implications in a disaster management context. In marketing research, studies (Ashley &  
13 Tuten, 2015; Hu & Liu, 2004; Misirlis & Vlachopoulou, 2018) have proposed different metrics for social  
14 media based marketing strategies. Although these studies provide insights on how a brand can use social  
15 media for customer appeal and engagement, their findings may not be transferable to a disaster context.  
16 During a disaster, many agencies, individuals, and influencers participate in information dissemination in  
17 a very short period of time depending on the intensity and spread of the disaster. For this reason,  
18 efficiency in spreading the information or gaining attention is vital for a successful crisis communication  
19 strategy. Although influence of social media users has been studied in many different contexts, efficiency  
20 of information/awareness spreading in a disaster context still needs to be investigated.

21 Previous studies have focused on the popularity of content instead of analyzing the effects of user  
22 behaviors on how other users respond to them (Vaca, Aiello, Jaimes, & Milano, 2014). Moreover, to the  
23 best of our knowledge, few studies have considered user categories and activity patterns while measuring  
24 the efficiency of information spreading in the context of disaster management. In social media dynamics,  
25 information diffusion creates sudden bursts of connections (e.g., friends or followers) by creating new

1 edges or deleting existing edges (Myers & Leskovec, 2014). Similarly, during a disaster, information  
2 diffusion about situational awareness drives significant changes in the underlying social media  
3 connections of friends and followers. Such bursts in new followers may happen due to common interest  
4 (textual similarity) (Myers & Leskovec, 2014) or attention (Vaca et al., 2014) to users or information  
5 source. In this study, using Twitter data, we analyze the efficiency of social media users in information  
6 spreading in the context of hurricane Sandy. We investigate user activity against the attention gained in  
7 pre-disaster, during (warning and response phase) and post-disaster periods. The efficiency of a user is  
8 defined as the ratio between attention gained over the number of tweets within a period. The research  
9 questions and contributions of this work can be summarized as follows:

10     • Does a more active social media user gain more attention? What combinations of user activity  
11       will facilitate such attention in pre-disaster, during disaster and post-disaster periods? This study  
12       allows us to understand the correlation between activity and attention gained during these three  
13       phases of a disaster.

14     • How does user efficiency dynamics change over the pre, during and post disaster phases? We  
15       show that during disaster specially in hurricane declaration and landfall days users have higher  
16       average efficiency than that of pre-disaster and post disaster period.

17     • What are the factors contributing to user efficiency? How can efficient users be classified based  
18       on their activities and features? We present a model to classify efficient users highlighting the  
19       features contributing to user efficiency in disaster periods.

20 **2. Background and Related Work**

21 Social media, the computer mediated technology is now one of the most integrated parts of our daily life.  
22 These technological advancements have transformed the view of disaster management professionals on  
23 disseminating information as well as interacting with affected communities. For instance, previous studies  
24 on disaster management found that having a strong social network increases the likelihood of a person  
25 responding to a warning message (Aguirre, Wenger, & Vigo, 1998). During crisis, warning message like

1 evacuation decisions can be made anywhere and often with little advanced warning time (Murray-Tuite &  
2 Wolshon, 2013). Eye-witnessed information sources provide local and rapid updates during disaster and  
3 thus can be more helpful than official news for the decision makers (Palen, Vieweg, Liu, & Hughes, 2009;  
4 Shklovski, Palen, & Sutton, 2008).

5 Previous studies (Kapoor et al., 2018; Shiau, Dwivedi, & Yang, 2017) on social media theories  
6 (Ngai, Tao, & Moon, 2015), core knowledge (Shiau, Dwivedi, & Lai, 2018), and applications investigated  
7 the behaviors of social media users. In addition, researchers have investigated social media use in disasters  
8 from different perspectives (J. Kim & Hastak, 2018; Stieglitz, Mirbabaie, Ross, & Neuberger, 2018).  
9 Studying 2013 Oklahoma tornado, it is shown that Twitter data can reveal relevant information as an  
10 additional data source for better understanding of individual behavior during a crisis (Ukkusuri, Zhan, Sadri,  
11 & Ye, 2014). Visual analytics of microblog data can display public behavior in disaster events (Chae et al.,  
12 2014). Mobility patterns can be inferred from geo-tagged tweets (Hasan & Ukkusuri, 2014; Hasan, Zhan,  
13 et al., 2013; Sadri, Hasan, & Ukkusuri, 2017). Communities can be detected from user interactions on  
14 Twitter (Hasan, Zhan, et al., 2013; Sadri, Hasan, & Ukkusuri, 2017). Social media users can be used as  
15 social network sensors to increase disaster awareness (Kryvasheyeu & Chen, 2015). Furthermore, social  
16 media data can be used to rapidly assess disaster damage, as it was shown that per capita damages were  
17 strongly correlated with per capita twitter activity during hurricane Sandy (Kryvasheyeu et al., 2016).

18 Activities of social media users are greatly influenced by content production and sharing  
19 activities (Vaca et al., 2014). Most of the past studies focused on the popularity or propagation of the  
20 content in social media such as popular tweets (Hong, Dan, & Davison, 2011; Mathioudakis, Koudas, &  
21 Marbach, 2010), Flickr picture (Cha, Mislove, & Gummadi, 2009), YouTube video (Figueiredo,  
22 Benevenuto, Almeida, Fabr, & Almeida, 2011), Twitter hashtag (Lehmann, Gonçalves, Ramasco, &  
23 Cattuto, 2012) etc. Scale free networks and affinity affect the propagation of information (Wu, Huberman,  
24 Adamic, & Tyler, 2004) but basic measures such as the raw number of social connections are not a good  
25 predictor for influence (Asur, Huberman, Szabo, & Wang, 2011; Romero & Huberman, 2011). In addition

1 to the graph properties of user networks, the popularity and influence of a twitter account depend on the  
2 personality and emotion of the human being behind that account (Quercia, Ellis, Capra, & Crowcroft,  
3 2011). Stai et al. (Stai, Milaiou, Karyotis, & Papavassiliou, 2018) proposed an epidemic model to  
4 understand temporal dynamics of information diffusion in Twitter, explaining the burst like behaviors due  
5 to information diffusion (Myers & Leskovec, 2014). Vaca et al. (Vaca et al., 2014) observed that a  
6 combination of different type of social and content-producing activity is necessary to attract attention in  
7 social media. Using Sina-Weibo data during two typhoons, this study (Dong, Li, Zhang, & Cai, 2018)  
8 explores the information diffusion considering individual and network perspective. Analyzing the  
9 reposting behavior in Weibo.com during Yiliang earthquake, Li et. al have studied the propagation pattern  
10 of different types of information (J. Kim & Hastak, 2018). Kim et. al have analyzed the network  
11 characteristics of city of Baton Rouge Facebook page during 2016 Louisiana flood (J. Kim & Hastak,  
12 2018). They have found higher information diffusion in Facebook than Twitter. A study (J. Kim, Bae, &  
13 Hastak, 2018) on storm Cindi using twitter data explores the role of four types of twitter users in  
14 emergency information diffusion. According to this study, news and weather agencies are the dominant  
15 twitter users as information sources whereas the public and organizations are the dominant twitter users as  
16 information diffusers. Despite these efforts, what factors contribute to attract attention in social media  
17 during a disaster, remains an open question.

18 In this study, Twitter data before, during and after Hurricane sandy have been analyzed to  
19 understand the factors contributing to the overall efficiency of a user in crisis communication. A model is  
20 also proposed to classify efficient users based on their attributes. This method has potential to be used to  
21 identify effective social media users during disasters for rapid communications.

### 22 3. Data

23 Hurricane Sandy, a late season post-tropical cyclone was the deadliest and most destructive hurricane of  
24 the 2012 Atlantic hurricane season. On October 20, Sandy's origin was primarily associated with a  
25 tropical wave that was assessed as a high potential for it to become a tropical cyclone within 48 hours

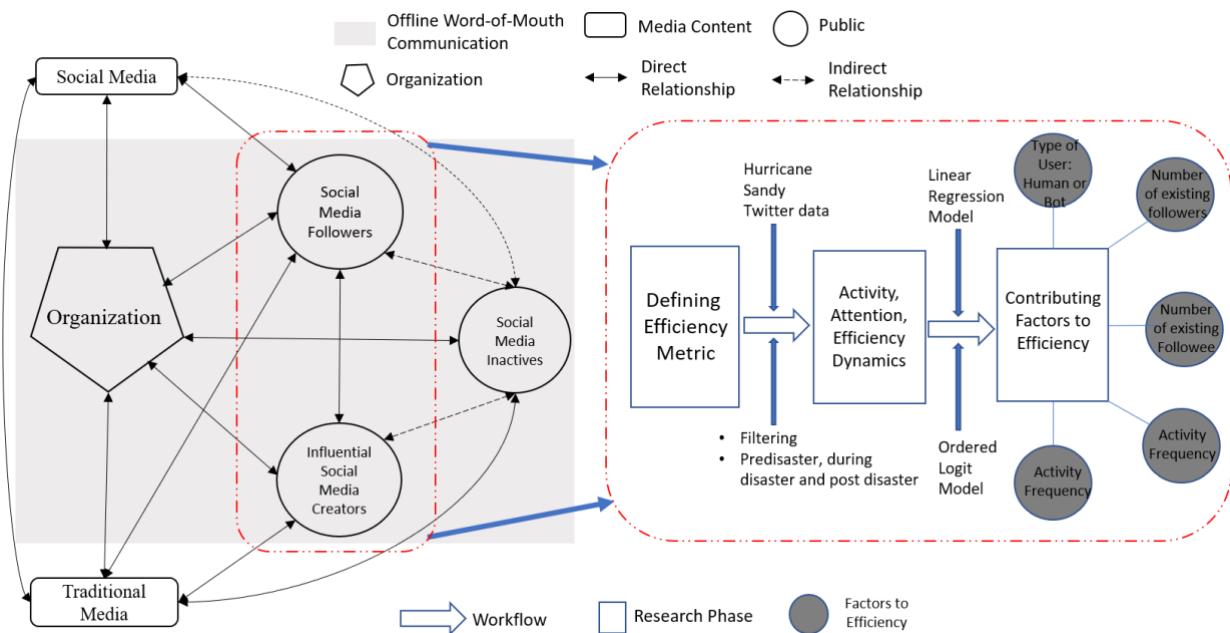
1 (Blake et al., 2013). The hurricane was first classified and officially assigned its name as Sandy on  
2 October 22 (Kryvasheyev & Chen, 2015). After leaving a trail of damage over Jamaica, Cuba, and  
3 Bahamas, Sandy made its landfall on the United States at 23:30 UTC on 29 October 2012 near  
4 Brigantine, New Jersey. Sandy was responsible for 147 direct fatalities and damage in excess of \$50  
5 billion, including 650,000 destroyed or damaged buildings (Blake et al., 2013). Sandy received a lot of  
6 media coverage both in traditional media and social media.

7 The dataset was collected from the publicly accessible data via doi:10.5061/dryad.15fv2  
8 (DRYAD repository) (Kryvasheyev & Chen, 2015). Kryvasheyev et al. (Kryvasheyev & Chen, 2015)  
9 collected the dataset through an analytics company Topsy Labs who deals with Twitter data. The  
10 collected data contains tweets posted between October 15, 2012 and November 12, 2012. This duration  
11 covers the period before the formation of the hurricane to after the landfall in the United States. The  
12 dataset contains user id, timestamp, tweet text, tweet id, user followers count, user friends count,  
13 sentiment scores and locations. In total, there were 52,493,130 tweets from 13,745,659 unique twitter  
14 users. This dataset includes tweets containing some specific keywords relevant to hurricane Sandy and its  
15 impact such as (“sandy”, “hurricane”, “storm”, “superstorm”, “flooding”, “blackout”, “gas”, “power”,  
16 “weather”, “climate”, etc.). The full list of keywords used is provided in Table S1 in the original paper.  
17 We use the dataset to understand the efficiency for the hurricane related tweets (all 52.55 million). We  
18 have also filtered the raw data with the word “sandy” to get sandy specific tweets. After applying the  
19 filter, we obtain around 4.51 million messages from 1.39 million users. We use this filtered data to  
20 understand efficiency dynamics for sandy specific tweets.

21 **4. Methods**

22 For the best possible use of social media in crisis communication, it is important to know how an  
23 emergency manager should engage with social media users, traditional media, and the targeted  
24 population. For crisis communication in blogsphere, Jin et al. (Jin & Liu, 2010) proposed a conceptual  
25 model called Blog-Mediated Crisis Communication Model (BMCC). We have adopted and revised this

1 framework as Social-Mediated Crisis Communication Model (SMCC) to incorporate social media (Liu,  
 2 Jin, Briones, & Kuch, 2012). Influential social media creators/users and social media followers are  
 3 important components of this social mediated crisis communication model. Our study focuses on an  
 4 empirical study that are related to the component highlighted by a dotted red box in Figure 1 (left part).  
 5 This study has three main phases as shown in Figure 1(right part). First, we define efficiency of gaining  
 6 attention over social media activity. Second, we explore the dynamics of activity, attention and efficiency  
 7 dynamics in pre-disaster, during disaster and post-disaster period using hurricane Sandy data. Third, we  
 8 also study the factors that contribute to gain efficiency by adopting Linear regression model and ordered  
 9 logit model. In the rest of this section we describe the phases of this study in details.



**Fig 1. Social Mediated Crisis Communication Model (SMCC) (adopted from (Liu et al., 2012)) and Study Work Flow**

10

#### 11 4.1 Activity, Attention, and Efficiency Metrics in Twitter

12 We define *attention* as the number of new followers received and *activity* as the number of tweets or new  
 13 followee added. From the point of view of a particular user, the term “new follower received” means the  
 14 users that start to follow this particular user, and the term “new followee added” means the users that this

1 particular user starts to follow. For this study, tweet frequency is selected as an activity metric since this is  
 2 the most frequent activity among all types of users; whereas followee addition is very low or zero for  
 3 some organizational and personal users. A well-connected user (high initial followers in our study) has a  
 4 large audience, thus a tweet posted by a well-connected user can reach to many users. But the existing  
 5 followers may not be the targeted users during an emergency, thus not creating sudden burst in new  
 6 connections (friends, followers etc.) as study (Myers & Leskovec, 2014) shows that information diffusion  
 7 creates sudden burst in new connections. For that reason, we have used new follower gain as attention and  
 8 existing followers as one of the factors. To measure the performance of the users in gaining attention, we  
 9 use a metric called as *efficiency*. As shown in Equation (1), efficiency  $\eta$  of a user  $u$  for the time frame  
 10 ( $t_i$  to  $t_j$ ) is defined as the ratio between total attention received and total activity performed within that  
 11 time frame.

$$12 \quad \eta_u(t_i, t_j) = \frac{\sum_{k=t_i}^{t_j} att_k(u)}{\sum_{k=t_i}^{t_j} act_k(u)} \quad (1)$$

13 where  $att_k(u)$  and  $act_k(u)$  represent, in time period  $k$  by user  $u$ , attention gained and activities posted,  
 14 respectively.

15 Although, equation similar to (1) are commonly used in fields like physics and economics, Vaca  
 16 et al. (Vaca et al., 2014) used this term in a social media setting. Unlike most of the fields where  
 17 efficiency is upper bounded to 1, it can take any value. Higher efficiency values indicate better  
 18 engagement and higher influence in social media communication.

#### 19 **4.2 Extraction of User Features**

20 From raw data, for all the tweets of each unique user activity frequency, initial follower count, initial  
 21 followee count, total follower received, total followee added by the user and efficiency metrics were  
 22 computed for a selected time interval. To measure the regularity of a user's activity approximate entropy  
 23 of activities has been estimated. Approximate entropy is a statistical parameter that can quantify the

1 predictability or regularity of a time series data. A repetitive pattern of fluctuation in a time series makes  
2 it more predictable than a time series without such patterns. Approximate entropy calculates the  
3 likelihood that similar patterns of observation will not be found in the data in the subsequent observations.  
4 Thus, a higher value of approximate entropy implies less regularity and a smaller value indicates strong  
5 regularity (W.-S. Kim, Yoon, Bae, & Soh, 2005). Approximate entropy has been used in many fields such  
6 as medical data (Srinivasan, Eswaran, & Sriraam, 2007), finance (S. Pincus & Kalman, 2004),  
7 psychology (SM Pincus & Goldberger, 1994), complex system analysis (PINCUS, 1991) etc. Daily  
8 activity frequencies of a user for the whole analysis period were used as an input. Approximate entropy  
9 was best fitted as it has low computational demand, applicable on small observation (points < 50) and can  
10 be applied in real-time. The detailed procedure of computing approximate entropy can be found in this  
11 study (Srinivasan et al., 2007). Furthermore, since a significant number of users are being operated  
12 autonomously (bot) (Ferrara, Varol, Davis, Menczer, & Flammini, 2014) , we have collected the bot score  
13 using truthy botornot-python API to evaluate whether a user account is controlled by human or machine  
14 (Davis, Varol, Ferrara, Flammini, & Menczer, 2016).

15 **4.3 Contributing Features to Efficiency**

16 To find the linear relationship between different variables and the outcome variable, univariate and  
17 multivariate linear regressions were fitted with the extracted variables. The general form of such models  
18 is shown in Equations (2) -(4).

19

20 
$$Y = \theta_0 + \theta_1 X + \varepsilon \quad (2)$$

21 
$$Y = \theta_0 + \theta_1 X + \theta_2 X^2 + \theta_3 X^3 + \varepsilon \quad (3)$$

22 
$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \dots + \theta_k X_k + \varepsilon \quad (4)$$

23

1        Here Y is efficiency, treated as a dependent variable; X, X<sub>1</sub>, X<sub>2</sub> etc. are the independent variables

2        affecting efficiency;  $\theta_0$  is a constant term; and  $\theta_1, \theta_2, \theta_3$  are the coefficients of the corresponding

3        variables. While univariate linear regression describes the relationship of each independent variable with

4        the dependent variable, a multiple linear regression model reveals the relationship of the combined effect

5        of the explanatory variables. The independent variables in the best models are considered as the most

6        influential and explanatory variables in determining efficiency. The best model is selected based on the

7        adjusted  $R$  squared value.

8        Users are categorized based on their aggregate efficiency during the whole period. Besides

9        understanding the effect of predictor variables in continuous change in efficiency, we estimate an ordered

10        logit model to understand the effect of the extracted features in predicting the category of the efficiency of

11        a user. An ordered logit or proportional odd model was chosen as the outcome variable is ordered from

12        low efficiency to high efficiency. This model gives the output as the probability or odd of falling an

13        outcome in an efficiency category. The basic equation (Derr, 2013; Torres-reyna, 2012; Washington, S.P.,

14        Karlaftis, M.G. and Mannering, 2010) for interpreting this model is given in Equation (5).

15

$$16 \quad \log \left[ \frac{p_i}{1-p_i} \right] = a_i + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_k x_k \quad (5)$$

17        where,  $p_i$  = probability of an outcome  $\leq i$

18         $a_i$  = intercept for outcome  $\leq i$

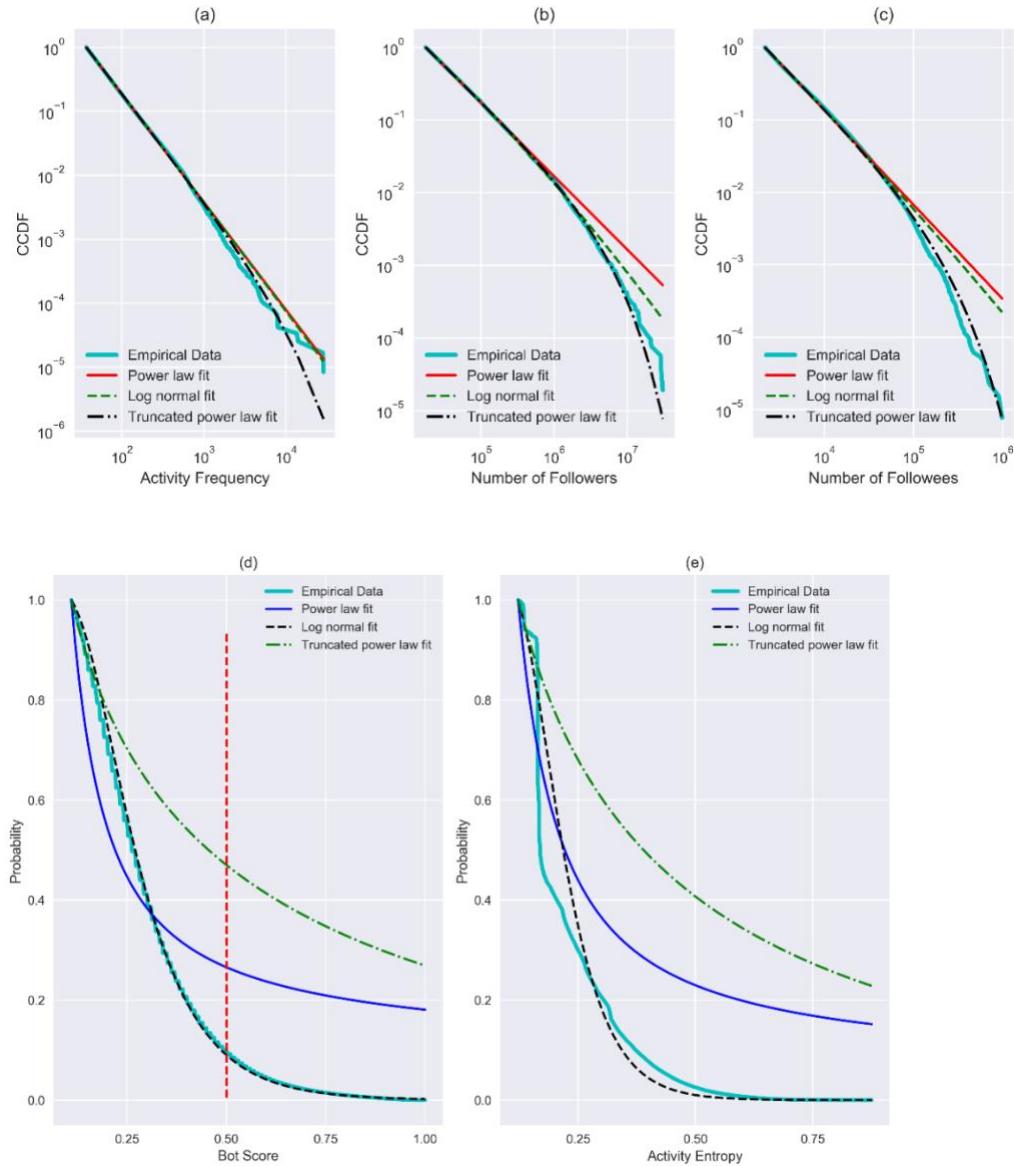
19         $b_1, b_2$ , etc. are the co-efficient whereas  $x_1, x_2, x_3$  are the explanatory independent variables. The best

20        model is selected based on its AIC value.

21        **5. Results**

## 1 5.1 Distributions of User Features

2 This section describes the features collected for a user. Figure 2 shows the distributions of activity,  
3 followers followees, bot score, and activity entropy found in the data.



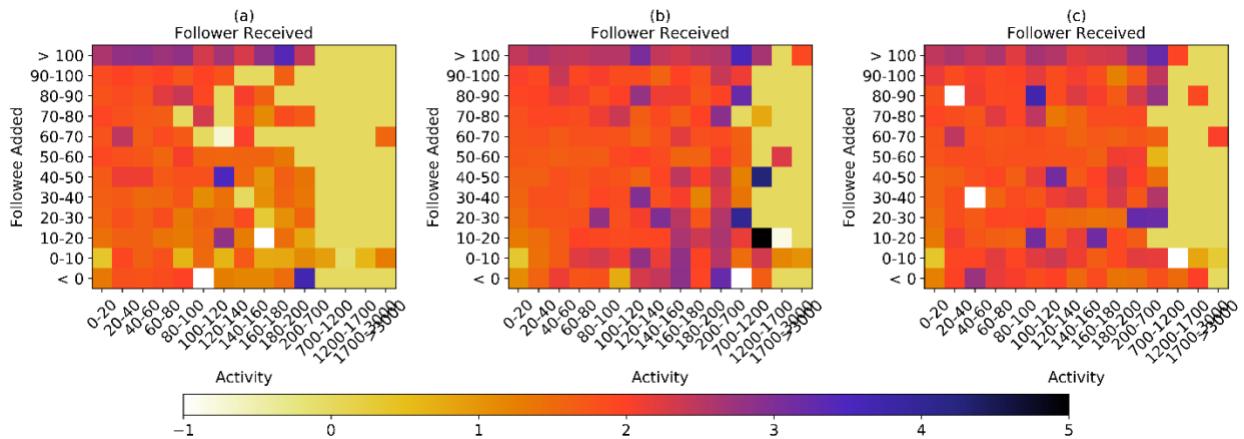
**Fig 2. (a) Activity, (b) Follower , (c) Followee Distributions (d) Bot Score and (e) Activity Entropy.**

Both X axis and Y axis are plotted in log scale for (a), (b), and (c). Counter cumulative probability (CCDF) is plotted in Y axis which represents the probability of a value  $x$  of being greater than the corresponding value in X axis. Both X axis and Y axis are plotted in normal scale for (d) and (e).

1        Here the follower and followee counts are based on the counts when a user was first observed in  
 2        the data set. The activity distribution is based on the total number of tweets observed during the whole  
 3        period in our dataset. Bot score and activity entropy distribution are plotted using values from 646,563  
 4        users. A bot score represents the likelihood of being a bot. An extreme value (0 or 1) represents more  
 5        confidence of the bot-ness of the user. Higher the value, higher the likelihood of being a bot. In our study,  
 6        we have used 0.5 as a threshold to separate bot-like behavior.

7        The empirical distributions of activity, initial followers and followees were best fitted to truncated  
 8        power law among the fitted distributions shown in Figure 2(a), (b) and (c). For bot score and activity  
 9        entropy, empirical distributions are best fitted to log-normal distribution. Log likelihood ratio tests were  
 10      used to find the goodness of fit for the fitted power law, lognormal and truncated power law distributions.

11  
 12      **5.2      Correlations between Activity and Attention**  
 13      Activity frequency and followee added play roles in gaining attention. Attention gains may also vary over  
 14      time and context. Figure 3 shows attention gains for different ranges of activities in pre, during and post  
 15      disaster periods. Though the duration of pre (9 days), during (10 days) and post (10 days) periods disaster  
 16      are almost same, followers received is the highest during disaster period compared to other two periods  
 17      (compare the maximum values of the z scales in Figure 3).



18

1 Fig 3. Correlations between Activity and Attention in (a) Pre-Disaster Period (Oct 14, 2012 to Oct 22,  
2 2012), (b) During Disaster (Oct 23, 2012 to Nov 1, 2012) Period and (c) Post Disaster Period (Nov 2,  
3 2012 to Nov 11, 2012). The X-axis and Y-axis represent the range of number of tweets and number of  
4 followees, respectively. The Z axis shows the average number of followers received by the users falling in  
5 the corresponding x and y bin as color intensity. The Z axis values are shown in log scale.

6

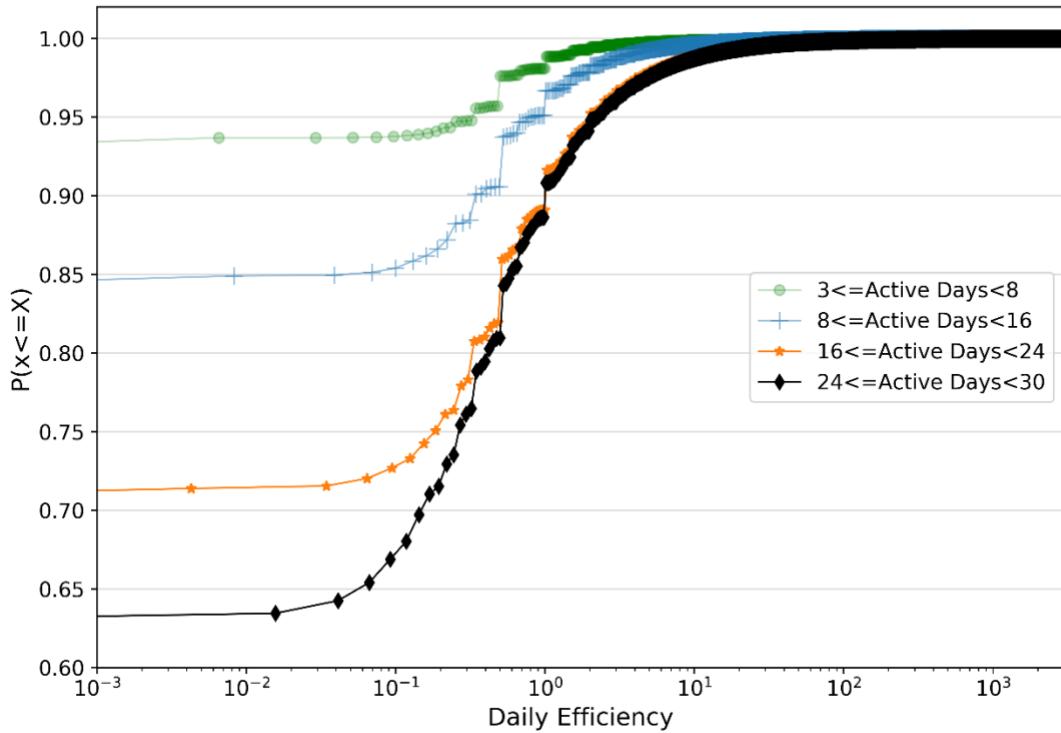
7 In general, we do not observe any particular trend between activity frequency and gaining  
8 attention in the pre and post-disaster periods. Unlike pre and post disaster periods, during the disaster,  
9 higher activities tend to help gaining higher attention. Very high activity frequencies (activity>700) in pre  
10 and post disaster periods are not necessarily associated with a high number of followers received. During  
11 pre and post disaster periods, users with activity frequency less than 700 have received the highest  
12 number of followers (black rectangles in Figure 3); whereas during the disaster, the highest number of  
13 followers was gained for a user with activity frequency greater than 700. Followee added less than 100  
14 has no impact in gaining attention but users adding followees greater than 100 have received higher  
15 attention during all the three phases. Another observation is that, the highest number of followers received  
16 in three phases occurred for the users with activities greater than 100. To study more in depth, we have  
17 studied user daily and aggregate efficiency based on different features and categories at different phases.

18

### 19 **5.3 User Efficiency Analysis**

20 Daily efficiency of a user is calculated by dividing the total follower gain by the total number of tweets of  
21 that day. Similarly, aggregate efficiency is calculated by dividing total daily follower gain by the total  
22 tweet in that period. Users are categorized based on their active days. Only the users who had at least one  
23 activity on each of the three periods (pre, during, post disaster) are selected in these categories. Figure 4  
24 shows the daily efficiency distribution for the users categorized by their active days. It is found that a

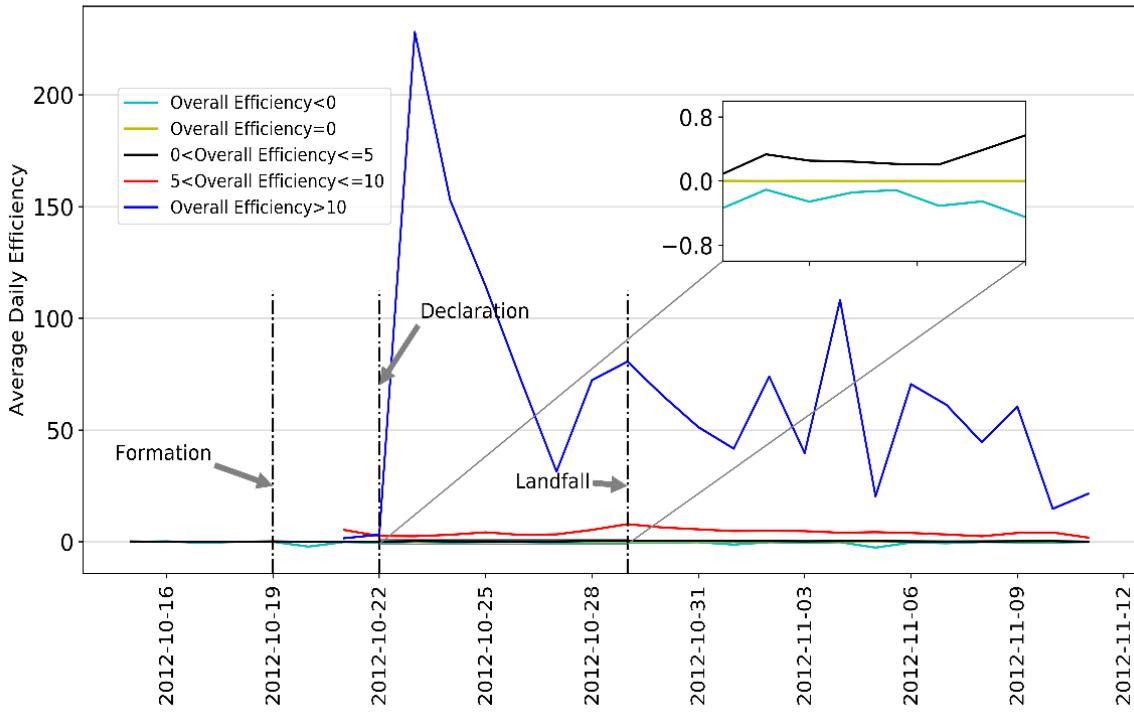
1 significant number of users have daily efficiency value equal to or less than zero. As the number of active  
2 day increases, the probability of having a user with efficiency less than or equal to zero decreases. It also  
3 shows that the probability of having efficiency less than or equal to zero is maximum for the users who  
4 were active less than 8 days. Although, the probability of having daily efficiency greater than 10 is low  
5 across all category of users, this probability increases as the number of active days for a user increases.



6  
7 **Fig 4. Daily Efficiency Distribution for the Users Categorized by Active Days.** X-axis shows the daily  
8 efficiency and Y-axis shows the cumulative probability which means the probability of being daily  
9 efficiency is equal or less than of the corresponding daily efficiency of X-axis. X-axis are plotted in log  
10 scale.

11

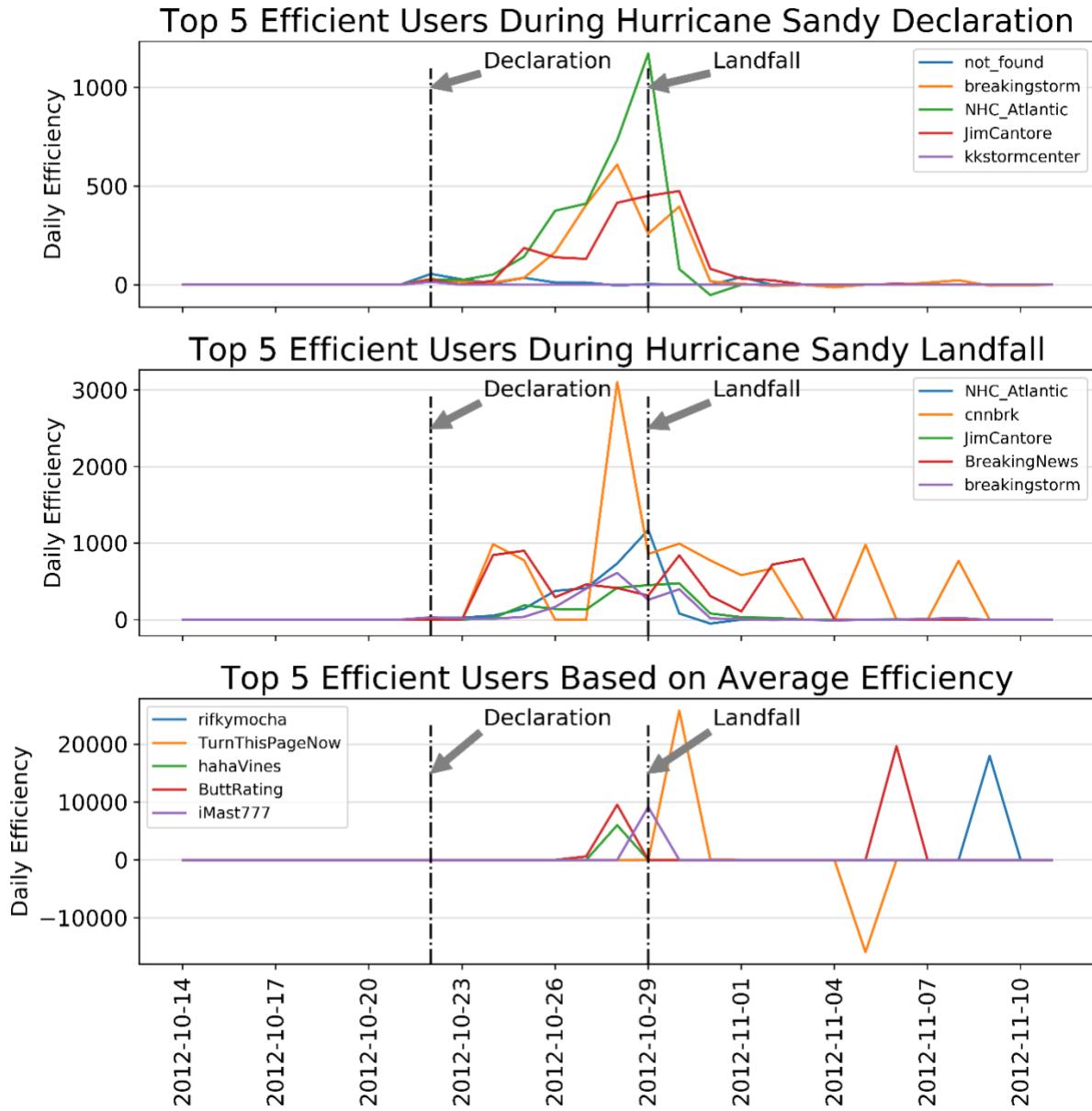
1 We further investigate, for each user, how daily efficiency varies over time. To find if there is any  
2 trend in the data, we have categorized users based on their overall efficiency values (i.e., ratio of sum of  
3 daily attention and activity measured over the whole observation period). We calculate average daily  
4 efficiency by taking the average of the daily efficiencies of the users for a particular category. For  
5 hurricane related tweets, average daily efficiency for the first two categories (overall efficiency less than  
6 or equal to zero) does not change that much (see the inset plot in Fig S1). But daily efficiency for the  
7 highly efficient users provide an interesting insight. Users had higher values of average daily efficiency  
8 during hurricane declaration and landfall days (Fig S1). The spikes on hurricane declaration and landfall  
9 days indicate that some users received higher attention for their activities on those days. But this trend  
10 shows a significant number of spikes even before the formation of Sandy and also long after its landfall.  
11 This indicates that some users might be gaining attention due to tweets unrelated to Sandy. To confirm,  
12 we analyze only Sandy related tweets (having ‘sandy’ within the text of the tweet) and found that  
13 efficiency was maximum just after the declaration day (October 23,2012) and decayed readily with a  
14 spike at landfall date (see Fig 5). It indicates that users were highly efficient in spreading the awareness  
15 about Sandy on the day after its declaration. We do not observe any efficiency curve before declaration  
16 because the term ‘sandy’ was not present before declaration.



**Fig 5. Average Daily Efficiency of the users categorized by efficiency values (for Sandy specific tweets).** X-axis shows the time in date and Y-axis shows the average daily efficiency. Users are categorized by their overall efficiency values.

6 To determine what type of users became highly efficient spreading the awareness during  
7 hurricane declaration and landfall, we extract the top 5 efficient users for both hurricane related tweets  
8 and Sandy specific tweets. Fig S2 shows the daily efficiency values for the top 5 efficient users on  
9 hurricane Sandy declaration and landfall days and top 5 efficient users over the whole data coverage  
10 period. We find that majority of them are either political users or have no significant association with  
11 hurricane updates (see Table S1). However, analysis on Sandy specific tweets reveals significant spikes  
12 close to landfall day (see Fig 6). We find that these highly efficient users are either storm update centers  
13 or weather reporter having close association with hurricane updates (see Table S2). It highlights the  
14 importance of an appropriate filtering step when identifying highly efficient users, specific to a disaster.

1 Tweets collected for a general disaster context may contain ambiguous words (e.g., power, weather,  
 2 recovery etc.) overlapping with other highly conversed contexts.



3

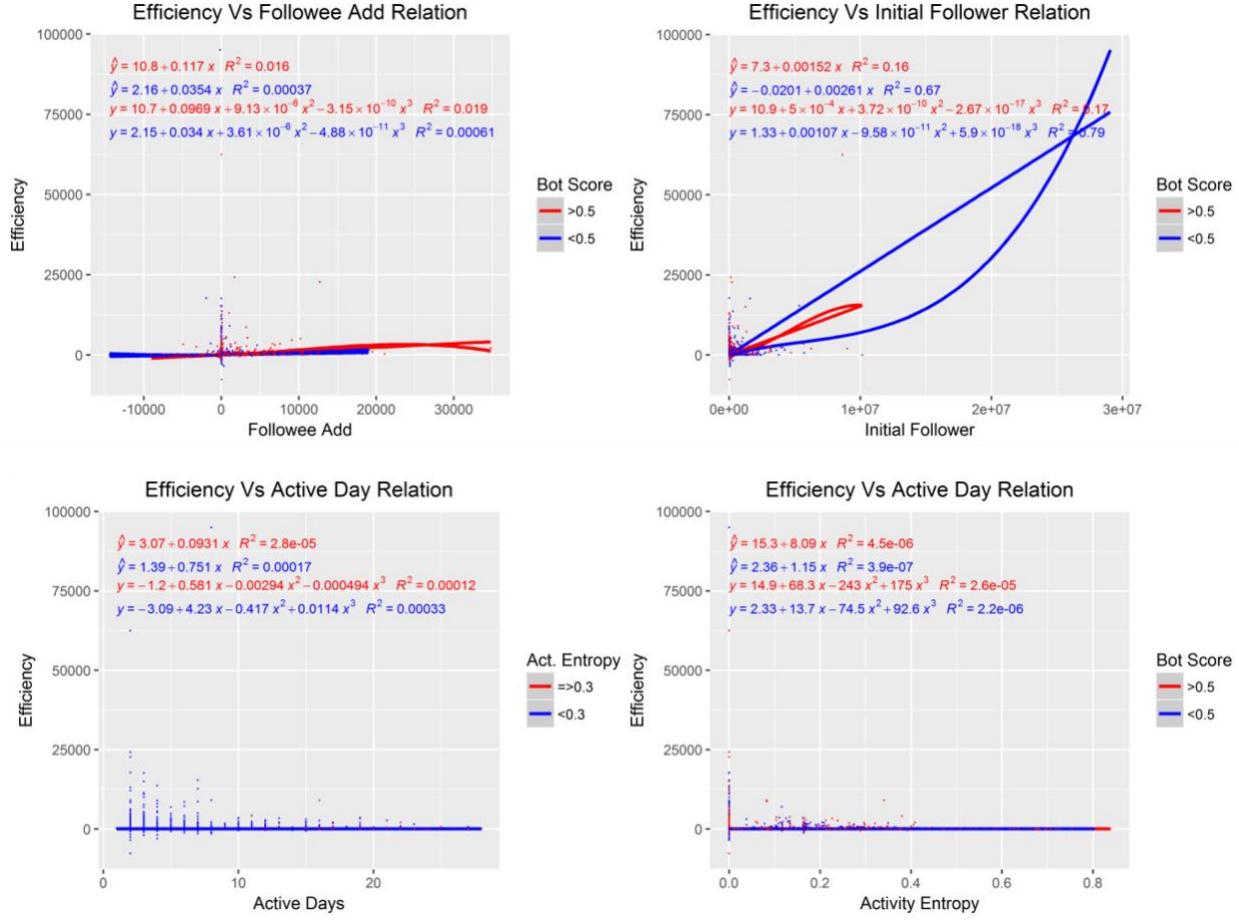
4 Fig 6. Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for Sandy specific  
 5 tweets)

6

1    **5.4    User Attributes Contributing to Efficiency**

2    To identify the contributing factors for an efficient spreading of awareness, it is important to know the  
3    relationship between each feature and efficiency metric. Similar to the previous section, we analyze  
4    separately for hurricane related and Sandy specific tweets for understanding the factors in gaining  
5    attention in crisis communication. For hurricane related tweets, Fig 7 shows the relationship between  
6    efficiency and each of the variables of followee add, initial follower and initial followee, considering two  
7    types of users: bot (bot score  $\geq 0.5$ ) and non-bot (bot score  $< 0.5$ ). In addition, the relationship between  
8    efficiency and active days has been modeled considering user categories based on activity entropy. The  
9    result shows good correlation ( $R^2 > 0.5$ ) between efficiency and initial follower for the non-bot users.  
10   From Figure 7, we find that efficiency is positively associated with all the variables. In all cases,  $R^2$  values  
11   are lower for bot users compared to non-bot users. This reflects that efficiency of bots cannot be well  
12   predicted with a single variable. Similar associations have been found for Sandy specific tweets (see S3  
13   Fig).

14



2 Fig 7. Correlations between Efficiency and Different User Attributes (for hurricane related tweets)

3 To determine the combined effects of the explanatory variables, we estimate a multivariate linear  
 4 regression model. We have used an interaction term to capture the additional effect on efficiency of a  
 5 non-bot user (bot score  $<0.5$ ) compared to a bot user (bot score  $>0.5$ ). Table 1 presents the results of the  
 6 model involving hurricane related tweets. All the variables are significant at 90 percent significance level.  
 7 It is found that efficiency increases with initial number of followers ( $0.002$ ), bot score of bot users  
 8 ( $11.622$ ), initial number of followee of non-bot users ( $-0.004 + 0.007 = 0.003$ ); while it decreases with total  
 9 activity ( $-0.039$ ), initial number of followees of bot users ( $-0.004$ ), bot score of non-bot users ( $11.622 -$   
 10  $14.419 = -2.797$ ). A negative coefficient ( $-36.754$ ) for activity entropy implies that entropy values have  
 11 negative correlation with efficiency and users having a predictable activity pattern (lower entropy values)  
 12 have higher efficiency values. The model estimated over Sandy specific tweets show similar results (see

1 Table S3) except that total activity is not statistically significant in this case and bot score (*1.053 for bot*  
 2 *user, 1.053+0.521=1.573 for non-bot user*) and activity entropy (*0.704*) are positively correlated with  
 3 efficiency.

4 From the regression analysis, we find how different user features influence a user's efficiency.  
 5 However, while considering overall efficiency as an outcome, a minor change in efficiency does not  
 6 provide any significant information about the user's performance in gaining attention. Thus, we have  
 7 categorized efficiency into five classes: negative (efficiency<0), zero (efficiency=0), low  
 8 (0<efficiency<=5), moderate (5<efficiency<=10) and high (efficiency>10) as shown in Figure 5. The  
 9 outcome variable thus turned into an ordered categorical variable. In the hurricane related sample about  
 10 6%, 56%, 32%, 3%, and 3% of the users fall within the negative, zero, low, moderate and high efficiency  
 11 category, respectively. We have estimated an ordered logit model using the same 582605 observations  
 12 (see Table 1). All the parameters shown in the results are statistically significant at 99% significance  
 13 level.

14 TABLE 1 Model Results for hurricane related tweets

| <b>Linear Regression Model</b> |           | <b>Ordered Logit Model</b> |           |                      |
|--------------------------------|-----------|----------------------------|-----------|----------------------|
| <b>Explanatory variable</b>    | Parameter | t statistic                | Parameter | Odds Ratio Estimates |
|                                | Estimate  |                            | Estimate  | Point                |
| <b>Intercept 5</b>             | na        |                            | -5.0145   |                      |
| <b>Intercept 4</b>             | na        |                            | -4.2164   |                      |
| <b>Intercept 3</b>             | na        |                            | -1.1988   |                      |
| <b>Intercept 2</b>             | na        |                            | 2.2357    |                      |
| <b>Constant</b>                | 0.758     | 1.712                      | Na        |                      |

|                                 |         |         |           |       |       |       |
|---------------------------------|---------|---------|-----------|-------|-------|-------|
| <b>Total activity</b>           | -0.039  | -6.767  | -0.0110   | 0.989 | 0.989 | 0.989 |
| <b>Followee add</b>             | 0.098   | 77.845  | 0.00926   | 1.009 | 1.009 | 1.009 |
| <b>Initial follower</b>         | 0.002   | 698.21  | 1.000     | 1.000 | 1.000 | 1.000 |
| <b>Initial followee</b>         | -0.004  | -53.3   | 1.000     | 1.000 | 1.000 | 1.000 |
| <b>Active days</b>              | na      |         | 0.2951    | 1.343 | 1.340 | 1.347 |
| <b>Activity entropy</b>         | -36.754 | -15.493 | -1.9523   | 0.142 | 0.128 | 0.157 |
| <b>Bot score</b>                | 11.622  | 9.793   | -0.3974   | 0.672 | 0.648 | 0.697 |
| <b>Bot_Score*NonBotUser</b>     | -14.419 | -10.041 | Na        |       |       |       |
| <b>Initial_followee*NonBotU</b> | 0.007   | 37.423  | Na        |       |       |       |
| <b>ser</b>                      |         |         |           |       |       |       |
| <b>Number of observations</b>   | 582,605 |         | 582,605   |       |       |       |
| <b>Adjusted R<sub>2</sub></b>   | 0.47    |         |           |       |       |       |
| <b>AIC</b>                      |         |         | 1244359.6 |       |       |       |

1 Note: na= not applicable, any variable included in one mode but not included in the other one is because  
 2 we did not find it significant.

3 For the interpretation of this result, a negative coefficient of total activity (-0.0110) indicates that  
 4 if all other variables in the model remain constant, for an increase in the number of tweets, a user is more  
 5 likely to be in a lower level of efficiency. Similar to the results from the regression model, users with a  
 6 predictable tweeting pattern (-1.9523), (i.e., smaller entropy value) are more likely to be in a higher  
 7 efficiency category. Moreover, we find that users with higher number of active days (0.2951) and followee  
 8 added (0.00926) are more likely to be in a higher category of efficiency. In contrast, users with higher total  
 9 activity (-0.0110) and bot score (-0.3974) are less likely to be in higher category efficiency. An ordered  
 10 Logit model estimated over the Sandy specific tweets shows similar association except that total activity is  
 11 not statistically significant and activity entropy is positively correlated with efficiency (see Table S3). A

1 higher number of initial follower (1.00) or initial followee (1.00) does not result in higher or lower  
2 efficiency category for both hurricane related and Sandy specific tweets.

3 **6. Discussion**

4 During a hurricane, affected people turns to social media for updates and assistance from individuals and  
5 organizations. In addition, emergency management agencies use social media to organize and direct  
6 resources where needed. These interactions among social media users and agencies create dynamics in  
7 communication that varies over different phases of a disaster. We explore the dynamics of crisis  
8 communication using hurricane Sandy Twitter data. We define an efficiency metric as the ratio between  
9 attention received (gaining new followers) and activity (posting tweets/retweets) in a given time interval.  
10 From the activity-attention analysis, we find that higher ( $>100$ ) followee addition causes higher attention  
11 (follower received) in all three (pre-disaster, during disaster and post-disaster) phases of a hurricane. High  
12 reciprocity (e.g., mutual follower-followee relationship) among social media users might be responsible  
13 for such attention gain. For instance, during a hurricane, individuals may follow each other to get updates  
14 and to get connected for taking common decisions (e.g., evacuation) (Sadri, Hasan, & Ukkusuri, 2017).

15 In social media platforms, all users may not get equal attention for their activities. Based on the  
16 efficiency values, we categorize five (negative, zero, low, moderate, high) types of Twitter users.  
17 Majority of the users in our dataset are in the first three categories (negative, zero, low). A negative  
18 (overall efficiency  $<0$ ) value of the efficiency metric means that the user lost followers during the analysis  
19 period. This also confirms previous studies (Myers & Leskovec, 2014) that information diffusion creates  
20 sudden burst in creating new connections or deleting existing connections. The zero (overall efficiency  
21  $=0$ ) efficiency category represents no change in attention dynamic despite their activities  
22 (tweeting/retweeting). The low ( $0 < \text{overall efficiency} \leq 5$ ) and moderate ( $5 < \text{overall efficiency} \leq 10$ )  
23 efficiency categories, however, do not show any trend in the efficiency dynamics during different phases  
24 of the hurricane. For high efficiency (overall efficiency  $> 10$ ) category, the dynamics of efficiency metric  
25 shows that efficiency is the highest just after the official declaration of a hurricane (see Figure 5), which

1 indicates the promptness of public reaction and participation in information sharing or consumption  
2 during an upcoming disaster. After the highest peak, the efficiency of the highly efficient users has a  
3 decreasing trend with a peak on landfall day and some peaks in the recovery period (see Figure 5). This  
4 shows that highly efficient users have consistently gained attention from a pre-disaster period to a post-  
5 disaster period with the most attention gained right after the hurricane declaration.

6 Individuals are likely to follow those users who post relevant news and updates. Investigating the  
7 users who made Sandy specific tweets (see Table S2), we find that majority of the top 5 efficient users are  
8 storm related organizations, that post relevant news and information about the hurricane. This confirms  
9 our hypothesis that individuals follow users who publishes relevant updates about the hurricane. In case  
10 of unfiltered data, top 5 users (see Table S1) are mostly political users (political campaign of US  
11 presidential election 2012 was going on at that time). This finding also indicates the importance of  
12 appropriate filtering to retrieve more relevant information from social media data.

13 We have estimated models to determine the key attributes that make a user more efficient in  
14 gaining attention in an emergency situation. Our estimated models show that higher activity frequency is  
15 likely to decrease efficiency, which is similar to the findings of this study (Vaca et al., 2014) on  
16 microblogging data. We have also found that increasing followee is likely to increase the efficiency of  
17 gaining attention, similar to the finding of this study (Cha, Haddai, Benevenuto, & Gummadi, 2010) that  
18 influential users need to maintain constant engagement. Initial number of followers has a positive (very  
19 small coefficient) effect in the regression model but does not result in higher or lower efficiency category  
20 in the logit model (odds ratio =1), indicating that a higher number of initial followers may increase  
21 efficiency but not enough to change the efficiency category. A previous study (Cha et al., 2010) also  
22 found that a high number of initial followers may represent popularity but not in terms of user  
23 engagement.

24 Interestingly, in the regression model initial number of followee has a positive coefficient for a  
25 non bot user but a negative coefficient for a bot user. It indicates that for an individual user (operated by a

1 human) a higher number of initial followee helps gain attention. But for a bot user (e.g., an organizational  
2 account), a higher number of initial followee has a negative effect in gaining efficiency. However, in  
3 terms of efficiency category, initial followee does not result in higher or lower efficiency category in the  
4 logit model (odds ratio=1).

5 From the estimated models, bot score shows mixed results for hurricane related tweets and Sandy  
6 specific tweets. For Sandy specific model, bot score has a positive coefficient for gaining efficiency,  
7 which indicates the potential of using a bot account to generate, response, and share hurricane specific  
8 content during a disaster to gain higher efficiency. However, for hurricane related tweets, bot score has a  
9 positive coefficient for bot users, but a negative coefficient for non-bot users. It means that an account  
10 which is already acting like a bot is likely to have higher efficiency by increasing bot-like hurricane  
11 related activity. In contrast, a non-bot account is likely to have lower efficiency for increasing bot-like  
12 activity related to hurricane.

13 In addition, for the Sandy specific model, active days and activity entropy have negative and  
14 positive coefficients, respectively. This implies that less active days with irregular but specific topic  
15 focused posts are likely to help gaining efficiency. On the other hand, from the hurricane related model,  
16 we see that active days and activity entropy have positive and negative coefficients, respectively. This  
17 means that more active days with regular hurricane related posts are likely to help gaining efficiency. As  
18 hurricane related contents contain a lot of topics, regular and predictive activity pattern related to  
19 hurricane can help maintaining constant engagement, an important factor for influence as found in other  
20 studies (Cha et al., 2010) .

21 In summary, the results of this study indicate the nature and dynamics of efficiency of attention  
22 gain from a pre-disaster period to a post-disaster period. These findings also shed light on the important  
23 factors to gain efficiency—adding valuable insights to social-mediated crisis communication theory and  
24 literature. Practitioners such as emergency managers and public-relation managers can also find

1 implications towards adopting better communication strategies. A detailed discussion on the contribution  
2 and practical implications of our results are given in the following sections.

3 **6.1 Contributions to theory/literature**

4 Social media usage during disasters has changed the way how organizations manage crisis  
5 communication. People are increasingly using social media during a crisis and thus crisis communication  
6 professionals need to understand—how to optimize activity and engagement to maximize the spreading of  
7 situational awareness messages. In addition, monitoring and responding to the content of influential social  
8 media creators are important to efficiently communicate with the targeted people, correcting any  
9 misinformation and rumors. Thus, interconnection among the organization, influential social media  
10 creators and the followers are a very important component in the social-mediated crisis communication  
11 (see Figure 1). To date, in the context of blog mediated crisis communication model, few studies (Liu et  
12 al., 2012) investigated the metrics to evaluate the influence of a blog. These metrics include blog  
13 characteristics, blogger credibility, interconnectivity, frequency of updates, consistency with the  
14 organization’s crisis response, etc. However, these studies mainly focus on typical blogsphere content  
15 and are not tuned for social media platforms such as Twitter, Facebook etc. Recent studies on social  
16 media influence mainly focus on the content not on the users. In our study, we have proposed a simple  
17 attention-based efficiency measure and have considered features such as activity frequency, activity  
18 pattern, active days, number of friends and followers, followee add, bot score etc. to identify efficient  
19 users. Here, the features, activity frequency and number of friends/followers in social media contexts can  
20 be considered similar to frequency of updates and inter-connectivity in the context of blogs. Many  
21 organizations use Twitter bot for tweeting, reposting, and messaging now a days. We adopt the bot score  
22 feature in our study to capture the effect of automation level in gaining attention efficiency. This study  
23 thus provides an empirical evidence on the dynamics of efficiency from a pre-disaster to a post-disaster  
24 period. It also provides insights on the influence of different efficiency factors that can help better  
25 understand social mediated crisis communication.

1      **6.2 Implications for Practice**

2      This study also provides valuable insights for practitioners such as crisis communication and public  
3      relation managers. From efficiency dynamics, we can understand when influential users get more  
4      attention (see figure 5). Crisis managers should monitor social media more during these times to ensure  
5      dissemination of authentic and most recent news. The findings from the contributing factors analysis  
6      provide insight about activity optimization strategies to get more attention during crisis communication.

7      Some of the implications of this study are given below

8              Activity Frequency: Influential individuals and relevant organizations post (tweet) or repost  
9      (retweet) about different situational awareness during a disaster. These users need to optimize their  
10     posting frequency as increased activity frequency has a negative effect in gaining attention efficiency (see  
11     Table 1 and Table s3). Crisis managers thus need to maintain their activity only to post meaningful  
12     updates rather than posting redundant and unimportant messages.

13              Followee add: A crisis communication manager aims to maximize the information spreading to as  
14     many new users as possible. The crisis manager also needs to monitor social media content to prevent  
15     misinformation/rumors. We have found that followee addition has a positive effect in getting attention  
16     efficiency. So, a crisis manager can follow other users during a crisis, especially the influential users, who  
17     are likely to help gain more attention to emergency messages.

18              Initial follower: A highly connected user can reach to many users and thus can disseminate  
19     information to a larger audience. We have found (see Table 1 and Table s3) that a high number of initial  
20     followers are likely to help to be efficient in gaining attention from the users who are not a follower yet.  
21     An organizational account with a greater number of followers is more likely to spread information faster.  
22     Similarly, a crisis communication manager can monitor users with high connectivity (followers) as these  
23     users are likely to be the influential users during a crisis.

1                   Bot Score: Social bots are programmed to create posts in social media platforms autonomously.  
2                   Approximately 15 percent of Twitter accounts are bots rather than humans (Newberg, 2017). Although  
3                   there are evidences that social bots have been used to manipulate public opinion, creating false impression  
4                   and misinformation especially during elections, a social bot has many good applications such as  
5                   disseminating weather news, crisis information, evacuation alerts etc. During emergencies a social bot can  
6                   disseminate information about situational awareness and respond to the users seeking help or information.  
7                   During emergencies, social media managers handle unprecedented amount of activities, and because of  
8                   lack of trained personnel only few people work hard to manage the activities during such events (Oyeniyi,  
9                   2017). The main task of a social media crisis manager is to disseminate information by posting in social  
10                  media platforms (Oyeniyi, 2017). Social bots can reduce the workload during crisis by automating some  
11                  of the routine tasks so that a crisis manager can monitor social media posts to reduce  
12                  misinformation/rumors. According to our findings, bot score has a positive effect in gaining efficiency for  
13                  bot users (bot score  $> 0.5$ ) (see Table 1 and Table S3)—suggesting that users having bot characteristics  
14                  are more likely to be efficient in gaining attention. If a user account/organization has a high bot score or  
15                  already using automation, using social bots to generate and disseminate messages are likely to help gain  
16                  more attention from new users (not follower yet). However, for a non-bot user (bot score  $< 0.5$ ), bot score  
17                  has a mixed effect (see Table 1 and Table S3). Thus, if an emergency manager uses a non-bot account to  
18                  disseminate information, adopting a social bot may not help gain higher attention efficiency (see Table  
19                  S3).

20                  **7.      Conclusions**

21                  In this study, we have analyzed twitter posts related to hurricane Sandy to understand the effectiveness of  
22                  social media-based communication during disasters. Effective crisis communication can ensure faster  
23                  information dissemination to vulnerable communities who need timely information about disaster  
24                  preparedness, evacuation warning, and recovery operations. To measure the effectiveness of a social  
25                  media user in communicating information or awareness, we have estimated the efficiency of gaining

1 attention within a specific time period as the ratio of follower gained over tweet frequency within the  
2 same time period. We consider that new follower gained represents attention received and tweet  
3 frequency represents activities made. As our data contains tweets from both pre and post-disaster periods,  
4 a comparison of user efficiencies in gaining attention among these periods has been possible.

5 Analyzing daily efficiencies in gaining attention, we have found that users had higher efficiency  
6 during the critical periods in hurricane Sandy such as declaration and landfall days. This indicates the  
7 potential of social media-based crisis communication since higher attention to related information may  
8 help in providing situational awareness to vulnerable population. It might be the case that during Sandy  
9 some users' efficiency became abnormally high because a high number of users started following them  
10 for hurricane related updates. These social media users could become one of the major sources of  
11 information for spreading hurricane awareness during future hurricanes.

12 During a disaster, general social media users seek information from other users for a timely  
13 update. When sharing information, some users gain more attention than the others. Thus, it's critical to  
14 understand what user features influence the process of gaining attention. For understanding the  
15 contributing features, we have estimated a regression and an ordered logit model considering overall  
16 efficiency and efficiency category, respectively as a dependent variable. We have found that higher  
17 activities relating to hurricanes are not necessarily associated with higher efficiencies. However, users  
18 with predictable tweeting patterns have gained higher efficiency values. We have also found that a higher  
19 bot score (typically associated with an organizational account) results in lower efficiencies. We have  
20 observed some differences on the effect of few user attributes on efficiency values for models estimated  
21 over general hurricane related tweets and Sandy specific tweets. User efficiencies in gaining attention for  
22 a crisis event are directly related with information spreading capacity of a system. A better understanding  
23 of the factors will provide insights on crisis communication both at organizational and individual levels.  
24 These insights will also help emergency agencies when using social media as a disaster communication  
25 tool.

1        Thus, our findings have significant importance in social media communication specially in  
2        disaster communication. For attaining high efficiency in spreading disaster related information, concerned  
3        organizational or personal accounts can plan their activity considering the factors which will maximize  
4        the chance to attain higher attention from the targeted population in social media. Also, prior to a major  
5        disaster event concerned authorities can select some efficient social media users for disseminating  
6        information about situational awareness; a model based on user features could find the efficient users for  
7        this task.

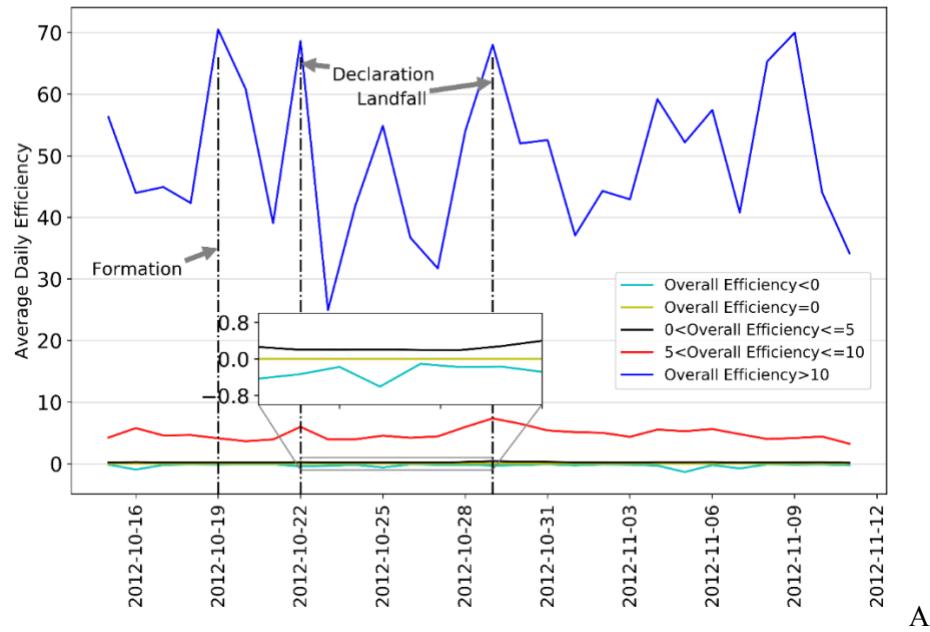
8        **7.1        Limitations and Future Research Directions**

9        Our study has several limitations which can be improved in future. For example, bot scores were not  
10        collected during the period of hurricane Sandy; rather we have collected them at the time of our analysis.  
11        Bot scores could be different during hurricane Sandy than in the present. We assume that all the tweets  
12        analyzed here were related to hurricane Sandy. User efficiency considering specific topics (e.g.,  
13        evacuation) of a tweet should be analyzed in the future. We have not checked the bot scores of the newly  
14        gained followers. The newly gained followers may be social bots instead of human accounts. Studies are  
15        needed to understand – how attention to situational awareness messages actually turn into action. For  
16        example, we need to investigate if information related to evacuation order is disseminated to affected  
17        people, how they respond to such orders. Finally, our results are based on only one event; data from  
18        multiple events should be analyzed to better understand the influence of social media during a crisis  
19        event.

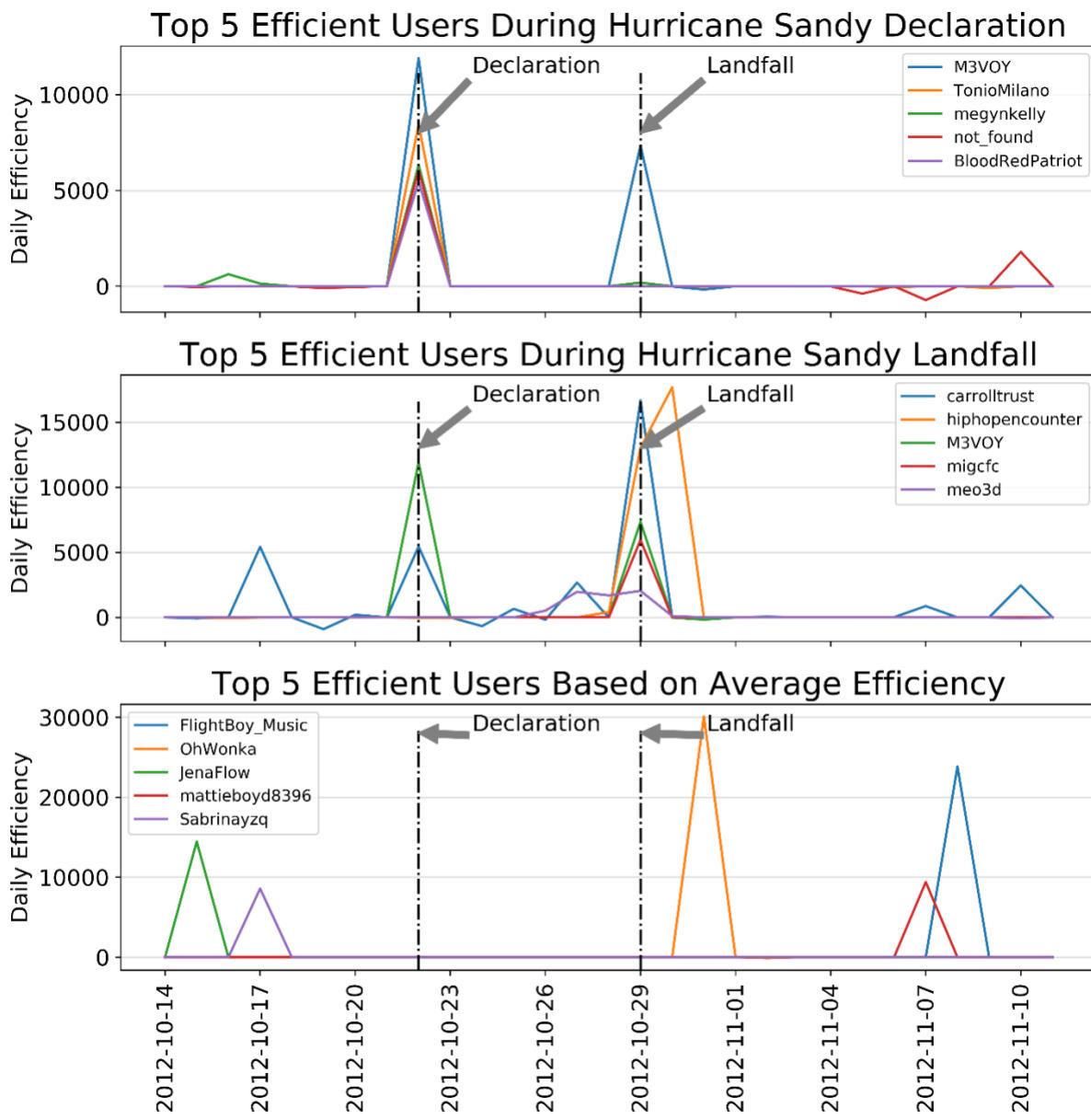
20        **Acknowledgment**

21        This work was supported by the U.S. Department of Transportation's University Transportation Centers  
22        Program and the U.S. National Science Foundation (Grant IDs CMMI #1832578 and #1917019). The  
23        authors are solely responsible for the facts and accuracy of the information presented in the paper.

1    **Supporting information**

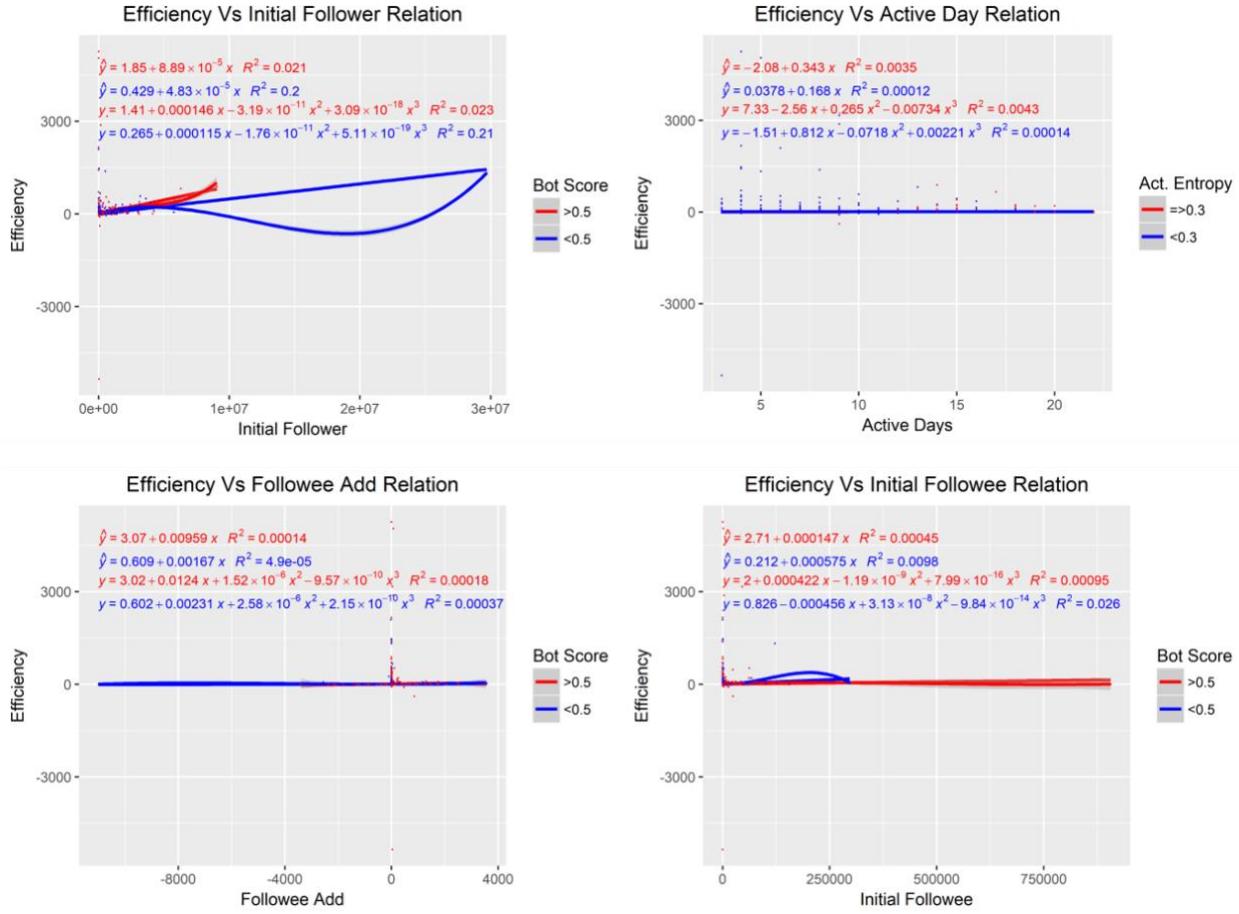


3    **Fig S1. Average Daily Efficiency of the users categorized by efficiency (for hurricane related**  
4    **tweets).** X-axis shows the time in date and Y-axis shows the average daily efficiency. Users are  
5    categorized by their overall efficiency values.



1

2 Fig S2. Top 5 Efficient Users during Hurricane Declaration, Landfall and Overall (for hurricane related  
3 tweets).



2 Fig S3. Relationship between Efficiency and Different User Attributes (for sandy specific tweets)

3

4 Table S1. Top 5 efficient users with user type and bot score during hurricane declaration and hurricane  
5 landfall. This analysis is based on the unfiltered (hurricane related tweets) data.

6

| Hurricane Declaration |                |           | Hurricane Landfall |              |           |
|-----------------------|----------------|-----------|--------------------|--------------|-----------|
| Screen Name           | User Type      | Bot Score | Screen Name        | User Type    | Bot Score |
| @M3VOY                | Radio Operator | 0.62      | @carrolltrust      | Organization | 0.43      |

|                         |                       |      |                  |              |      |
|-------------------------|-----------------------|------|------------------|--------------|------|
| <b>@TonioMilano</b>     | Personal              | 0.48 | @hiphopencounter | Organization | 0.76 |
| <b>@megynkelly</b>      | Anchor at<br>NBC News | 0.36 | @migcfc          | Personal     | 0.06 |
| <b>@BloodRedPatriot</b> | Organization          | 0.73 | @trio            | Organization | 0.55 |

1

2 Table S2. Top 5 efficient users with user type and bot score during hurricane declaration and landfall.

3 This analysis is based on the data which have the word sandy in the tweet.

4

| Hurricane Declaration |                            |           | Hurricane Landfall |                            |           |
|-----------------------|----------------------------|-----------|--------------------|----------------------------|-----------|
| Screen Name           | User Type                  | Bot Score | Screen Name        | User Type                  | Bot Score |
| <b>Not Found</b>      | NA                         | NA        | @NHC_Atlantic      | Organization               | 0.43      |
| <b>@breakingstorm</b> | Organization               | 0.66      | @cnnbrk            | Organization               | 0.51      |
| <b>@NHC_Atlantic</b>  | Organization               | 0.43      | @Jimcantore        | Broadcast<br>Meteorologist | 0.37      |
| <b>@Jimcantore</b>    | Broadcast<br>Meteorologist | 0.37      | @BreakingNews      | Organization               | 0.60      |
| <b>@kkstormcenter</b> | Weather<br>reporter        | 0.71      | @breakingstorm     | Organization               | 0.66      |

5 Note: Not found indicates that the user made tweets during Sandy but its screen name was not found

6 when searched during our analysis.

7

8 TABLE S3 Model Results for Sandy specific tweets

| Linear Regression Model       |           |             | Ordered Logit Model |                      |            |        |    |  |  |
|-------------------------------|-----------|-------------|---------------------|----------------------|------------|--------|----|--|--|
| Explanatory variable          | Parameter | t statistic | Parameter           | Odds Ratio Estimates |            |        |    |  |  |
|                               | Estimate  |             | Estimate            | Point                | 95% Wald   |        |    |  |  |
|                               |           |             |                     | Estimate             | Confidence | Limits |    |  |  |
| <b>Intercept 5</b>            | na        |             | -6.6001             |                      |            |        |    |  |  |
| <b>Intercept 4</b>            | na        |             | -3.7514             |                      |            |        |    |  |  |
| <b>Intercept 3</b>            | na        |             | 4.6505              |                      |            |        |    |  |  |
| <b>Intercept 2</b>            | na        |             | 5.3600              |                      |            |        |    |  |  |
| <b>Constant</b>               | -.073     | -.453       | na                  |                      |            |        |    |  |  |
| <b>Total activity</b>         | -0.001    | -1.265      | na                  | na                   | na         | na     | na |  |  |
| <b>Followee add</b>           | 0.003     | 5.411       | 0.00359             | 1.004                | 1.003      | 1.004  |    |  |  |
| <b>Initial follower</b>       | 0.0001    | 231.54      | 0.000035            | 1.00                 | 1.00       | 1.00   |    |  |  |
| <b>Initial followee</b>       | -6.85E-5  | -6.219      | -2.71E-06           | 1.000                | 1.000      | 1.000  |    |  |  |
| <b>Active days</b>            | na        |             | -0.1312             | 0.877                | 0.852      | 0.903  |    |  |  |
| <b>Activity entropy</b>       | .704      | 1.940       | 1.2244              | 3.402                | 1.726      | 6.708  |    |  |  |
| <b>Bot score</b>              | 1.053     | 3.735       | 2.115               | 8.289                | 5.227      | 13.145 |    |  |  |
| <b>Bot_Score*NonBotUse</b>    | .521      | 1.655       | na                  |                      |            |        |    |  |  |
| <b>r</b>                      |           |             |                     |                      |            |        |    |  |  |
| <b>Initial_followee*NonBo</b> | -5.27E-5  | -1.794      | na                  |                      |            |        |    |  |  |
| <b>tUser</b>                  |           |             |                     |                      |            |        |    |  |  |
| <b>Number of</b>              | 15,792    |             | 15,792              |                      |            |        |    |  |  |
| <b>observations</b>           |           |             |                     |                      |            |        |    |  |  |
| <b>Adjusted R<sub>2</sub></b> | 0.77      |             |                     |                      |            |        |    |  |  |
| <b>AIC</b>                    |           |             | 7513.390            |                      |            |        |    |  |  |

1 Note: na= not applicable, any variable included in one mode but not included in the other one is because  
2 we did not find it significant.

3

4

5

6 References

7

8 Aguirre, B. E., Wenger, D., & Vigo, G. (1998). A Test of the Emergent Norm Theory of Collective  
9 Behavior. *Sociological Forum*, 13(2), 301–320, Kluwer Academic Publishers-Plenum Publish.

10 Alalwan, A. A., Rana, N. P., Dwivedi, Y. K., & Algharabat, R. (2017). Social media in marketing: A  
11 review and analysis of the existing literature. *Telematics and Informatics*, 34(7), 1177–1190.

12 Ashley, C., & Tuten, T. (2015). Creative strategies in social media marketing: An exploratory study of  
13 branded social content and consumer engagement. *Psychology & Marketing*, 32(1), 15–27.

14 Asur, S., Huberman, B. A., Szabo, G., & Wang, C. (2011). Trends in Social Media: Persistence and  
15 Decay. *Proceedings of the 5th International AAAI Conference on Weblogs and Social Media*  
16 (*ICWSM'11*), 434–437. Retrieved from <http://arxiv.org/abs/1102.1402>

17 Bharosa, N., Lee, J., & Janssen, M. (2010). Challenges and obstacles in sharing and coordinating  
18 information during multi-agency disaster response: Propositions from field exercises. *Information*  
19 *Systems Frontiers*, 12(1), 49–65.

20 Blake, E. S., Kimberlain, T. B., Berg, R. J., Cangia, Losi, J. P., & Beven II, J. L. (2013). Tropical cyclone  
21 report Hurricane Sandy (AL182012) 22 – 29 October 2012. *National Weather Service, National*  
22 *Hurricane Center*, (October 2012), 1–157.

1 Cha, M., Haddai, H., Benevenuto, F., & Gummadi, K. P. (2010). Measuring User Influence in Twitter :  
2 The Million Follower Fallacy. *International AAAI Conference on Weblogs and Social Media*, 10–  
3 17. Retrieved from <http://www.icwsm.org/2010/>

4 Cha, M., Mislove, A., & Gummadi, K. P. (2009). A Measurement-driven Analysis of Information  
5 Propagation in the Flickr Social Network. *Proceedings of the 18th International Conference on*  
6 *World Wide Web*, 721–730. Retrieved from <http://doi.acm.org/10.1145/1526709.1526806>

7 Chae, J., Thom, D., Jang, Y., Kim, S., Ertl, T., & Ebert, D. S. (2014). Public behavior response analysis in  
8 disaster events utilizing visual analytics of microblog data. *Computers and Graphics (Pergamon)*,  
9 38(1), 51–60. Retrieved from <http://dx.doi.org/10.1016/j.cag.2013.10.008>

10 Chen, Y., Frei, A., & Mahmassani, H. (2014). From Personal Attitudes to Public Opinion : Information  
11 Diffusion in Social Networks towards Sustainable Transportation. *Transportation Research Record: Journal of the Transportation Research Board*, 2430, 28–37.

13 Chen, Y., Mahmassani, H. S., & Frei, A. (2017). Incorporating social media in travel and activity choice  
14 models: conceptual framework and exploratory analysis. *International Journal of Urban Sciences*,  
15 0(0), 1–21. <https://doi.org/10.1080/12265934.2017.1331749>

16 Comfort, L. K., Ko, K., & Zagorecki, A. (2004). Coordination in Rapidly Evolving Disaster Response  
17 Systems. *American Behavioral Scientist*, 48(3), 295–313. Retrieved from  
18 <http://journals.sagepub.com/doi/10.1177/0002764204268987>

19 Davis, C. A., Varol, O., Ferrara, E., Flammini, A., & Menczer, F. (2016). BotOrNot: A System to  
20 Evaluate Social Bots. *ArXiv*, : 1602.009. Retrieved from <http://arxiv.org/abs/1602.00975>

21 Demuth, J. L., Morss, R. E., Palen, L., Anderson, K. M., Anderson, J., Kogan, M., ... others. (2018).  
22 “Sometimes da# beachlife ain’t always da wave”: Understanding People’s Evolving Hurricane Risk  
23 Communication, Risk Assessments, and Responses Using Twitter Narratives. *Weather, Climate, and*

1        *Society*, 10(3), 537–560.

2        Derr, B. (2013). Ordinal Response Modeling with the LOGISTIC Procedure. *SAS Global Forum*, 1–20.

3        Dong, R., Li, L., Zhang, Q., & Cai, G. (2018). Information Diffusion on Social Media During Natural  
4        Disasters. *IEEE Transactions on Computational Social Systems*, 5(1), 265–276.

5        Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2014). The Rise of Social Bots. *ArXiv*  
6        *Preprint ArXiv:1407.5225*, (grant 220020274), 1–11. Retrieved from <http://arxiv.org/abs/1407.5225>

7        Figueiredo, F., Benevenuto, F., Almeida, J. M., Fabr, F. F., & Almeida, B. J. M. (2011). The tube over  
8        time: characterizing popularity growth of youtube videos. *Proceedings of the Fourth ACM*  
9        *International Conference on Web Search and Data Mining - WSDM '11*, 745–754. Retrieved from  
10        <http://portal.acm.org/citation.cfm?doid=1935826.1935925>

11        Hasan, S., Mesa-Arango, R., & Ukkusuri, S. (2013). A random-parameter hazard-based model to  
12        understand household evacuation timing behavior. *Transportation Research Part C: Emerging*  
13        *Technologies*, 27(January), 108–116. Retrieved from <http://dx.doi.org/10.1016/j.trc.2011.06.005>

14        Hasan, S., & Ukkusuri, S. V. (2014). Urban activity pattern classification using topic models from online  
15        geo-location data. *Transportation Research Part C: Emerging Technologies*, 44, 363–381.  
16        Retrieved from <http://dx.doi.org/10.1016/j.trc.2014.04.003>

17        Hasan, S., Zhan, X., & Ukkusuri, S. V. (2013). Understanding urban human activity and mobility patterns  
18        using large-scale location-based data from online social media. *Proceedings of the 2nd ACM*  
19        *SIGKDD International Workshop on Urban Computing - UrbComp '13*. Retrieved from  
20        <http://dl.acm.org/citation.cfm?doid=2505821.2505823>

21        Hong, L., Dan, O., & Davison, B. D. (2011). Predicting popular messages in Twitter. *Proceedings of the*  
22        *20th International Conference on World Wide Web (WWW)*, 57–58. Retrieved from  
23        <http://portal.acm.org/citation.cfm?doid=1963192.1963222>

1 Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In *Proceedings of the tenth ACM*  
2 *SIGKDD international conference on Knowledge discovery and data mining* (pp. 168–177).

3 Huang, C.-M., Chan, E., & Hyder, A. a. (2010). Web 2 . 0 and Internet Social Networking : A New tool  
4 for Disaster Management ? - Lessons from Taiwan. *BMC Medical Informatics and Decision*  
5 *Making*, 10(1), 57. Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/20925944>

6 Huang, Q., & Xiao, Y. (2015). Geographic Situational Awareness: Mining Tweets for Disaster  
7 Preparedness, Emergency Response, Impact, and Recovery. *ISPRS International Journal of Geo-*  
8 *Information*, 4(3), 1549–1568. Retrieved from <http://www.mdpi.com/2220-9964/4/3/1549/htm>

9 Jin, Y., & Liu, B. F. (2010). The blog-mediated crisis communication model: Recommendations for  
10 responding to influential external blogs. *Journal of Public Relations Research*, 22(4), 429–455.

11 Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. (2018). Advances in  
12 social media research: past, present and future. *Information Systems Frontiers*, 1–28.

13 Kass-Hout, T. A., & Alhinnawi, H. (2013). Social media in public health. *British Medical Bulletin*,  
14 108(1), 5–24. <https://doi.org/10.1093/bmb/ldt028>

15 Kaufman, S., C. Qing, N. Levenson, and M. H. (2012). Transportation during and after Hurricane Sandy.

16 Kim, J., Bae, J., & Hastak, M. (2018). Emergency information diffusion on online social media during  
17 storm Cindy in US. *International Journal of Information Management*, 40, 153–165.

18 Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a  
19 disaster. *International Journal of Information Management*, 38(1), 86–96.

20 Kim, W.-S., Yoon, Y.-Z., Bae, J.-H., & Soh, K.-S. (2005). Nonlinear characteristics of heart rate time  
21 series: influence of three recumbent positions in patients with mild or severe coronary artery disease.  
22 *Physiological Measurement*, 26(4), 517–529. Retrieved from  
23 <http://www.ncbi.nlm.nih.gov/pubmed/15886445>

1 Kryvasheyev, Y., & Chen, H. (2015). Performance of Social Network Sensors During Hurricane Sandy.

2 *PLoS One*, 10(2), e0117288. Retrieved from <http://arxiv.org/abs/1402.2482>

3 Kryvasheyev, Y., Chen, H., Obradovich, N., Moro, E., Hentenryck, P. Van, Fowler, J., & Cebrian, M.

4 (2016). Rapid assessment of disaster damage using social media activity. *Science Advances* 2.3

5 (2016): E1500779.

6 Lehmann, J., Gonçalves, B., Ramasco, J. J., & Cattuto, C. (2012). Dynamical Classes of Collective

7 Attention in Twitter. *Proceedings of the 21st International Conference on World Wide Web. ACM*.

8 Retrieved from <http://arxiv.org/abs/1111.1896>

9 Leung, D., Law, R., van Hoof, H., & Buhalis, D. (2013). Social Media in Tourism and Hospitality: A

10 Literature Review. *Journal of Travel and Tourism Marketing*, 30(1–2), 3–22.

11 <https://doi.org/10.1080/10548408.2013.750919>

12 Lindsay, B. R. (2011). Social Media and Disasters: Current Uses, Future Options and Policy

13 Considerations. Retrieved from <http://fas.org/sgp/crs/homesec/R41987.pdf>

14 Liu, B. F., Jin, Y., Briones, R., & Kuch, B. (2012). Managing turbulence in the blogosphere: Evaluating

15 the blog-mediated crisis communication model with the American Red Cross. *Journal of Public*

16 *Relations Research*, 24(4), 353–370.

17 MacMillan, D. (2017). In Irma, Emergency Responders' New Tools: Twitter and Facebook. *The Wall*

18 *Street Journal*. Retrieved from <https://www.wsj.com/articles/for-hurricane-irma-information-officials-post-on-social-media-1505149661>

20 Martín, Yago, Zhenlong Li, and S. L. C. (2017). Leveraging Twitter to gauge evacuation compliance:

21 spatiotemporal analysis of Hurricane Matthew. *PLoS One*, (July).

22 <https://doi.org/10.1371/journal.pone.0181701>

23 Mathioudakis, M., Koudas, N., & Marbach, P. (2010). Early online identification of attention gathering

1 items in social media. *Proceedings of the Third ACM International Conference on Web Search and*  
2 *Data Mining - WSDM '10*, 301. Retrieved from  
3 <http://portal.acm.org/citation.cfm?doid=1718487.1718525>

4 Miletic, D. S., & Fitzpatrick, C. (1992). The causal sequence of risk communication in the Parkfield  
5 earthquake prediction experiment. *Risk Analysis*, 12(3), 393–400.

6 Misirlis, N., & Vlachopoulou, M. (2018). Social media metrics and analytics in marketing--S3M: A  
7 mapping literature review. *International Journal of Information Management*, 38(1), 270–276.

8 Munich RE. (2018, January 4). Natural catastrophe review: Series of hurricanes makes 2017 year of  
9 highest insured losses ever. Retrieved January 15, 2018, from <https://www.munichre.com/en/media->  
10 relations/publications/press-releases/2018/2018-01-04-press-release/index.html

11 Murray-Tuite, P., & Wolshon, B. (2013). Evacuation transportation modeling: An overview of research,  
12 development, and practice. *Transportation Research Part C: Emerging Technologies*, 27, 25–45.  
13 Retrieved from <http://dx.doi.org/10.1016/j.trc.2012.11.005>

14 Myers, S. A., & Leskovec, J. (2014). The bursty dynamics of the twitter information network. In  
15 *Proceedings of the 23rd international conference on World wide web* (pp. 913–924).

16 NELSON, B. (2013). A calculated risk. *Nature*, 495, 271–273.

17 Newberg, M. (2017). As many as 48 million Twitter accounts aren't people, says study. Retrieved from  
18 [https://www.cnbc.com/2017/03/10/nearly-48-million-twitter-accounts-could-be-bots-says-  
19 study.html](https://www.cnbc.com/2017/03/10/nearly-48-million-twitter-accounts-could-be-bots-says-study.html)

20 Ngai, E. W. T., Tao, S. S. C., & Moon, K. K. L. (2015). Social media research: Theories, constructs, and  
21 conceptual frameworks. *International Journal of Information Management*, 35(1), 33–44.

22 Ni, M., He, Q., & Gao, J. (2017). Forecasting the Subway Passenger Flow under Event Occurrences with  
23 Social Media. *IEEE Transactions on Intelligent Transportation Systems*, 18(6), 1623–1632.

1        <https://doi.org/10.1109/TITS.2016.2611644>

2        NOAA National Centers for Environmental Information (NCEI) U.S. (2018). Billion-Dollar Weather and  
3        Climate Disasters. Retrieved January 15, 2018, from <https://www.ncdc.noaa.gov/billions/>

4        Oyeniyi, D. (2017). How Hurricane Harvey Changed Social Media Disaster Relief. *TexasMonthly*.  
5        Retrieved from <https://www.texasmonthly.com/the-daily-post/how-social-media-managers-responded-to-hurricane-harvey/>

7        Palen, L., Vieweg, S., Liu, S. B., & Hughes, A. L. (2009). Crisis in a Networked World: Features of  
8        Computer-Mediated Communication in the April 16, 2007, Virginia Tech Event. *Social Science  
Computer Review*, 27(4), 467–480. Retrieved from  
10      <http://ssc.sagepub.com/cgi/doi/10.1177/0894439309332302>

11      Paton, D. (2008). Risk communication and natural hazard mitigation: how trust influences its  
12      effectiveness. *International Journal of Global Environmental Issues*, 8(1–2), 2–16.

13      Pincus, S., & Kalman, R. E. (2004). Irregularity, volatility, risk, and financial market time series.  
14      *Proceedings of the National Academy of Sciences*, 101(38), 13709–13714. Retrieved from  
15      <http://www.pnas.org/cgi/doi/10.1073/pnas.0405168101>

16      PINCUS, S. M. (1991). Approximate entropy as a measure of system complexity. *Proceedings of the  
17      National Academy of Sciences* 88.6 (1991): 2297-2301.

18      Pincus, SM, & Goldberger, A. (1994). Physiological time-series analysis: What does regularity quantify?  
19      *The American Journal of Physiology*, 266(4 Pt 2), H1643–H1656.

20      Quercia, D., Ellis, J., Capra, L., & Crowcroft, J. (2011). In the mood being influential on twitter mood.  
21      *Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE  
22      International Conference on Social Computing, PASSAT/SocialCom 2011*, 307–314.

23      Rashidi, T. H., Abbasi, A., Maghrebi, M., Hasan, S., & Waller, T. S. (2017). Exploring the capacity of

1 social media data for modelling travel behaviour: Opportunities and challenges. *Transportation*  
2 *Research Part C: Emerging Technologies*, 75, 197–211. Retrieved from  
3 <http://linkinghub.elsevier.com/retrieve/pii/S0968090X16302625>

4 Reuter, C., & Kaufhold, M. (2017). Fifteen years of social media in emergencies: A retrospective review  
5 and future directions for crisis Informatics. *Wiley Online Library*.  
6 <https://doi.org/https://doi.org/10.1111/1468-5973.12196>

7 Romero, D. M., & Huberman, B. A. (2011). Influence and Passivity in Social Media Background on  
8 Twitter. *WWW '11 Proceedings of the 20th International Conference Companion on World Wide*  
9 *Web*.

10 Sadri, A. M., Hasan, S., & Ukkusuri, S. V. (2017). Joint Inference of User Community and Interest  
11 Patterns in Social Interaction Networks. *ArXiv Preprint ArXiv:1704.01706*. Retrieved from  
12 <http://arxiv.org/abs/1704.01706>

13 Sadri, A. M., Hasan, S., Ukkusuri, S. V., & Cebrian, M. (2017). Understanding Information Spreading in  
14 Social Media during Hurricane Sandy: User Activity and Network Properties. *ArXiv Preprint*  
15 *ArXiv:1706.03019*. Retrieved from <http://arxiv.org/abs/1706.03019>

16 Sadri, A. M., Hasan, S., Ukkusuri, S. V., & Lopez, J. E. S. (2017). Analyzing Social Interaction Networks  
17 from Twitter for Planned Special Events. *ArXiv Preprint ArXiv:1704.02489*. Retrieved from  
18 <http://arxiv.org/abs/1704.02489>

19 Sadri, A. M., Ukkusuri, S. V., & Murray-Tuite, P. (2013). A random parameter ordered probit model to  
20 understand the mobilization time during hurricane evacuation. *Transportation Research Part C:*  
21 *Emerging Technologies*, 32(November 2015), 21–30. Retrieved from  
22 <http://dx.doi.org/10.1016/j.trc.2013.03.009>

23 Sadri, A. M., Ukkusuri, S. V., Murray-Tuite, P., & Gladwin, H. (2014). Analysis of hurricane evacuee

1 mode choice behavior. *Transportation Research Part C: Emerging Technologies*, 48(November  
2 2015), 37–46. Retrieved from <http://dx.doi.org/10.1016/j.trc.2014.08.008>

3 Shiau, W.-L., Dwivedi, Y. K., & Lai, H.-H. (2018). Examining the core knowledge on facebook.  
4 *International Journal of Information Management*, 43, 52–63.

5 Shiau, W.-L., Dwivedi, Y. K., & Yang, H. S. (2017). Co-citation and cluster analyses of extant literature  
6 on social networks. *International Journal of Information Management*, 37(5), 390–399.

7 Shklovski, I., Palen, L., & Sutton, J. (2008). Finding Community Through Information and  
8 Communication Technology During Disaster Events. *2008 ACM Conference on Computer  
9 Supported Cooperative Work*, 127–136.

10 Simon, T., Goldberg, A., & Adini, B. (2015). Socializing in emergencies - A review of the use of social  
11 media in emergency situations. *International Journal of Information Management*, 35(5), 609–619.  
12 Retrieved from <http://dx.doi.org/10.1016/j.ijinfomgt.2015.07.001>

13 Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate Entropy-Based Epileptic EEG Detection  
14 Using Artificial Neural Networks, 11(3), 288–295.

15 Stai, E., Milaiou, E., Karyotis, V., & Papavassiliou, S. (2018). Temporal Dynamics of Information  
16 Diffusion in Twitter: Modeling and Experimentation. *IEEE Transactions on Computational Social  
17 Systems*, 5(1), 256–264. <https://doi.org/10.1109/TCSS.2017.2784184>

18 Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics--Challenges in  
19 topic discovery, data collection, and data preparation. *International Journal of Information  
20 Management*, 39, 156–168.

21 The World Bank. (2016). Natural Disasters Force 26 Million People into Poverty and Cost \$520bn in  
22 Losses Every Year, New World Bank Analysis Finds. Retrieved June 15, 2017, from  
23 <http://www.worldbank.org/en/news/press-release/2016/11/14/natural-disasters-force-26-million->

1 people-into-poverty-and-cost-520bn-in-losses-every-year-new-world-bank-analysis-finds

2 Torres-reyna, O. (2012). Getting Started in Logit and Ordered Logit Regression Logit model. *Princeton*  
3 *University*, URL <Http://Dss.Princeton.Edu/Training/Logit.Pdf>. Retrieved from URL

4 Ukkusuri, S., Zhan, X., Sadri, A., & Ye, Q. (2014). Use of Social Media Data to Explore Crisis  
5 Informatics. *Transportation Research Record: Journal of the Transportation Research Board*, 2459,  
6 110–118.

7 Vaca, C., Aiello, L. M., Jaimes, A., & Milano, P. (2014). Modeling Dynamics of Attention in Social  
8 Media with User Efficiency. *EPJ Data Science* 3.1 (2014): 5.

9 Washington, S.P., Karlaftis, M.G. and Mannering, F. (2010). Statistical and Econometric Methods for  
10 Transportation Data Analysis. *CRC Press*.

11 Wu, F., Huberman, B. A., Adamic, L. A., & Tyler, J. R. (2004). Information flow in social groups.  
12 *Physica A*, 337(1), 327–335.

13 Yates, D., & Paquette, S. (2011). Emergency knowledge management and social media technologies: A  
14 case study of the 2010 Haitian earthquake. *International Journal of Information Management*, 31(1),  
15 6–13. Retrieved from <http://dx.doi.org/10.1016/j.ijinfomgt.2010.10.001>

16 Zhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from  
17 social media data. *Transportation Research Part C: Emerging Technologies*, 86, 580–596.  
18 <https://doi.org/10.1016/j.trc.2017.11.027>

19

20

21