2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Detecting Phishing Websites through Deep
Reinforcement Learning

Moitrayee Chatterjee
Computer Science Department
Texas Tech University
Lubbock, Texas, USA
Email: moitrayee.chatterjee @ttu.edu

Abstract—Phishing is the simplest form of cybercrime with the
objective of baiting people into giving away delicate information
such as individually recognizable data, banking and credit card
details, or even credentials and passwords. This type of simple yet
most effective cyber-attack is usually launched through emails,
phone calls, or instant messages. The credential or private data
stolen are then used to get access to critical records of the
victims and can result in extensive fraud and monetary loss.
Hence, sending malicious messages to victims is a stepping stone
of the phishing procedure. A phisher usually setups a deceptive
website, where the victims are conned into entering credentials
and sensitive information. It is therefore important to detect these
types of malicious websites before causing any harmful damages
to victims. Inspired by the evolving nature of the phishing
websites, this paper introduces a novel approach based on deep
reinforcement learning to model and detect malicious URLs. The
proposed model is capable of adapting to the dynamic behavior
of the phishing websites and thus learn the features associated
with phishing website detection.

Index Terms—Phishing, Deep Reinforcement Learning.

1. INTRODUCTION

Phishing is a form of cyber attack typically performed
by sending false correspondences that seem to be originated
from a legitimate source. The objective of such attack is
to gain access to sensitive information such as credit card
numbers, credential data, or even to download and activate
malware applications and viruses on the target machines. One
can say, it is almost essential to have an online presence to
perform the necessary transactions like banking, e-commerce,
social networking. On the other hand, the significance of
the World Wide Web has consistently been expanding. The
web is not only imperative for individual clients, but also for
organizations to function effectively.

In recent years, the application of various kinds of machine
learning algorithms to the classical classification problem and
in particular to security and malware detection has received
tremendous attention and interest from research community.
Furthermore, with the advancement of computational power,
deep learning algorithms have created a new chapter in
pattern recognition and artificial intelligence. As a result,
many classification, decision, and automation problems are
now can be formulated through these sophisticated learning
algorithms. Deep learning-based approaches are particularly

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.10211

227

Akbar Siami Namin
Computer Science Department
Texas Tech University
Lubbock, Texas, USA
Email: akbar.namin@ttu.edu

effective when the number of features involved in the compu-
tation is large.

This paper presents a deep reinforcement learning-based
model for detecting phishing website by analyzing the given
URLs. The model itself is self-adaptive to the changes in the
URL structure. The problem of detecting phishing websites is
an instance of the classical classification problem. Therefore,
we have developed a reinforcement learning model using
deep neural network, to solve this classification problem. We
have used our model on a balanced and labeled dataset of
legitimate and malicious URLs in which 14 lexical features
were extracted from the given URLs to train the model. The
performance is measured using precision, recall, accuracy and
F-measure. The key contributions of this paper are as follows:

1) Model the identification of phishing websites through
Reinforcement Learning (RL), where an agent learns the
value function from the given input URL in order to
perform the classification task.

Map the sequential decision making process for classi-
fication using a deep neural network-based implementa-
tion of Reinforcement Learning.

Evaluate the performance of the deep reinforcement
learning-based phishing URL classifier and compare its
performance with the existing phishing URL classifiers.
The proposed approach is robust, dynamic, and self-adaptive
since reinforcement learning-based algorithms can estimate a
solution (i.e., action) based on the stochastic state conversions
and the rewards for choosing an action for that state.

The rest of the paper is organized as follows: Section II
surveys the related work on phishing identifications using
various machine learning based approaches. Section III briefly
presents the technical background of reinforcement learning
and its deep learning variation. Section IV provides details
on the reinforcement learning and the URL structure. Section
V is dedicated to our experimentation details like dataset
description and feature extraction and training as well as the
results. Section VI concludes the paper.

2)

3)

II. RELATED WORK

The two most popular phishing detection methods are:
(1) Blacklisting which compares the given URL with the
previously reported phishing websites and their URLs status of

IEEE
computer
® psoaety

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

being malicious or benign. This method is very static meaning
that if the URL is a newly created Website then there might
be no actual records of it on the Internet, and 2) Analyzing
a given URL based on some heuristics. This technique is a
more dynamic method to identify phishing URLs. It parses
and extracts features from the URL itself and uses a classifier
to decide about a given URL.

Zhang et al. [17] proposed a content-based phishing web-
site detection method called CANTINA. In their proposed
framework, the tf-idf score of each term on the web page
and generated lexical signatures based on the top five of tf-
tdf scores are utilized for deciding about the classification.
Then, the lexical signature is provided to a search engine like
www.Google.com to look for additional data. If the search
query returns the domain name matching the website under
consideration, then it is classified as legitimate; otherwise it is
classified as a phishing website.

Xiang et al. [20] proposed CANTINA+ in which they have
used 14 different features categorized in high level webpage
features, HTML features, and web-based features. They have
applied six different machine learning algorithms on a sample
dataset and reported that Bayesian network outperformed the
other techniques. As a major drawback, their approach is not
resilient to popular attacks such as cross-site scripting attacks.

Both CANTINA and CANTINA+ depend heavily on the
text based features and parsing of websites. On the other
hand, it is also shown that phishers often construct webpages
that contain not only texts but also multimedia data such as
flash. As a result, such techniques might be less effective
when multimedia components are utilized for the purpose of
phishing attacks.

Abdelhamid et al. [1] proposed a data mining-based ap-
proach for phishing URL classification. Their Multi-label
Classifier based Associative Classification (MCAC) algorithm
functions in three distinct steps: 1) Rules discovery, 2) Clas-
sifier building, and 3) Class assignment. In the first step,
the algorithm iterates over the training data and uncovers
the distinct and salient features. In step two, the rules are
sorted in order of confidence, length and support to define the
classification directive. Finally, in step three, the URLs are
classified using the rules with higher support and confidence.
The authors extracted 16 different features from their sample
URLs and tested their algorithm on 1350 websites with 601
legitimate and 752 phishing sites.

Sahingoz et al. [10] addressed the phishing URL detection
problem using seven different machine learning classification
algorithms. Due to the absence of publicly available large
dataset of malicious and benign URLs, they prepared a bal-
anced dataset [5] containing both phishing and benign URLSs
and made the dataset publicly available. Their work focused on
extracting meaningful features from the URLs. They extracted
NLP-based (Natural language processing) features, word based
features and hybrid features during the data pre-processing.
Their decision tree-based classifier showed an accuracy of
97.02% using NLP-based features.

228

There are some other interesting approaches in detecting
phishing attacks and malware using visual similarities [6], [7].

III. DEEP REINFORCEMENT LEARNING: BACKGROUND

This section provides a brief overview of the technical
aspects of reinforcement learning and its deep version. This
technique has several interesting applications in different do-
mains [11], [15].

A. Reinforcement Learning Paradigm

The reinforcement learning approach has been utilized to
gain proficiency for optimal behavior. This adaptive learning
paradigm is defined as the problem of an “agent” to perform
an action based on a “trial and error” basis through com-
munications with an unknown “environment” which provides
feedback in the form of numerical “rewards” [14]. A vanilla
form of reinforcement learning model consists of:

1) Agent. An agent learns the model state S; by reading
the input X, where ¢ denotes the state transitions at
time t. In the proposed model, the input to the agent
will be the feature vector representation of a given URL.
The agent interacts with the learning framework through
activities Uy and it gives rewards R 1), which can be
utilized to improve the policy (7). The reward from these
activities is processed and the Q-table is refreshed. Q-
table (Q stands for quality) is a reference table or matrix
that stores the g-values for a state, action pairs. It is
initialized to all zeroes and after each episode, of the
learning process, it is updated as the agent learns to
take the best action for a state.

2) Action (U). The actions influence the updates in the
environment. The number of activities change based on
the feature vectors or the dataset or the number of layers
in the neural network.
State (S). At each time step ¢ the state of the environ-
ment, the agent is interacting with, changes and affects
the action taken by the agent. In this model, a state s;
is determined by the input URL vector .
Policy (7). The policy m describes the mapping between
the state of the environment and the optimum action (an
action pertaining to that state that maximizes the reward)
to be performed for that state. The policy set is critical
to the the agent of the reinforcement algorithm, as it
defines the optimum decision to make.

Reward (R). The reward describes the immediate feed-

back from the environment, for an agent, for making the

optimum action choice for that particular state.

Discount factor ().t is defined to balance the perfor-

mance of the agent, in a way, so that agent can make

optimum choice of actions for both short term and long

term rewards. The value of v ranges between 0 to 1.

Probability of State Transition (Pr). It is the conditional

probability (Pr(sty1]st,ut)) for transitioning from state

S to state St+1.

Episodes. The number of rounds the agent needs to find

the best possible Q-values for all the state, action pairs.

3)

4)

5)

6)

7

8)

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

B. Deep Reinforcement Learning-Based Classifier

We train a deep neural network as a reinforcement learning
agent A that interacts with the environment, receives a training
sample s and according to the policy 7 returns the probability
of class labels, i.e., action a. The policy 7 can be defined as:

(M

The goal of the agent is to explore and exploit the training
samples to predict the class labels so as to maximize the
cumulative rewards (R.) through gaining positive rewards as:

&)
§ k

RC = Y Ti+k
k=1

Where v : v € {0,1} is the discount factor. r is the immediate
reward and k is the number of episodes. The Q-value of
the state-action (s,a) combination, called the Q-function ,is
assessed by applying expected (£) reward for following 7:

Q" (s,a) = Ex[Rc[(st = 5,0 = a)] 3

The RL agent can optimize R. by solving the optimum
@* function using the e-greedy policy. Q* is the optimal
function for optimal policy 7*. e-greedy chooses a random
action uniformly from a set of available actions. The e-greedy
approach is used to enable the agent to learn and earn reward
from the environment based on the policy 7 so that Q* would
be the optimal classifier model for the experiment. The optimal
policy 7* can be defined as:

{1

m(als) = Pr(a; = als; = s)

2

a = argmazr,Q*(s,a)
otherwise

ﬂ_*

0 4)
The Q-function returns the value for taking an action (or
predicting a label) for a state (a particular URL vector) under
the policy 7. This Q-value (or quality value) is the highest cu-
mulative reward. When the actions are limited and state space
is small, the Q functions are stored in a table, which would
be used to predict the label of a class. However, for higher
dimensional data where the state-space combination is too
large to record in Q-table, a deep learning network is helpful
in learning the optimal classification through gradient decent
(policy m). A deep learning implementation to approximate
the Q values is termed as Deep Q Network (DQN). The DQN
uses experience replay for learning. The experience replay
is the information about the state transition, action, reward
for g-value learning. The learning process uses an experience
memory (M) to store the information (sj,a¢,r:,S¢+1) and
samples mini batch (Bm) from M to perform gradient decent
as per the loss function L(0):

L(9) >

(s1,a¢,r¢,8¢41)EBmM

(y_Q(57a70k))2 (5)

Where y would be the desired approximation of g-function
and takes the form of:

_ 5, terminal; =T
y= i +ymax,,, Q(St+1,0t41,0k-1)), terminal; = F
(6)

229

Protocol Hostname Directory URI
e e
hnpsjw.examplewebsite.mm omelsgmefile.php/qlﬂ23&Iang=en&q2=agc
Top Ievtfijomain \ A)
%1’—) Filename Query Parameters
Primary Domain

Fig. 1. URL structure.

Where j is a sample from the M, terminal is the condition
when state-action pairs have maximum cumulative rewards
and F and T are Boolean values.

IV. A DEEP REINFORCEMENT LEARNING MODEL

This section describes the key principles of our proposed
algorithm in classifying a given URL as phishing or benign.

A. Problem Statement

We can formulate the problem of detecting phishing URLSs
as a binary classification problem, in which the prediction
classes are “phishing” or “benign”. Let us denote a training
dataset with T URLs along with data and class labels in the
form of (uq,x1), (u2,22),. .. (ur, zT) where:

— wu; fori =1,2,...7T denotes a given URL in the training

set T', and

- x; € {0,1} for i = 1,2,...T corresponds to the label

of the underlying URL where x; = 0 implies benign and
z; = 1 indicates a phishing URL, respectively.

To automate the problem of classification of phishing URLs
using deep reinforcement learning, we employ a two-step
procedure:

1) Feature Extraction. The representation of the given
URL u; into a d-dimensional (in our problem

vector space of features v = {vy,va,...,v;}, sﬁcﬁ that
v; € Re.
2) Deep Reinforcement Learning. A learning algorithm

with a function f : R? — R to predict the class
assignment using v.

Once the given URL is transformed to its vector represen-
tation v, the optimization function f : R? — R, incorporated
into the deep learning part of the algorithm, is applied on
to predict the class label. v

B. URL Structure

A typical URL has two principle parts: (1) Protocol: Spec-
ifies the protocol to be used for communication between user
and web server, (2) Resource identifier: indicating the IP
address or the domain space where the resource is located.
A colon and two forward slashes separate the protocol from
resource identifier, as shown in Figure 1.

C. Feature Extraction

There are a certain characteristics of websites that helps
in distinguishing between phishing sites from the legitimate
ones. Examples of such characteristics include: long URLs,
IP address in URLSs, and request access to additional URLs

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

in which these characteristics are the indications of being
phishing websites. In their work, Mohammad et al. [8] labeled
the website features in four groups: (1) Anomaly-based, (2)
Address bar-based, (3) HTML and JavaScript-based and (4)
Domain-based. We followed the proposed work in [8] to build
our set of 14 features, as listed below:

1) HTTPS Protocol. Sensitive information is transferred
using HTTPS protocols and utilization of such secure
protocol is a typically an indication of being safe.
However, phishers also can construct a URL with fake
HTTPS protocol. It is necessary to verify if the URL
protocol is offered by trusted issuer like VeriSign' and
thus set this feature to zero. Otherwise, it is set to 1.
IP Address. Presence of I[P address in the
given URL is almost a confirmed indication
of the website being a suspicious website (e.g.,
http://149.56.144.2 16/processa.php). It is an indicator
that the website is trying to gain some unauthorized
access. IP addresses are no longer a standard practice for
hostnames. Sometimes the IP addresses are converted
into hex format for obfuscation. Hence, this feature
value is set to 1 if there exists an IP address in the
given URL, or to 0 otherwise.

Long URLs. The aim is to construct a URL to be long
in order to obfuscate the malicious part. Hence, it is
suggested to set this feature to 1 if the URL is longer
than 54 characters and thus classify the given URL as
being suspicious.

URL Containing the @ Symbol. A browser is designed
to ignore everything prior to an @ symbol in a URL.
Hence, phishers can redirect a victim to a phishing
website using this method. As a result, if a URL contains
@ this feature receives the value of 1.

5) Adding Prefix or Suffix. For bypassing the search en-
gine optimization component, phishers often add “—”
to the domain name. Popular search engines such as
www.Google.com use “—” as a word separator. We set
this feature to 1 when there is a “—”" in the domain name.
Sub-domains. Phishers often add valid sub domain
names in the URL to make it appear as a legitimate
URL. Hence, check if the number of dots (i.e., “.”) in
the hostname is fewer than three and thus set this feature
to zero. Otherwise, set it to 1.

7) Anchor URLs. According to [8] if the webpage has
anchors more than 20% then this feature should be set
to 1 as an indicator of being a phishing website.

Link Hiding. Phishers obfuscate the actual URL using a
fake one on the address bar. This can be identified by
MouseOver event. If the MouseOver shows a different
URL than the one appear on address bar, this feature
should be set to 1.

DNS Record. A phishing website generally does not have
DNS records. DNS records contain information about

2)

3)

4)

6)

8)

9)

Uhttps://www.verisign.com

230

the active domain names. Phishing websites are short
lived and may not have any DNS record.

Page Redirects. Phishers redirect the user to another link
where the victim could expose sensitive information to
them. So, if the number of redirects is greater than 1
then this feature is an indication of malicious behavior.
Pop-up Windows. Legitimate websites do not make
their users provide any login credentials through pop-up
windows. If the webpage opens more than two pop-up
windows, set this feature as 1 and thus label the webpage
as suspicious.

Domain Age. Newly created websites have high risk
of being a phishing website. Using the WHOIS [16]
database, any website younger than one year old should
receive a value of 1 for this feature.

Server from Handlers. If the webpage asks for user infor-
mation and redirects the submitted form to a different
domain than the one hosting the webpage, it exhibits
phishing behavior.

Unusual URLs. If the URL does not exists in the
registered domain names in WHOIS [16] database then
this feature should be set to 1 to tag the URL as a
possible phishing website.

10)

11)

12)

13)

14)

D. Normalization

All the feature vectors are normalized to binary values that
is 0 and 1. As well as the class assignment of each URL in
training set also O and 1.

E. Deep Reinforcement Learning-Based Classification

Reinforcement learning is a robust algorithm that allows an
agent to interact with an environment and obtain the states and
take action based on that. The proposed classification task is
designed as a sequential decision-making problem. Agent for
the target classes would receive the input vector representation
of the URL. The reward function is not dependent on the class,
but both on state and action. When the agent for phishing class
would select an action to maximize the reward, the agent from
the benign class would try to minimize the reward.

During learning phase, the agent receives the input URL
vectors, one at a time and perform the actions (i.e., probabil-
ities of current states to identify the next state) and obtains
rewards. At every episodes, the agent learns to obtain more
reward. Once the epochs are completed, the model is ready to
be applied on unseen data.

The rewards are based on the actions. For our phishing URL
classification problem, the state s, at time step ¢ is defined by
the vector space representation of training dataset 7. In our
case case, it is a 14 * Ur matrix, where 14 is the number of
feature vectors and Uy is the number of URLs in the dataset.
In each episode, the training sample changes.

The action A = {0,1} is a binary output referring to the
class label (i.e., Phishing or Benign) of the URL wu;. If the
Q-function value is > 0.5 then we normalize it to 1. In a
similar manner, if the Q-function value is between 0 to < 0.5
we normalize it to 0. The reward R is the feedback to the

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

NN
Update after \ ‘V "v'? ""’ Q-value

m /n+ us

each step
Experience) ‘
Replay - ",, ‘ ")

Input Fully connected Output
layer hidden layer layer

Action

Reward

Previous State

Fig. 2. Deep Q Network.

agent from the environment. A reward r; corresponding to an
action a, signifies if the agent has classified u; correctly or
incorrectly. If the class label of a particular u; is denoted by
l¢, then for our experiment, R is defined as:

L
R—{_L

E Training The Network

at:lt

as # Iy ™

The proposed reinforcement-based learning model is gener-
alized to capture the uniformities of the training URL vectors
so that the learning agent can earn maximized reward. The
agent retains the probabilistic value of successfully predicting
the class of each test data. This probability value is used by the
agent to learn about the environment. The linear combination
of feature vectors is applied to the approximation function for
the agent to learn or earn from the environment. The test data
set is used continually, so that the agent can form necessary
statistics for prediction (or the training algorithm converges),
which means there is no new knowledge about the environment
that can be learned by the agent to improve prediction.
The model is implemented to disregard the issues involving
function approximation by a single binary classification for
each training data.

We have used deep neural networks to learn from the vector
space representation of the phishing URLs. We have one
embedding layer and two fully connected layers with ReLU
activation and a softmax output layer to implement the DQN
or agent of the reinforcement learning based classifier. The
controller generates hyper-parameters and the gradient decent
leads to updating in policy parameter. The learning rate was
0.001. A 2-fold cross validation was performed for accuracy
improvement. The network architecture is shown in Figure 2.

The neural networks are proficient to learn from both linear
and nonlinear data. The training and classification algorithm
is presented in Algorithm 1. This algorithm is based on the
original DQN learning algorithm proposed by Mnih et al [9].
The training agent uses an e-greedy method to choose an
action and gain rewards from the environment. More precisely,
the algorithm greedily chooses an action with probability € at

random using Equation 3 to reach the action that maximizes
the cumulative reward over the epochs of the learning phase.

Input: The training samples and their class labels
Output: The optimum Q-values
Initialize experience memory M ;
Initialize Q-value function with random weights 6;
Define episodes K
Initialize target Q-value function with random weights 6*
= 6’
while episode 1 to K do
Initialize s = vq;
Initialize the pre-processed sequence function ¢; =
d(s1)
while t =1 t0 T do
Perform action (a;) based on e-greedy,
Random — action probabilitye
argmax,Q(e(st),a;0) otherwise ’
Observe 7, for action ay;
Set Si41 = S, Aty Vg1 s
Set pre-processed sequence function ¢y =
B(st41) 3
Save (¢1,a¢,7¢,04+1, terminaly) in M;
Randomly sample from M and set y; using
equation.6;
Perform gradient decent using equation.5;
if terminal; = True then
‘ break;
end
end

az =

end
Algorithm 1: Training and classification algorithm.

V. EXPERIMENTATION DETAILS AND RESULTS

The experiment environment for this work was setup on
Amazon AWS using EC2 computer instance with an Ubuntu
Server 18.04 LTS with Variable ECUs, 1 vCPUs, 2.5 GHz,
Intel Xeon Family, 1 GB memory. We installed TensorFlow for
implementing the deep reinforcement learning based classifier.

A. Dataset

The experiment for this work was performed on the
Ebbu2017 Phishing Dataset [5]. The dataset was prepared and
publicly made available by Sahingoz et al. in their phishing
URL detection work [10]. Due to the absence of publicly
available large phishing datasets, they prepared a balanced
dataset containing both phishing and valid URLs. They have
developed their own script to query the internet Yandex Search
engine’ to collect the web pages with higher page rank, and
the phishing URLs from PhishTank®. The dataset contains
73,575 URLs, out of which 36,400 are legitimate and 37,175
are phishing. The training dataset is discrete and contains
deterministic classes. The proposed model can make binary
predictions of observations of the test data.

Zhttps://tech.yandex.com/xml/
3http://www.phishtank.com

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation Metrics

The performance of the proposed model has been assessed
using relevance measures like precision, recall, accuracy and
F-measure. To calculate these measures, we need to calculate
the True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) predictions. TP and TN refer to
the correctly classified results; Whereas, FP and FN are the
misclassified data. Using these 4 values, we can calculate the

performance measures as follows:

.. TP
e Precision = TP1FP

In classification problem a precision value closer to 1
implies the predicted labels are closer to truth.
__ TP

o Recall = TP+FN]))
A recall value closer to 1 implies the all the testing
samples could be predicted using the specified model.

_ TP+TN

. ACCUT@C?/*TP+TN+FP+FN . .
A accuracy score closer to 1 implies a high performance
of the system.

« F— Score = 2» frecisioniicall
It is the harmonic mean of precision and recall to signify

the models resilience.

Table. I shows the average of the relevance measures from
different run of the model: This experiment for the work

TABLE I
RELEVANCE MEASURES OF THE PROPOSED MODEL.

Recall
0.88

F-Measure
0.873

Precision
0.867

Accuracy
0.901

presented in this paper was performed on a balanced dataset
containing both phishing and benign URLs. However, we
have not experimented with reward function to explore the
performance of the model. The adam optimizer was used for
optimizing the parameters of the neural network. We split the
dataset into 8 : 2 for training and testing purposes.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a reinforcement learning based frame-
work for automated URL- based phishing detection. This deep
learning implementation of RL algorithm is a complimentary
approach to the existing phishing detection methodologies to
make the system dynamic. This work establishes the founda-
tion for a more efficient, dynamic and self-adaptive phishing
identification framework. However, this work is not optimized
for real world implementation and our future work involves
performance tuning for the deep Q learning algorithm to
optimize the Markov Decision Process [18], [19] for optimal
classification. Also, we have used only lexical features of the
URLs for this experimentation and we would like to explore
the performance of our model with the use of other advanced
features like host-based features, content-based features etc.
or a combination of these various features to build an optimal
and robust classifier. There are some other deep learning based
algorithms that should be examined for the problem stated in

232

this paper such as LSTM [12], [13]. Moreover this classifier
can be extended for other binary classification problems like
Webspam detection [2] and presence of malicious bots in the
network [3]. RL based approach being more adaptive, the
classifier can be extended for mitigating various privacy and
security concerns [4] in wearable devices.

ACKNOWLEDGEMENT
This project is funded in part by grants (Awards No:
1723765 and 1821560) from National Science Foundation.
REFERENCES
[

Abdelhamid, N., Ayesh, A. and Thabtah, F., 2014. Phishing detection
based associative classification data mining. Expert Systems with Ap-
plications, 41(13), pp.5948-5959.

Chatterjee, M. and Siami Namin, A., 2018, July. Detecting web spams
using evidence theory. IEEE 42nd annual computer software and appli-
cations conference (COMPSAC).

Chatterjee, M., Siami Namin, A. and Datta, P., 2018, December. Ev-
idence Fusion for Malicious Bot Detection in IoT. IEEE International
Conference on Big Data (Big Data).

Datta, P., Siami Namin, A. and Chatterjee, M., 2018, December. A
Survey of Privacy Concerns in Wearable Devices. IEEE International
Conference on Big Data (Big Data).

Ebbu2017 Phishing Dataset. Accessed 5 April 2019. Available:
https://github.com/ebubekirbbr/ pdd/tree/master/input.

Liu, W, Huang., G., Xiaoyue, L. Min, Z., and Deng, X., 2005., Detection
of phishing webpages based on visual similarity. 14th international
conference on world wide web (WWW).

Nguyen, N. Siami Namin, A., Dang, T. 2018. MalViz: an interactive
visualization tool for tracing malware. ISSTA.

Mohammad, R.M., Thabtah, F. and McCluskey, L., 2012, An assessment
of features related to phishing websites using an automated technique,
IEEE Conference for Internet Technology and Secured Transactions.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529533.
Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019. Machine
learning based phishing detection from URLs. Expert Systems with
Applications, 117, pp.345-357.

Sartoli, S., and Siami Namin, A., 2017, A semantic model for action-
based adaptive security, Symposium on Applied Computing (SAC).
Siami-Namini, S., Tavakoli, N., and Siami Namin, A., 2018, December.
A Comparison of ARIMA and LSTM in Forecasting Time Series. In-
ternational Conference on Machine Learning and Applications ICMLA.
Siami-Namini, S. and Siami Namin, A., 2018, Forecasting Economics
and Financial Time Series: ARIMA vs. LSTM, CoRR abs/1803.06386.
Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An intro-
duction. MIT press.

Tavakoli, N., Dai, Dong, and Chen Y., 2019, Client-side straggler-aware
/0 scheduler for object-based parallel file systems, Parallel Computing.
WHOIS: Search, Domain Name, Website, and IP Tools. https://who.is
Zhang, Y., Hong, J.I. and Cranor, L.F.,, 2007, May. Cantina: a content-
based approach to detecting phishing web sites. In Proceedings of the
ACM conference on World Wide Web.

Zheng, J. and Siami Namin, A., 2018, A Markov Decision Process to
Determine Optimal Policies in Moving Target, Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security.
Zheng, J. and Siami Namin, A., 2018, Defending SDN-based IoT
Networks Against DDoS Attacks Using Markov Decision Process, IEEE
Conference on Big Data.

Xiang, G., Hong, J., Rose, C.P. and Cranor, L., 2011. Cantina+: A
feature-rich machine learning framework for detecting phishing web
sites. ACM Transactions on Information and System Security (TISSEC).

[2

3

[9]

[10]

[11]

[12]

[13]
[14]

[15

[16]
[17

[18]

[19]

[20]

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

