
Detecting Phishing Websites through Deep
Reinforcement Learning

Moitrayee Chatterjee
Computer Science Department

Texas Tech University

Lubbock, Texas, USA

Email: moitrayee.chatterjee@ttu.edu

Akbar Siami Namin
Computer Science Department

Texas Tech University

Lubbock, Texas, USA

Email: akbar.namin@ttu.edu

Abstract—Phishing is the simplest form of cybercrime with the
objective of baiting people into giving away delicate information
such as individually recognizable data, banking and credit card
details, or even credentials and passwords. This type of simple yet
most effective cyber-attack is usually launched through emails,
phone calls, or instant messages. The credential or private data
stolen are then used to get access to critical records of the
victims and can result in extensive fraud and monetary loss.
Hence, sending malicious messages to victims is a stepping stone
of the phishing procedure. A phisher usually setups a deceptive
website, where the victims are conned into entering credentials
and sensitive information. It is therefore important to detect these
types of malicious websites before causing any harmful damages
to victims. Inspired by the evolving nature of the phishing
websites, this paper introduces a novel approach based on deep
reinforcement learning to model and detect malicious URLs. The
proposed model is capable of adapting to the dynamic behavior
of the phishing websites and thus learn the features associated
with phishing website detection.

Index Terms—Phishing, Deep Reinforcement Learning.

I. INTRODUCTION

Phishing is a form of cyber attack typically performed

by sending false correspondences that seem to be originated

from a legitimate source. The objective of such attack is

to gain access to sensitive information such as credit card

numbers, credential data, or even to download and activate

malware applications and viruses on the target machines. One

can say, it is almost essential to have an online presence to

perform the necessary transactions like banking, e-commerce,

social networking. On the other hand, the significance of

the World Wide Web has consistently been expanding. The

web is not only imperative for individual clients, but also for

organizations to function effectively.

In recent years, the application of various kinds of machine

learning algorithms to the classical classification problem and

in particular to security and malware detection has received

tremendous attention and interest from research community.

Furthermore, with the advancement of computational power,

deep learning algorithms have created a new chapter in

pattern recognition and artificial intelligence. As a result,

many classification, decision, and automation problems are

now can be formulated through these sophisticated learning

algorithms. Deep learning-based approaches are particularly

effective when the number of features involved in the compu-

tation is large.

This paper presents a deep reinforcement learning-based

model for detecting phishing website by analyzing the given

URLs. The model itself is self-adaptive to the changes in the

URL structure. The problem of detecting phishing websites is

an instance of the classical classification problem. Therefore,

we have developed a reinforcement learning model using

deep neural network, to solve this classification problem. We

have used our model on a balanced and labeled dataset of

legitimate and malicious URLs in which 14 lexical features

were extracted from the given URLs to train the model. The

performance is measured using precision, recall, accuracy and

F-measure. The key contributions of this paper are as follows:

1) Model the identification of phishing websites through

Reinforcement Learning (RL), where an agent learns the

value function from the given input URL in order to

perform the classification task.

2) Map the sequential decision making process for classi-

fication using a deep neural network-based implementa-

tion of Reinforcement Learning.

3) Evaluate the performance of the deep reinforcement

learning-based phishing URL classifier and compare its

performance with the existing phishing URL classifiers.

The proposed approach is robust, dynamic, and self-adaptive

since reinforcement learning-based algorithms can estimate a

solution (i.e., action) based on the stochastic state conversions

and the rewards for choosing an action for that state.

The rest of the paper is organized as follows: Section II

surveys the related work on phishing identifications using

various machine learning based approaches. Section III briefly

presents the technical background of reinforcement learning

and its deep learning variation. Section IV provides details

on the reinforcement learning and the URL structure. Section

V is dedicated to our experimentation details like dataset

description and feature extraction and training as well as the

results. Section VI concludes the paper.

II. RELATED WORK

The two most popular phishing detection methods are:

(1) Blacklisting which compares the given URL with the

previously reported phishing websites and their URLs status of

227

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.10211

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

being malicious or benign. This method is very static meaning

that if the URL is a newly created Website then there might

be no actual records of it on the Internet, and 2) Analyzing
a given URL based on some heuristics. This technique is a

more dynamic method to identify phishing URLs. It parses

and extracts features from the URL itself and uses a classifier

to decide about a given URL.

Zhang et al. [17] proposed a content-based phishing web-

site detection method called CANTINA. In their proposed

framework, the tf-idf score of each term on the web page

and generated lexical signatures based on the top five of tf-

tdf scores are utilized for deciding about the classification.

Then, the lexical signature is provided to a search engine like

www.Google.com to look for additional data. If the search

query returns the domain name matching the website under

consideration, then it is classified as legitimate; otherwise it is

classified as a phishing website.

Xiang et al. [20] proposed CANTINA+ in which they have

used 14 different features categorized in high level webpage

features, HTML features, and web-based features. They have

applied six different machine learning algorithms on a sample

dataset and reported that Bayesian network outperformed the

other techniques. As a major drawback, their approach is not

resilient to popular attacks such as cross-site scripting attacks.

Both CANTINA and CANTINA+ depend heavily on the

text based features and parsing of websites. On the other

hand, it is also shown that phishers often construct webpages

that contain not only texts but also multimedia data such as

flash. As a result, such techniques might be less effective

when multimedia components are utilized for the purpose of

phishing attacks.

Abdelhamid et al. [1] proposed a data mining-based ap-

proach for phishing URL classification. Their Multi-label

Classifier based Associative Classification (MCAC) algorithm

functions in three distinct steps: 1) Rules discovery, 2) Clas-

sifier building, and 3) Class assignment. In the first step,

the algorithm iterates over the training data and uncovers

the distinct and salient features. In step two, the rules are

sorted in order of confidence, length and support to define the

classification directive. Finally, in step three, the URLs are

classified using the rules with higher support and confidence.

The authors extracted 16 different features from their sample

URLs and tested their algorithm on 1350 websites with 601

legitimate and 752 phishing sites.

Sahingoz et al. [10] addressed the phishing URL detection

problem using seven different machine learning classification

algorithms. Due to the absence of publicly available large

dataset of malicious and benign URLs, they prepared a bal-

anced dataset [5] containing both phishing and benign URLs

and made the dataset publicly available. Their work focused on

extracting meaningful features from the URLs. They extracted

NLP-based (Natural language processing) features, word based

features and hybrid features during the data pre-processing.

Their decision tree-based classifier showed an accuracy of

97.02% using NLP-based features.

There are some other interesting approaches in detecting

phishing attacks and malware using visual similarities [6], [7].

III. DEEP REINFORCEMENT LEARNING: BACKGROUND

This section provides a brief overview of the technical

aspects of reinforcement learning and its deep version. This

technique has several interesting applications in different do-

mains [11], [15].

A. Reinforcement Learning Paradigm

The reinforcement learning approach has been utilized to

gain proficiency for optimal behavior. This adaptive learning

paradigm is defined as the problem of an “agent” to perform

an action based on a “trial and error” basis through com-

munications with an unknown “environment” which provides

feedback in the form of numerical “rewards” [14]. A vanilla

form of reinforcement learning model consists of:

1) Agent. An agent learns the model state St by reading

the input Xt, where t denotes the state transitions at

time t. In the proposed model, the input to the agent

will be the feature vector representation of a given URL.

The agent interacts with the learning framework through

activities Ut and it gives rewards R(t+1), which can be

utilized to improve the policy (π). The reward from these

activities is processed and the Q-table is refreshed. Q-

table (Q stands for quality) is a reference table or matrix

that stores the q-values for a state, action pairs. It is

initialized to all zeroes and after each episode, of the

learning process, it is updated as the agent learns to

take the best action for a state.

2) Action (U). The actions influence the updates in the

environment. The number of activities change based on

the feature vectors or the dataset or the number of layers

in the neural network.

3) State (S). At each time step t the state of the environ-

ment, the agent is interacting with, changes and affects

the action taken by the agent. In this model, a state st
is determined by the input URL vector xt.

4) Policy (π). The policy π describes the mapping between

the state of the environment and the optimum action (an

action pertaining to that state that maximizes the reward)

to be performed for that state. The policy set is critical

to the the agent of the reinforcement algorithm, as it

defines the optimum decision to make.

5) Reward (R). The reward describes the immediate feed-

back from the environment, for an agent, for making the

optimum action choice for that particular state.

6) Discount factor (γ).It is defined to balance the perfor-

mance of the agent, in a way, so that agent can make

optimum choice of actions for both short term and long

term rewards. The value of γ ranges between 0 to 1.

7) Probability of State Transition (Pr). It is the conditional

probability (Pr(st+1|st, ut)) for transitioning from state

st to state st+1.

8) Episodes. The number of rounds the agent needs to find

the best possible Q-values for all the state, action pairs.

228

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

B. Deep Reinforcement Learning-Based Classifier

We train a deep neural network as a reinforcement learning

agent A that interacts with the environment, receives a training

sample s and according to the policy π returns the probability

of class labels, i.e., action a. The policy π can be defined as:

π(a|s) = Pr(at = a|st = s) (1)

The goal of the agent is to explore and exploit the training

samples to predict the class labels so as to maximize the

cumulative rewards (Rc) through gaining positive rewards as:

Rc =

∞∑
k=1

γk.rt+k (2)

Where γ : γ ∈ {0, 1} is the discount factor. r is the immediate

reward and k is the number of episodes. The Q-value of

the state-action (s, a) combination, called the Q-function ,is

assessed by applying expected (E) reward for following π:

Qπ(s, a) = Eπ[Rc|(st = s, at = a)] (3)

The RL agent can optimize Rc by solving the optimum

Q∗ function using the ε-greedy policy. Q∗ is the optimal

function for optimal policy π∗. ε-greedy chooses a random

action uniformly from a set of available actions. The ε-greedy

approach is used to enable the agent to learn and earn reward

from the environment based on the policy π so that Q∗ would

be the optimal classifier model for the experiment. The optimal

policy π∗ can be defined as:

π∗ =
{
1 a = argmaxaQ

∗(s, a)
0 otherwise

(4)

The Q-function returns the value for taking an action (or

predicting a label) for a state (a particular URL vector) under

the policy π. This Q-value (or quality value) is the highest cu-

mulative reward. When the actions are limited and state space

is small, the Q functions are stored in a table, which would

be used to predict the label of a class. However, for higher

dimensional data where the state-space combination is too

large to record in Q-table, a deep learning network is helpful

in learning the optimal classification through gradient decent

(policy π). A deep learning implementation to approximate

the Q values is termed as Deep Q Network (DQN). The DQN

uses experience replay for learning. The experience replay

is the information about the state transition, action, reward

for q-value learning. The learning process uses an experience
memory (M) to store the information (s1,at,rt,st+1) and

samples mini batch (Bm) from M to perform gradient decent

as per the loss function L(θ):

L(θ) =
∑

(s1,at,rt,st+1)∈Bm

(y −Q(s, a, θk))
2 (5)

Where y would be the desired approximation of q-function

and takes the form of:

y =

{
rj , terminalj = T

rj + γmaxat1
Q(st+1, at+1, θk−1)), terminalj = F

(6)

Fig. 1. URL structure.

Where j is a sample from the M , terminal is the condition

when state-action pairs have maximum cumulative rewards

and F and T are Boolean values.

IV. A DEEP REINFORCEMENT LEARNING MODEL

This section describes the key principles of our proposed

algorithm in classifying a given URL as phishing or benign.

A. Problem Statement

We can formulate the problem of detecting phishing URLs

as a binary classification problem, in which the prediction

classes are “phishing” or “benign”. Let us denote a training

dataset with T URLs along with data and class labels in the

form of (u1, x1), (u2, x2), . . . (uT , xT) where:

– ui for i = 1, 2, . . . T denotes a given URL in the training

set T , and

– xi ∈ {0, 1} for i = 1, 2, . . . T corresponds to the label

of the underlying URL where xi = 0 implies benign and

xi = 1 indicates a phishing URL, respectively.

To automate the problem of classification of phishing URLs

using deep reinforcement learning, we employ a two-step

procedure:

1) Feature Extraction. The representation of the given

URL ui into a d-dimensional (in our problem
d = 14vector space of features v = {v1, v2, . . . , vi}, such that

vi ∈ R
d.

2) Deep Reinforcement Learning. A learning algorithm

with a function f : R
d → R to predict the class

assignment using v.

Once the given URL is transformed to its vector represen-

tation v, the optimization function f : Rd → R, incorporated

into the deep learning part of the algorithm, is applied on
vto predict the class label.

B. URL Structure

A typical URL has two principle parts: (1) Protocol: Spec-

ifies the protocol to be used for communication between user

and web server, (2) Resource identifier: indicating the IP

address or the domain space where the resource is located.

A colon and two forward slashes separate the protocol from

resource identifier, as shown in Figure 1.

C. Feature Extraction

There are a certain characteristics of websites that helps

in distinguishing between phishing sites from the legitimate

ones. Examples of such characteristics include: long URLs,

IP address in URLs, and request access to additional URLs

229

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

in which these characteristics are the indications of being

phishing websites. In their work, Mohammad et al. [8] labeled

the website features in four groups: (1) Anomaly-based, (2)

Address bar-based, (3) HTML and JavaScript-based and (4)

Domain-based. We followed the proposed work in [8] to build

our set of 14 features, as listed below:

1) HTTPS Protocol. Sensitive information is transferred

using HTTPS protocols and utilization of such secure

protocol is a typically an indication of being safe.

However, phishers also can construct a URL with fake

HTTPS protocol. It is necessary to verify if the URL

protocol is offered by trusted issuer like VeriSign1 and

thus set this feature to zero. Otherwise, it is set to 1.

2) IP Address. Presence of IP address in the

given URL is almost a confirmed indication

of the website being a suspicious website (e.g.,

http://149.56.144.216/processa.php). It is an indicator

that the website is trying to gain some unauthorized

access. IP addresses are no longer a standard practice for

hostnames. Sometimes the IP addresses are converted

into hex format for obfuscation. Hence, this feature

value is set to 1 if there exists an IP address in the

given URL, or to 0 otherwise.

3) Long URLs. The aim is to construct a URL to be long

in order to obfuscate the malicious part. Hence, it is

suggested to set this feature to 1 if the URL is longer

than 54 characters and thus classify the given URL as

being suspicious.

4) URL Containing the @ Symbol. A browser is designed

to ignore everything prior to an @ symbol in a URL.

Hence, phishers can redirect a victim to a phishing

website using this method. As a result, if a URL contains

@ this feature receives the value of 1.

5) Adding Prefix or Suffix. For bypassing the search en-

gine optimization component, phishers often add “−”

to the domain name. Popular search engines such as

www.Google.com use “−” as a word separator. We set

this feature to 1 when there is a “−” in the domain name.

6) Sub-domains. Phishers often add valid sub domain

names in the URL to make it appear as a legitimate

URL. Hence, check if the number of dots (i.e., “.”) in

the hostname is fewer than three and thus set this feature

to zero. Otherwise, set it to 1.

7) Anchor URLs. According to [8] if the webpage has

anchors more than 20% then this feature should be set

to 1 as an indicator of being a phishing website.

8) Link Hiding. Phishers obfuscate the actual URL using a

fake one on the address bar. This can be identified by

MouseOver event. If the MouseOver shows a different

URL than the one appear on address bar, this feature

should be set to 1.

9) DNS Record. A phishing website generally does not have

DNS records. DNS records contain information about

1https://www.verisign.com

the active domain names. Phishing websites are short

lived and may not have any DNS record.

10) Page Redirects. Phishers redirect the user to another link

where the victim could expose sensitive information to

them. So, if the number of redirects is greater than 1
then this feature is an indication of malicious behavior.

11) Pop-up Windows. Legitimate websites do not make

their users provide any login credentials through pop-up

windows. If the webpage opens more than two pop-up

windows, set this feature as 1 and thus label the webpage

as suspicious.

12) Domain Age. Newly created websites have high risk

of being a phishing website. Using the WHOIS [16]

database, any website younger than one year old should

receive a value of 1 for this feature.

13) Server from Handlers. If the webpage asks for user infor-

mation and redirects the submitted form to a different

domain than the one hosting the webpage, it exhibits

phishing behavior.

14) Unusual URLs. If the URL does not exists in the

registered domain names in WHOIS [16] database then

this feature should be set to 1 to tag the URL as a

possible phishing website.

D. Normalization

All the feature vectors are normalized to binary values that

is 0 and 1. As well as the class assignment of each URL in

training set also 0 and 1.

E. Deep Reinforcement Learning-Based Classification

Reinforcement learning is a robust algorithm that allows an

agent to interact with an environment and obtain the states and

take action based on that. The proposed classification task is

designed as a sequential decision-making problem. Agent for

the target classes would receive the input vector representation

of the URL. The reward function is not dependent on the class,

but both on state and action. When the agent for phishing class

would select an action to maximize the reward, the agent from

the benign class would try to minimize the reward.

During learning phase, the agent receives the input URL

vectors, one at a time and perform the actions (i.e., probabil-

ities of current states to identify the next state) and obtains

rewards. At every episodes, the agent learns to obtain more

reward. Once the epochs are completed, the model is ready to

be applied on unseen data.

The rewards are based on the actions. For our phishing URL

classification problem, the state st at time step t is defined by

the vector space representation of training dataset T . In our

case case, it is a 14 ∗ UT matrix, where 14 is the number of

feature vectors and UT is the number of URLs in the dataset.

In each episode, the training sample changes.

The action A = {0, 1} is a binary output referring to the

class label (i.e., Phishing or Benign) of the URL ut. If the

Q-function value is � 0.5 then we normalize it to 1. In a

similar manner, if the Q-function value is between 0 to < 0.5
we normalize it to 0. The reward R is the feedback to the

230

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Deep Q Network.

agent from the environment. A reward rt corresponding to an

action at signifies if the agent has classified ut correctly or

incorrectly. If the class label of a particular ut is denoted by

lt, then for our experiment, R is defined as:

R =

{
1, at = lt
−1, at �= lt

(7)

F. Training The Network

The proposed reinforcement-based learning model is gener-

alized to capture the uniformities of the training URL vectors

so that the learning agent can earn maximized reward. The

agent retains the probabilistic value of successfully predicting

the class of each test data. This probability value is used by the

agent to learn about the environment. The linear combination

of feature vectors is applied to the approximation function for

the agent to learn or earn from the environment. The test data

set is used continually, so that the agent can form necessary

statistics for prediction (or the training algorithm converges),

which means there is no new knowledge about the environment

that can be learned by the agent to improve prediction.

The model is implemented to disregard the issues involving

function approximation by a single binary classification for

each training data.

We have used deep neural networks to learn from the vector

space representation of the phishing URLs. We have one

embedding layer and two fully connected layers with ReLU

activation and a softmax output layer to implement the DQN

or agent of the reinforcement learning based classifier. The

controller generates hyper-parameters and the gradient decent

leads to updating in policy parameter. The learning rate was

0.001. A 2-fold cross validation was performed for accuracy

improvement. The network architecture is shown in Figure 2.

The neural networks are proficient to learn from both linear

and nonlinear data. The training and classification algorithm

is presented in Algorithm 1. This algorithm is based on the

original DQN learning algorithm proposed by Mnih et al [9].

The training agent uses an ε-greedy method to choose an

action and gain rewards from the environment. More precisely,

the algorithm greedily chooses an action with probability ε at

random using Equation 3 to reach the action that maximizes

the cumulative reward over the epochs of the learning phase.

Input: The training samples and their class labels

Output: The optimum Q-values

Initialize experience memory M ;

Initialize Q-value function with random weights θ;

Define episodes K;

Initialize target Q-value function with random weights θ∗

= θ;

while episode 1 to K do
Initialize s1 = v1;

Initialize the pre-processed sequence function φ1 =

φ(s1) ;

while t = 1 to T do
Perform action (at) based on ε-greedy,

at =

{
Random− action probabilityε

argmaxaQ(ε(st), a; θ) otherwise
;

Observe rt for action at;
Set st+1 = st, at, vt+1 ;

Set pre-processed sequence function φt+1 =

φ(st+1) ;

Save (φ1,at,rt,φt+1, terminalj) in M;

Randomly sample from M and set yj using

equation.6;

Perform gradient decent using equation.5;

if terminalt = True then
break;

end
end

end
Algorithm 1: Training and classification algorithm.

V. EXPERIMENTATION DETAILS AND RESULTS

The experiment environment for this work was setup on

Amazon AWS using EC2 computer instance with an Ubuntu

Server 18.04 LTS with Variable ECUs, 1 vCPUs, 2.5 GHz,

Intel Xeon Family, 1 GB memory. We installed TensorFlow for

implementing the deep reinforcement learning based classifier.

A. Dataset
The experiment for this work was performed on the

Ebbu2017 Phishing Dataset [5]. The dataset was prepared and

publicly made available by Sahingoz et al. in their phishing

URL detection work [10]. Due to the absence of publicly

available large phishing datasets, they prepared a balanced

dataset containing both phishing and valid URLs. They have

developed their own script to query the internet Yandex Search

engine2 to collect the web pages with higher page rank, and

the phishing URLs from PhishTank3. The dataset contains

73,575 URLs, out of which 36,400 are legitimate and 37,175

are phishing. The training dataset is discrete and contains

deterministic classes. The proposed model can make binary

predictions of observations of the test data.

2https://tech.yandex.com/xml/
3http://www.phishtank.com

231

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation Metrics

The performance of the proposed model has been assessed

using relevance measures like precision, recall, accuracy and

F-measure. To calculate these measures, we need to calculate

the True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN) predictions. TP and TN refer to

the correctly classified results; Whereas, FP and FN are the

misclassified data. Using these 4 values, we can calculate the

performance measures as follows:

• Precision = TP
TP+FP

In classification problem a precision value closer to 1

implies the predicted labels are closer to truth.

• Recall = TP
TP+FN

A recall value closer to 1 implies the all the testing

samples could be predicted using the specified model.

• Accuracy = TP+TN
TP+TN+FP+FN

A accuracy score closer to 1 implies a high performance

of the system.

• F − Score = 2 ∗ Precision∗Recall
Precision+Recall

It is the harmonic mean of precision and recall to signify

the modelś resilience.

Table. I shows the average of the relevance measures from

different run of the model: This experiment for the work

TABLE I
RELEVANCE MEASURES OF THE PROPOSED MODEL.

Precision Recall Accuracy F-Measure
0.867 0.88 0.901 0.873

presented in this paper was performed on a balanced dataset

containing both phishing and benign URLs. However, we

have not experimented with reward function to explore the

performance of the model. The adam optimizer was used for

optimizing the parameters of the neural network. We split the

dataset into 8 : 2 for training and testing purposes.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a reinforcement learning based frame-

work for automated URL- based phishing detection. This deep

learning implementation of RL algorithm is a complimentary

approach to the existing phishing detection methodologies to

make the system dynamic. This work establishes the founda-

tion for a more efficient, dynamic and self-adaptive phishing

identification framework. However, this work is not optimized

for real world implementation and our future work involves

performance tuning for the deep Q learning algorithm to

optimize the Markov Decision Process [18], [19] for optimal

classification. Also, we have used only lexical features of the

URLs for this experimentation and we would like to explore

the performance of our model with the use of other advanced

features like host-based features, content-based features etc.

or a combination of these various features to build an optimal

and robust classifier. There are some other deep learning based

algorithms that should be examined for the problem stated in

this paper such as LSTM [12], [13]. Moreover this classifier

can be extended for other binary classification problems like

Webspam detection [2] and presence of malicious bots in the

network [3]. RL based approach being more adaptive, the

classifier can be extended for mitigating various privacy and

security concerns [4] in wearable devices.

ACKNOWLEDGEMENT

This project is funded in part by grants (Awards No:

1723765 and 1821560) from National Science Foundation.

REFERENCES

[1] Abdelhamid, N., Ayesh, A. and Thabtah, F., 2014. Phishing detection
based associative classification data mining. Expert Systems with Ap-
plications, 41(13), pp.5948-5959.

[2] Chatterjee, M. and Siami Namin, A., 2018, July. Detecting web spams
using evidence theory. IEEE 42nd annual computer software and appli-
cations conference (COMPSAC).

[3] Chatterjee, M., Siami Namin, A. and Datta, P., 2018, December. Ev-
idence Fusion for Malicious Bot Detection in IoT. IEEE International
Conference on Big Data (Big Data).

[4] Datta, P., Siami Namin, A. and Chatterjee, M., 2018, December. A
Survey of Privacy Concerns in Wearable Devices. IEEE International
Conference on Big Data (Big Data).

[5] Ebbu2017 Phishing Dataset. Accessed 5 April 2019. Available:
https://github.com/ebubekirbbr/ pdd/tree/master/input.

[6] Liu, W., Huang., G., Xiaoyue, L. Min, Z., and Deng, X., 2005., Detection
of phishing webpages based on visual similarity. 14th international
conference on world wide web (WWW).

[7] Nguyen, N. Siami Namin, A., Dang, T. 2018. MalViz: an interactive
visualization tool for tracing malware. ISSTA.

[8] Mohammad, R.M., Thabtah, F. and McCluskey, L., 2012, An assessment
of features related to phishing websites using an automated technique,
IEEE Conference for Internet Technology and Secured Transactions.

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529533.

[10] Sahingoz, O.K., Buber, E., Demir, O. and Diri, B., 2019. Machine
learning based phishing detection from URLs. Expert Systems with
Applications, 117, pp.345-357.

[11] Sartoli, S., and Siami Namin, A., 2017, A semantic model for action-
based adaptive security, Symposium on Applied Computing (SAC).

[12] Siami-Namini, S., Tavakoli, N., and Siami Namin, A., 2018, December.
A Comparison of ARIMA and LSTM in Forecasting Time Series. In-
ternational Conference on Machine Learning and Applications ICMLA.

[13] Siami-Namini, S. and Siami Namin, A., 2018, Forecasting Economics
and Financial Time Series: ARIMA vs. LSTM, CoRR abs/1803.06386.

[14] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An intro-
duction. MIT press.

[15] Tavakoli, N., Dai, Dong, and Chen Y., 2019, Client-side straggler-aware
I/O scheduler for object-based parallel file systems, Parallel Computing.

[16] WHOIS: Search, Domain Name, Website, and IP Tools. https://who.is
[17] Zhang, Y., Hong, J.I. and Cranor, L.F., 2007, May. Cantina: a content-

based approach to detecting phishing web sites. In Proceedings of the
ACM conference on World Wide Web.

[18] Zheng, J. and Siami Namin, A., 2018, A Markov Decision Process to
Determine Optimal Policies in Moving Target, Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security.

[19] Zheng, J. and Siami Namin, A., 2018, Defending SDN-based IoT
Networks Against DDoS Attacks Using Markov Decision Process, IEEE
Conference on Big Data.

[20] Xiang, G., Hong, J., Rose, C.P. and Cranor, L., 2011. Cantina+: A
feature-rich machine learning framework for detecting phishing web
sites. ACM Transactions on Information and System Security (TISSEC).

232

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 13:42:20 UTC from IEEE Xplore. Restrictions apply.

