Journal of Information Security and Applications 44 (2019) 49-63

Contents lists available at ScienceDirect

ATION

RM
SECURITY

Journal of Information Security and Applications '

journal homepage: www.elsevier.com/locate/jisa

Modeling adaptive access control policies using answer set A

Check for

programming LA

Sara Sartoli?, Akbar Siami Namin"*

2 Department of Computer Science and Information Systems, University of North Georgia, Dahlonega, Georgia, USA
b Computer Science Department, Texas Tech University, Lubbock, Texas, USA

ARTICLE INFO ABSTRACT
ArfiFle hiSfOTJ{J Many of the existing management platforms such as pervasive computing systems implement policies
Available online 27 November 2018 that depend on dynamic operational environment changes. Existing formal approaches for automatically

enforcing access control policies are primarily expressed in conventional logic programming, also known

ﬁi{ggﬁmml as monotonic logics, e.g., First Order Logic (FOL). The major issue with monotonic logics is that they are
Inference mechanism not devised to invalidate initial believes in the light of further observations. This limitation makes these
Answer set programming traditional logical approaches less suitable for modeling and analyzing context-aware access control poli-
Policies cies, where exceptional policies are introduced incrementally and adaptively during runtime. The inability
Exception handling to invalidate initial policies when an exception needs to be enforced might result in inconsistencies and
Conflict violations that need to be resolved manually by human entities. To address the problems with conven-

tional logical approaches and more importantly prevent such inconsistencies, this paper presents a non-
monotonic logic-based reasoning scheme for modeling and analyzing adaptive access control policies. In
the proposed formalism, unavailable context data and incomplete access control policies can be explicitly
expressed. To do so, the paper distinguishes three kinds of policies: default, context-dependent and ex-
ception policies. The proposed formalism is based on Answer Set Programming (ASP), a non-monotonic
logic programming language that allows elegant representation of unavailability of context data in adap-
tive systems. We devise non-monotonic policy inference rules such that, when exception policies are
defined, they take precedence over default and context-dependent policies automatically. The results of
two case studies are reported to demonstrate the feasibility of the proposed policy representation scheme
compared to the Organizational-Based Access Control (OrBAC) model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction To deal with context changes and thus make informed decision
in the presence of exceptional situations, a self-adaptive software
Modern policy-based management systems must implement system must address a number of daunting challenges such as [6]:
and enforce policies that depend on the contexts and dynamics
of underlying operational environments. The primary goal of im-
plementing an adaptive security mechanism is to enable manage- 2
ment systems adjust their protection strategies in the presence of
changes occurred in their operational environment [1,2]. Hence, a
typical adaptive access control framework must offer an effective 3
mechanism in order to deal with exceptional situations that often
occur due to unexpected events or behaviors occurred in the con- 4
texts of dynamic systems and thus enable runtime access control
decisions to mitigate the security risks such as information expo-
sitions caused by the changes [3-5].

1. reasoning based on “imperfect” context data, i.e. unavailable
or noisy context data;

. reasoning based on “incomplete” set of policies, e.g., lack of
specified policies for some subjects, objects or environmen-
tal contexts;

. resolving inconsistencies caused by runtime context changes
in dynamic systems; and

. resolving inconsistencies caused by exception policies that
are added incrementally to the knowledge-base and are
in apparent conflicts with predefined default and context-
dependent policies.

In this paper, we use the phrase “Adaptive Access Control

Scheme” to describe the capability of underlying (i.e. backend) rea-

* Corresponding author. soning engines of policy-based management systems to actively
E-mail address: akbar.namin@ttu.edu (A.S. Namin). refine policies in response to changes occurred in an operational

https://doi.org/10.1016/j.jisa.2018.10.007
2214-2126/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jisa.2018.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.10.007&domain=pdf
mailto:akbar.namin@ttu.edu
https://doi.org/10.1016/j.jisa.2018.10.007

50 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

environment. More specifically, we focus on the ability of man-
agement systems to override predefined policies (i.e., default and
context-dependent policies) automatically when exception policies
(i.e., user-level policies that might be injected incrementally to the
knowledge-base) must be enforced instead of predefined policies.
This ability is particularly important because the inability of man-
agement systems to override predefined policies often introduce
inconsistencies, unintended behavior or undetermined access de-
cisions in dynamic management systems. By Default policies, we
refer to general policies, which are predefined and thus are appli-
cable to normal executions of the systems. By context-dependent
policies, we refer to policies, which are associated with some ex-
pected conditions such as time and locations. Furthermore, default
and context-dependent policies are defined at the design stage of
a system. Whereas, exception policies refer to the policies that are
not predefined and are injected incrementally at runtime in un-
expected or unknown situations or when an abnormal behavior is
detected [7]. Exception policies can also be withdrawn at runtime
when the exceptional situation is resolved.

This paper proposes an automated reasoning scheme based on
Answer Set Programming (ASP) that explicitly represents imperfect
context data and incomplete set of policies. The scheme separates
the specification of default, context-dependent and exception poli-
cies. The proposed approach benefits from non-monotonicity char-
acteristic of ASP, where defaults and exceptions are explicitly rep-
resented using “negation as failure”. While enforcing access con-
trol policies, the non-monotonicity characteristic enables overrid-
ing predefined policies when environmental contexts change or ex-
ception policies must be enforced. This feature prevents inconsis-
tencies that often occur due to context changes in dynamic sys-
tems and thus require to be resolved manually. The scheme also
offers a means to default decision-making, when context data are
imperfect or the policy set is incomplete.

The proposal of this research has been presented as a poster
[8]. This paper is an extended and enhanced version of our short
paper [6] where we introduced the core elements of an adaptive
access control scheme. This paper also explores the problem of in-
complete access control and conflicting policies. Moreover, the pa-
per presents a detailed research problem and an additional case
study in comparison to its shorter version.The main contribution
of this paper is to build an automated reasoning scheme that en-
ables reasoning about expressive access control policies. The rea-
soning scheme can be used as a backend for security management
systems. The key contribution can be broken down as follows:

- A formal logic-based representation of context-aware access
control, in which imperfect context data and incomplete ac-
cess control policy sets are explicitly taken into account and
expressed.

A semantic model that distinguishes three types of policies: i)
default, ii) context-dependent, and iii) exception policies.

A formal approach to devising non-monotonic policy inference
rules and automate prioritization of exceptions policies over
predefined regulations.

- The implementation of the proposed adaptive security reason-
ing using off-the-shelf efficient ASP solvers and

The results of two case studies with the purpose of assessing
the feasibility and expressiveness of the presented approach
compared to context-aware access control models based on
First-Order Logic (FOL).

The rest of this paper is organized as follows: Section 2 presents
a detailed research problem and motivates the needs for an adap-
tive access control. Section 3 briefly introduces the notation and
semantic of Answer Set Programming (ASP). Section 4 reviews
the related work. The ASP-based reasoning scheme is presented
through Section 5.1. Concerns regarding incomplete policy sets and

conflict management are discussed in Section 7. Section 8 reports
two case studies and Section 10 concludes the paper and highlights
the future work directions.

2. Motivation

This section motivates the needs for an adaptive access con-
trol modeling approach. To do this, we briefly review Organization-
Based Access Control (OrBAC), one of the well-known context-
aware access control models. This type of access control model is
usually expressed using monotonic logic, in particular First Order
Logic(FOL). We argue that even though FOL-based reasoning can
be useful for design-time policy specification of context-aware ac-
cess control models, it is not properly devised for modeling adap-
tive reasoning where exceptions must be handled during runtime.
We also highlight deficiencies in expressing adaptive access control
through a few of examples.

2.1. Organization-Based Access Control

Organization-Based Access Control (OrBAC) is a context-aware
access control model which is an extension of popular Role Based
Access Control [9] model represented in first-order logic [10]. One
of the key features of OrBAC is that it enables expressing security
policies at a high-level of abstraction, i.e., abstract policies. As a
result, the concrete policies pertinent to the operation of the un-
derlying system are then inferred from the abstract policies.

Abstract policies are specified based on three abstracted enti-
ties: i) roles, ii) activities, and iii) views. In an analogous way, con-
crete policies are expressed based on three concrete-level entities:
i) subjects, ii) actions, and iii) objects. Hence, in order to define
policies at an abstract level, subjects, actions and objects are ab-
stracted into roles, activities and views, respectively.

Abstract Policies. Basically, in OrBAC, the abstract access con-
trol policies can be expressed through three types of facts that are
represented by following predicates:

- permission(org, role, activity, view, context), stating that in an or-
ganization org, anyone, whose role is classified as role, is al-
lowed to perform the activity activity on the view view when
the given context context holds.

- prohibition(org, role, activity, view, context), stating that in an or-

ganization org, anyone, whose role is classified as role, is disal-

lowed to perform the activity activity on the view view when
the given context context holds.

obligation(org, role, activity, view, context), stating that in the

organization org, anyone, whose role is classified as role, is

obliged to perform the activity activity on the view view when
the given context context holds.

Concrete Policies. An OrBAC model represents concrete level
policies, i.e., policies in a lower level of abstraction that are in-
ferred from abstract policies, through the following three predi-
cates:

- isPermitted (org, subj, action, obj), stating that in an organization
org, the subject subj is allowed to perform the action action on
an object obj.

isProhibited (org, subj, action, obj), stating that in an organization
org, the subject subj is disallowed to perform the action action
on an object obj.

isObliged (org, subj, action, obj), stating that in an organization
org, the subject subj is forced to perform the action action on
an object obj.

MotOrBAC [11] is a user interface that enables specifying and
editing OrBAC model policies. The tool is capable of automatically
inferring concrete policies given certain abstract policies along

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 51

with the association rules between the abstract and concrete en-
tities. It is important to note that the expression of policies in
MotOrBAC is based on a first-order logic (FOL) semantic. For in-
stance, MotOrBAC uses the following FOL-based rule to infer the
concrete permission policies from the abstract permission poli-
cies:

isPermitted (Org, Subj, Action, Obj):— (1)
permission(Org, Role, Activity, View, Context), (2)
empower (Org, Subj, Role), (3)
consider (0Org, Action, Activity), (4)
use(Org, Obj, View), (5)
hold(Org, Subj, Action, Obj, Context). (6)

This inference rule states that in an organization Org, the sub-
ject Subj is permitted to perform the action Action on an object Obj
(line 1) if:

1. a permission is specified for any user whose role is Role to
do the actions abstracted into the activity Activity on the ob-
jects abstracted into the view View in the context Context
(line 2),

2. the subject Subj is empowered as the role Role (line 3),

3. the Action Action implements (considers) the activity Activity
(line 4),

4. the object Obj is an instance of a view View (line 5), and

5. the context associated with the concrete entities is currently
held in the organization Org (line 6).

The FOL-based rules to infer isObliged and isProhibited can be
expressed in analogous ways.

2.2. The adaptability issues of Organization-Based Access Control

This section presents two examples through which the defi-
ciency of OrBAC-based reasoning scheme, as an instance of mono-
tonic logic-based reasoning schemes, is illustrated. The examples
justify the need for an adaptive reasoning scheme for enforcing
context-aware access control policies. The prospective scheme is
required to be more sensitive to context changes and exception
policies and hence thus naturally adapt to frequently changing en-
vironments.

Example 1 Handling Exception Policies in OrBAC. Consider a city
hospital where OrBAC-based policies are devised to enforce access
controls. A permission policy can be expressed in terms of OrBAC-
based model as follows [10]:

- permission(city_hospital, intern, handle, medical_file, morning).

This policy states that at City Hospital, any intern is allowed to
handle medical files in the morning.

Now, let us assume a scenario where i) Bob is appointed as an
intern, ii) the action read implements the handle activity, and iii)
Patrice-medical-file is an instance of medical_file. Bob is an excep-
tional intern, whose access to Patrice’ s data is restricted due to
personal conflicts. Therefore, Bob exceptionally must be disallowed
to read Patrice’ s medical file, even though, according to the pre-
defined abstract policy, he should be able to have access to any
medical files including Patrice medical data.

Given the fact that it is unrealistic and infeasible to prede-
fine all possible policies for every possible context, the policy sets
are usually incomplete. To ease handling such cases, an access
control model must enable integrating exceptional cases into the
knowledge-base incrementally at runtime. Because of the restric-
tions inherited by monotonic logics, OrBAC-based representations

of policies cannot enable integrating exceptional concrete policies,
such as the Bob and Patrice’ s conflict case. The reason is that,
even if exception policies are added to the policy set at runtime,
the consequences inferred by the abstract policies cannot be over-
ridden without manual administration, which is impractical in dy-
namic environments.

Let us assume that OrBAC has been extended in such a way that
it allows expressing concrete policies along with the abstract ones.
Thus, the following exception policy could be integrated into the
existing policy set:

- isProhibited (city_hospital, bob, read, patrice_medical_file).

Integrating this exception policy to the pool of policies causes
a conflicting problem between the concrete permission policy
that is inferred from the abstract permission policy and the con-
crete exception prohibition policy. According to the abstract per-
mission policy Bob, who is an intern at the hospital, is al-
lowed to read medical files and thus is still permitted to read
Patrice’s medical file. On the contrary, according to the newly
added exception prohibition policy, Bob is prohibited to read
Patrice’s medical file. In fact, the OrBAC-based knowledge-base
does not adapt to the newly added exception and still infers
isPermitted (city_hospital, bob, read, patrice_medical_file), which is
in apparent conflict with the added exception policy.

As a matter of fact, extending the OrBAC-based policies to rep-
resent exceptional cases does not imply suspending or bypassing
the abstract policies’ consequences. This issue causes an inconsis-
tency between the exception and inferred concrete policies. A pos-
sible solution to resolve this type of conflict is through i) assigning
priorities to policies, or ii) defining clear separation between abstract
entities [12]. Without a rigorous representation of policies, this is-
sue adds additional complexities to the policy management sys-
tems that operate in highly dynamic systems with exceptions.

Example 2 Difficulties in Reasoning When Context Changes. This
example illustrates the deficiency of FOL-based reasoning schemes
in dynamic environments where OrBAC-based predicates and infer-
ence rules are used to express adaptive scenarios. Consider the fol-
lowing two policies in a research lab at City University (CU) where
policies are expressed through an OrBAC-based model.

- prohibition(cu, undergrad_student, access, research_lab,
default_ctx).

- permission(cu, undergrad_student, access, research_lab,
accompanied_by_grad_student).

The first policy states that: normally (i.e., in default context),
any undergrad student is disallowed to access a research lab at
CU; Whereas, the second policy states that at CU any undergrad
student is allowed to have access to the research lab if a graduate
student is already present in the lab.

Let us consider a scenario where Mary, who is an undergrad-
uate student, attempts to enter EC202 when no graduate student
is present in the lab. In this scenario, the action enter is ab-
stracted into an access activity, and the EC202 lab is an instance
of research_lab. With respect to the specified abstract policies and
the association rules between the concrete and abstract policies,
the OrBAC FOL-based inference rule infers the following concrete

policy:
- isProhibited(cu, mary, enter, ec202).

Now, assume another scenario where Mary again attempts to
enter EC202 at a later time. Alice, a graduate student, is already
in the lab and therefore the context accompanied_by_grad_student
holds. Since a graduate student now accompanies Mary in the lab,
OrBAC FOL-based inference rule infers the following concrete pol-
icy:

52 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

- isPermitted(cu, mary, enter, ec202).

It is important to note that, because FOL is used in representing
the policies, even after inferring isPermitted(cu, mary, enter, ec202),
the concrete policy isProhibited(cu, mary, enter, ec202) is not inval-
idated and thus there is an apparent conflict between these two
concrete policies. As a result, the security administration needs to
manually resolve this type of conflict at the design time.

A key feature missing in FOL-based reasoning schemes that
makes them less attractive in modeling dynamic domains is the
lack of reasoning capability in invalidating earlier consequences
and believes when changes occur in the contexts or an additional
piece of knowledge is gained and added to the knowledge-base.
This problem is caused by the monotonicity characteristic of first-
order logic in which new observations are never invalidated earlier
consequences and therefore it is always assumed that the underly-
ing system is complete and certain.

This paper proposes a formal scheme that employs non-
monotonic logic for implementing context-aware access control
policies. More specifically, as a non-monotonic declarative language
employed in our scheme, Answer Set Programming (ASP) offers an
elegant way to represent the knowledge that might be even in-
complete or unavailable ahead of time yet make informed deci-
sion through uncertain reasoning inherited from its non-monotonic
characteristic. The non-monotonicity of ASP makes this declarative
logic programming language a suitable tool for automated reason-
ing for enforcing security policies and requirements in dynamic en-
vironments during runtime.

3. Answer Set Programming (ASP)

Answer Set Programming (ASP) [13,14] is a non-monotonic,
declarative, and logic programming language. ASP has its origin in
default logics [15] and constraint satisfaction paradigm. It is based
on stable models [16], also known as answer set semantics of logic
programming. What distinguishes ASP from other non-monotonic
logic-based approaches is that it is supported with a good num-
ber of well-developed and efficient solvers and grounders such as
Clasp [17], DLV [18], and Gringo [19]. ASP has been successfully
used for reasoning efficiently with incomplete knowledge and also
for representing and reasoning about dynamic domains [20,21]. It
has recently been used to resolve challenges in different applica-
tion areas such as robotics, computational biology and e-medicine
[22]. In the context of access control, ASP has been used by re-
searchers for XACML policy verification purpose [23-25]. Furtur-
more, it has been used to provide a simple authorization and obli-
gation language as well as ASP-based compliance checking algo-
rithms [26].

The basic building blocks of ASP programs are atoms. Atoms are
factual statements that are evaluated to be true or false. Literals are
either atoms or the negation of atoms. An atom p(ty,..., tp) is a
ground atom if all of ¢;s are constants (i.e. none of them is a vari-
able). Ground literals are either ground atoms or their negations.
ASP rules are ordered pairs in the general form of:

Head :— Body

The Head and the Body are finite sets of literals. Using :— in
rules means that the ASP rules are executable. In this paper, we
use a subset of ASP programs, in which every rule after expanding
Head and Body is in the form of:

a:— by,....bynot ci,...,not c;

The rule states that a, (i.e., the Head) is true if all of the atoms
in the Body (the right side of the rule) are true. In other words,
a is true if by, ..., b; are believed, whereas, cq, ..., ¢; are not be-

lieved. The symbol not is called “default negation” or “negation as

failure.” The notc; notation can be interpreted as: there is no reason
to believe that c; is true. Unlike the classical negation, not does not
imply that ¢; is believed to be false. Rather it implies that there
is not enough evidence to believe in ¢; (i.e., the value of ¢; is not
available). ASP facts are expressed as rules with empty bodies as
follows:

The empty Body is always evaluated to be true. In this paper, we
omit :— when expressing facts.

An ASP program, i.e., a set of ASP rules, can semantically be
viewed as a specification for answer sets. Answer sets can be de-
scribed as sets of beliefs that can be associated with an ASP pro-
gram. Answer sets are represented by a collection of ground liter-
als. Forming answer sets are guided by the following set of infor-
mal principles [20]:

1. Believe in the head of a rule if its body is believed.
2. Do not believe in contradictions (i.e., a and -a).
3. Believe nothing if it it not forced to be believed.

In the rest of this section, we illustrate the principles together
with the notion of classical and default negation.

Example 3.2.1. [A Program with Classical Negation.] Consider
the following ASP program with two rules:

“If it is believed that p is false, then q must be
believed”
-p “It is believed that p is false”

q:—-p

In this example, the second rule is a fact and facts are always
believed, since their body is a collection of empty literals. There-
fore, based on first principle, it is believed that p is false. The same
principle is applicable to the first rule enforcing us to believe gq.
Therefore, the answer set {—p, g} can be associated with the rules
of the program.

Example 3.2.2. [A Program with Default Negation.] Some-
times reasoning can be performed based on the absence of infor-
mation. For example, Alice, who is a nurse, might be permitted to
read John's records, who is a patient, while lacking the evidence
to the contrary (i.e. by default). Such reasoning can be captured by
default negation and can be represented by an ASP program that
contains the following type of rules:

q :— not p “If there is no reason to believe p, then g must be
believed ”

Since there is no rule in the program that has p on its head,
nothing forces to believe p. So, by principle 3, the answer set does
not contain p. Consequently, to satisfy the only rule of the program,
since p is not believed g must be believed. Therefore, {q} is the
answer set of the program.

ASP has several features that makes it a suitable tool to express
evolving knowledge in dynamic systems:

- Explicit and distinct Representations of Default and Excep-
tion policies. The elegance and expressiveness of ASP in rep-
resenting defaults and exceptions by the means of negation as
failure offers two valuable benefits to modeling access control
systems:

- Reasoning with Imperfect Data. This feature enables making
informed decisions about access control permissions when
context data are imperfect ahead of time or the set of poli-
cies is incomplete and evolving. In such cases, privileges can
be granted based on defaults (i.e., context defaults are rep-
resented through the general abstract policies) [8].
Resolving Conflicts and Dealing with Inconsistencies. Rep-
resenting defaults and exceptions and invalidating de-
faults, when exceptions are added to the knowledge base,

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 53

help avoiding conflicts between the default and context-
dependent (i.e., predefined policies) on one side and the ex-
ception policies on the other side naturally, as illustrated in
motivating Examples 1 and 2.

- A Declarative Way to Program and Knowledge Representa-
tion. Declarative programming is a paradigm, in which a pro-
grammer intends to describe a problem (i.e., what) rather than
the solution (i.e., how). Using declarative languages, policies
and requirements can be added incrementally to the knowledge
base regardless of being concerned about their side effects and
potential inconsistencies. By enabling one to express what re-
strictions need to be enforced rather than describing how to
enforce them, this feature supports adding exceptional policies
incrementally at runtime.

4. Related work
4.1. Access control models

Traditional access control models such as Discretionary Access
control (DAC) [28], Mandatory Access Control (MAC) [29], and Task-
Based Authorization Controls (TBAC) [30] are restricted to model-
ing permission controls using static policies. Unlike traditional ac-
cess control modeling schemes, Role Based Access Control (RBAC)
[9] enables expressing policies for dynamic systems. RBAC policies
are defined based on roles and privileges (i.e.,permissions). Fur-
thermore, RBAC allows coping with operating environment changes
by changing user roles when privileges need to be restricted or re-
laxed. Bertino et. al., introduced Temporal Role-based Access Con-
trol (TRBAC) model [31], which extends RBAC to support periodic
time triggering roles. However, similar to other traditional access
control models, TRBAC also does not allow specifying contexts.

As indicated by Kuhn et. al., RBAC has been criticized for diffi-
culties in modeling role-engineering process and have inadequate
support for operating environment context such as time of day and
location [27]. The criticisms gave birth to access control models
that allow specifying conditions (i.e., contexts) such as OrBAC and
Attribute Based Access Control (ABAC) [32]. OrBAC extends RBAC
with the notion of prohibition policies and contexts and is formal-
ized in first order logic. Standard implementation of ABAC is eX-
tensible Access Control Markup Language (XACML) which defines
a policy language and an architectural scheme for expressing ABAC
[33]. In addition to the RBAC model elements, XACML language al-
lows specifying prohibition (using Deny effect) and contexts (us-
ing Condition construct). XACML has been complemented by some
logic-based specification approaches that offer formal verification
services for XACML policies. Context-aware access control some-
times operates under the assumption that it is possible to prede-
fine access control policies in all possible contexts. However, some
of the contexts such as emergency can never be fully defined. The
access control in unanticipated conditions are usually denied by
default [4].

Building upon the reviewed access control models and having
into consideration the reviewed criticisms, this paper proposes to
model access control policies within three classes: 1) default poli-
cies (similar to RBAC policies but extended with prohibition), 2)
context-aware policies (similar to OrBAC policies), and 3) excep-
tions policies (user level policies to model unanticipated contexts).
Once policies are modeled, they can be validated and transformed
to policy languages such as XACML. In the proposed model, adding
prohibition policies and also the notion of context to RBAC ele-
ments enable utilizing denial and condition constructs of XACML
features. It also adds exception policies as well as capability to
modeling incomplete context data to OrBAC (See Section 6).

4.2. Logic-based approaches to reason about XACML policies

XACML is the standard implementation for ABAC that incorpo-
rates a rich set of features and constructs and allows expressing
policies and specifying policy combination mechanisms. However,
according to several research, specifying policies in XACML is a dif-
ficult and error-prone task [34-36]. In other words, specifying cor-
rect and efficient policies in XACML depends on policy makers de-
cisions [35,37]. For instance, as indicated by [37] “existing policy
structuring mechanisms do not prevent efficiency problems that
are caused by bad specifications of policies, especially when poli-
cies evolve over time.” Furthermore, XACML does not have a for-
mal semantic. However, since most of the XACML constructs have
a declarative flavor, researchers formalize the required constructs
and map them to logical semantics which also takes into account
the policy verification and validation.

To assist policy developers in order to detect and resolve hu-
man errors in XACML policies, formal logic-based verification and
analysis tools and techniques have been developed [34,36,38,40].
Fisler et. al., [36] present a software suite for analyzing RBAC ac-
cess control policies, expressed in XACML. In the software suite,
each XACML policy is represented as a multi-terminal binary deci-
sion diagram (MTBDD) model in first order logic. The policies are
then combined by MTBDD-based combining algorithms that imple-
ment the XACML combining algorithms. Safety properties are rep-
resented in the Scheme programming language. The suite has two
main components: 1) a verification component that takes a policy
set and a formal property as inputs and determines whether the
policy satisfies the property; and 2) a change-impact analysis com-
ponent that takes as inputs two policies and spans a set of changes
in order to identify effects of policy changes.

Hughes and Bultan [34] use a SAT solver to check the satis-
faction of some boolean logic based properties. Turkmen et. al.,
[38] develop a SMT-based policy analysis framework that auto-
matically translate XACML policies into the corresponding formal
specification of policies [39]. The specification enables analysis
against a wider range of properties including non-boolean proper-
ties that are usually left uninterpreted using the SAT solver based
approaches. The SMT-based approach also improves analysis per-
formance in comparison to SAT solvers.

Crampton et. al., [40] address the problem of missing attribute
values in analyzing attribute-based access control policies initially
expressed in PTaCL and XACML. The solution proposed by Cramp-
ton et. al., is based on non-deterministic evaluation. In particular,
they use PRISM, a probabilistic model checker, to simulate the non-
determinism of retrieving attributes.

The proposed reasoning scheme, presented in this paper, bene-
fits from expressiveness of ASP to model and analyze access con-
trol policies. In particular, using default negation we can define el-
egant context definitions (e.g., modeling topology of operating en-
vironment as a complex context [41]) and constraint about non-
existence of context data and policies (e.g., scenarios in [8]). One
of the distinguishable aspects of our scheme compared to some
other non-monotonic approaches is the utilization of efficient and
available ASP solvers.

5. Adaptive reasoning scheme for context-aware access controls

This section presents a semantic model that enables making in-
formed decision with the goal of enforcing adaptive context-aware
access control policies.

5.1. Policy model

We present the policy model using the formalization offered
by the traditional Role-Based Access Control (RBAC) [9] and its

54 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

context-aware variation, OrBAC [10]. The basic key elements are
described in terms of the following sets:

- Roles (R), where set R is a finite set of m roles R={ry,...,mm}.
A role is defined according to a user’ job description, e.g., in-
tern.

Users(U), where set U is a finite set of n users U = {uy, ..., un}.

A user is an entity that requests having access to valuable as-

sets, e.g., Mary.

- Assets (AS), where set AS is a finite set of p valuable objects

AS ={asy, ..., asp}. An asset is an instance of a protected valu-

able object, e.g., a confidential data container.

Actions (AC), where set AC = {acy, ..., acq} is a set of g opera-

tions defined on assets. Actions are basic operations allowable

on assets, e.g., reading confidential data.

- Context Expressions (CE), where the set CE is a finite set of
o context expressions CE = {ceq, ..., ce,}. Contexts are concrete
environmental conditions that have effects on access control
decisions, e.g., morning time.

- Exception Identification Numbers (ID), where the set ID is a
finite set of o identification numbers ID = {ID;, ..., ID,}. Identi-
fication numbers are numbers that are associated with excep-
tion policies and enable distinguishing different occurrence of
exceptions from each other.

Using the above sets, we are now in a position to describe the
syntax and informal semantic of relations among these sets that
will be used in the proposed reasoning scheme. The user role as-
signment is expressed as follows:

- User Assignment (UA): UA € U x R is a many to many relation-
ship imposed on the sets of users U and roles R. This relation-
ship is used to associate users with their roles in the system.
An ASP fact such as ua(userq, role;) states that user usery is as-
sociated with role role; and is expected to perform the duties
described for role;.

On the other hand, the default policies can be expressed as fol-
lows:

- Default Permission (dPrm): dPrm < R x AC x AS is a ternary re-
lationship imposed on the sets of roles R, actions AC and assets
AS. An ASP fact such as dPrm(role, action, asset) states that nor-
mally and by default, any user with the assigned role role is
allowed to perform action action on asset asset.

Default Prohibition (dPrh): dPrh € R x AC x AS is a ternary re-
lationship imposed on the sets of roles R, actions AC and as-
sets AS. Similarly, an ASP fact such as dPrh(roleq, action;, asset;)
states that normally and by default, any user with the assigned
role role; is disallowed to perform the action action; on the as-
set assety.

In an analogous way, the context-dependent policies are ex-
pressed as follows:

- Context-Dependent Permission (cdPrm): cdPrm < R x AC x AS
x CE is a relationship imposed on the sets of roles R, actions
AC, assets AS, and context expressions CE. An ASP fact such as
cdPrm(roleq, actiony, assetq, ce1) states that any user, whose role
is roleq, is allowed to perform the action action; on the asset
asset; when the context expression ce; holds, i.e., is evaluated
to be true.

Context-Dependent Prohibition (cdPrh): cdPrh € R x AC x AS
x CE is a relationship imposed on the sets of roles R, actions
AC, assets AS, and context expressions CE. An ASP fact such as
cdPrh(roleq, actiony, assety, cey) states that any user, whose role
is roleq, is disallowed to perform the action action; on the as-
set asset; when the context expression ce; does not hold, i.e.,
is valuated to be true.

Similarly, the exception policies are expressed as follows:

- Exception Permission (exPrm): exPrm € UxACxASxID is a
relationship imposed on the sets of Users U, actions AC, and
assets AS. An ASP fact such as exPrm(usery, action,, asset;, ex-
ceptionld) states that the user user; is exceptionally allowed to
perform the action action; on the asset asset;. The exPrm is as-
sociated with an exceptionld that allows distinguishing different
occurrences of exceptions from each other.

Exception Prohibition (exPrh): exPrh € U x AC x AS x ID is a re-
lationship imposed on the sets of Users U, actions AC, assets
AS, and Identifiers ID. An ASP fact such as exPrh(user;, actionq,
assetq, exceptionld) states that the user user; is exceptionally
disallowed to perform the action action; on the asset asset;.
The exPrh is associated with an exceptionld that allows distin-
guishing different occurrences of exceptions.

Note that in this paper, the term “exception” is used in two
different meanings. We use the “exception policy ” in the context
of access control policies; whereas, the “ASP-based exceptions” are
used in the context and semantic of ASP-based default reasoning.
More specifically, by “exception policy”, we mean the user-level
policies are specified for individuals and added incrementally to
the knowledge-base; whereas, by an “ASP-based exception”, we re-
fer to an element of the default reasoning that represents a fact or
a logical inference that is followed by default negation in an ASP
rules. Finally, contexts are defined through logical rules that have
hold predicates on their heads, i.e., the left part of the rules:

- holds € UxAC x AS x CE is a relationship imposed on the sets
of users U, actions AC, assets AS, and CE. An ASP fact such as
holds(usery, actionq, asset;, context;) states that the user user; is
allowed to perform the action action; on the asset asset; while
the condition context; holds.

In the following sections, we present an in-depth description
of the key concepts such as contexts, default policies, context-
dependent and exception policies as well as Incompleteness and
conflict management as framed in the presented adaptive reason-
ing scheme. We employ the convention of using lowercase letters
to represent objects and uppercase letters to express variables in
order to be consistent with the ASP’ s syntax.

5.2. Representing different types of contexts

There is a good body of knowledge on the use of contexts
in different context-aware applications (for a good survey see
[42] and [43]). These context-aware applications use contexts to
perform reasoning and adapt their behaviors in order to response
to changes occurred in their environments in which changes are
usually detected by sensors. The context data detected by sensors
is usually unavailable beforehand. Therefore, it is important for a
context-modeling scheme to deal with incomplete and noisy data
and support self-esteem reasoning to automate decision-making
processes.

An attempt to precisely define a context depends on the ap-
plication domain. From the perspective of access control models,
Kalam et al., [10] defined contexts as specifications of concrete cir-
cumstances used to express dynamic access control policies. From
the perspective of requirements engineering, contexts can be de-
fined as a partial view of a state of an environment that influence
the decisions of the system [44]. For example, we are not inter-
ested in the part of states of the world that are uniform because
they do not influence the decisions of an access control system. In
this paper, we adopt the requirements engineering perspective of
the contexts associated with access control policies. To do so, we
use the following types of contexts to express access control poli-
cies:

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 55

- Basic Entities Contexts. Conditions that are used to describe
a certain attribute of model entities. For example, laborato-
ryRecord can be a context expression, used to describe the type
of an asset, i.e., the value of type attribute of an asset is labora-
toryRecord.

- Relational Contexts. Conditions that are used to describe a re-

lationship or interaction between instances of model entities.

For example, attendingPhysician is a context expression that de-

scribes the relationship between the owner of a certain asset

and a physician, i.e., an attending physician has been assigned
as the physician of the owner of an asset.

Environmental Contexts. Conditions that are used to describe

the operating environment. The environmental contexts are in-

dependent from basic entities. For example, at a typical hospi-
tal, workingHours is a context expression that can be used to
describe working hours and shifts of the hospital.

In the presented ASP-based reasoning model, atomic contexts
are inferred from the ASP facts, where the head of rules are in-
ferred using the holds predicates (defined in Section 5.1); whereas,
the bodies of rules are facts that describe attributes of the entities
or the environment. Compound contexts can be inferred based on
atomic contexts, where both the head and the body of the rules
include the “holds” predicates. CDR; and CDR, illustrate the defini-
tion of an atomic context and a compound context, respectively.

CDR; . holds(User, Action, Asset, workingHours) : —
afterTime(8),
beforeTime(18),
—onDay (saturday).

CDR;. holds(User, Action, Asset, internPrescriptionHour) : —
ua(User, intern),
holds(User, Action, Asset, morning),
holds(User, Action, Asset, evenDays).

CDR; states that “workingHour” context holds (for all of triples
of <user, action, asset>) from 8 to 18 everyday except Saturdays.
CDR, states that “internPrescriptionHour” context holds for users
who are assigned as interns, with the condition that if “morn-
ing” and “evenDay” contexts are hold. Note that in this paper, we
present only a semantic model to reason about policies that de-
pend on contexts and leave out presenting a context model.

5.3. Default, context-Dependent, and exception policies

Due to the complexity of regulations and security goals in a
typical dynamic domain, the number of access control policies can
grow substantially. Specifying policies and regulations in large or-
ganizations is a very tedious and error-prone task. As a result, in-
consistencies in policies may occur due to missing policies for cer-
tain contexts or possible conflicts among policies pertinent to var-
ious contexts. Furthermore, redundant policies [12] may be intro-
duced due to human errors while intending to prioritizing policies
manually. For example, redundant policies might be introduced be-
cause of assigning lower-ranked priorities to more specific policies
(e.g., policies defined for a short period of time).

To address these problems, we propose to separate access con-
trol policies into three classes: 1) default policies, 2) context de-
pendent policies, and 3) exception policies. Default access control
policies are expressed in a fashion similar to RBAC policies, which
are typically generic and context-independent. Unlike, traditional
context-aware access control models that have an implicit prohibi-
tion default, we enable policy makers to express defaults explicitly
and directly. Context-dependent access control policies are defined

for certain contexts. Finally, exception policies are access control
policies defined for individual users (syntax and semantic of these
classes are presented in Section 5.1). We present an example to il-
lustrate these classes of access control policies.

Example 5.3.1. Consider an academic research group affiliated
with a research lab. The lab members consist of advisers and grad-
uate students. There are also visitors who might need to have ac-
cess to the lab occasionally. The following descriptive default and
context-dependent access control policies are specified for individ-
uals, labeled as visitors, at design time:

- A Default Policy. A visitor normally is not allowed to enter the
“CHE-202" lab (Policy D1).

- A Context-Dependent Policy. A visitor, however, is allowed to
enter “CHE-202" lab during the group meeting time (Policy C1).

The following exception policy needs to be integrated and en-
forced at runtime:

- An Exception Policy. John, who is a visitor, is exceptionally al-
lowed to enter “CHE-202" lab (Policy E1).

The default, context-dependent, and exception access control
policies can be formally expressed through the following ASP-
based facts:

- The Default Policy. dPrh(visitor, enter, che-202), where the visi-
tor is a role, the enter is an action, and the CHE-202 is an asset,
i.e., the ASP-based expression of Policy D1.

- The Context-Dependent Policy. cdPrm(visitor, enter, che-202,
meetingTime), where the visitor is a role, the enter is an action,
the CHE-202 is an asset, and the meetingTime is a temporal con-
text expression, i.e., the ASP-based expression of Policy C1.

- The Exception Policy. exPrm(john, enter, che-202,1), where John
is a user, the enter is an action, the CHE-202 is an asset, and 1
is an id for the exception policy, i.e., the ASP-based expression
of Policy E1.

5.4. Inferring concrete policies

Using the ASP’s default representation feature, concrete policies
can be inferred using the following inference rules:

IR;. is Permitted(User, Action, Asset) : —
dPrm(Role, Action, Asset),
ua(User, Role),
not isProhibited (User, Action, Asset).

IR;. is Prohibited (User, Action, Asset) : —
cdPrh(Role, Action, Asset, Context),
ua(User, Role),
holds(User, Action, Asset, Context),
notexPrm(User, Action, Asset, ID).

IR, is Prohibited(User, Action, Asset) : —
cdPrh(Role, Action, Asset, Context),
ua(User, Role),
holds (User, Action, Asset, Context),
exPrm(User, Action, Asset, ID),
withdraw(ID).

IR5. isPermitted (User, Action, Asset) :—
exPrm(User, Action, Asset, ID),
not withdraw(ID).

56 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

- Rule IR; states that: if i) a default permission policy dPrm is
specified for any user, whose role is Role, to do an action Ac-
tion on an asset Asset, and ii) the user User is assigned to the
role Role, and iii) there is no reason to believe that (i.e., the not)
user User is prohibited to perform the action Action on the as-
set Asset, then the user User is permitted to perform the action
Action on the asset Asset.

Rule IR, states that: if i) a context-dependent prohibition pol-
icy cdPrh is specified for any user, whose role is Role, to do an
action Action on an asset Asset under a specific context Context,
ii) a user User is assigned to the role Role, iii) the associated
context Context holds, and iv) there is no reason to believe that
(i.e., the not) the user User is exceptionally permitted to per-
form the action Action on the asset Asset then the user User is
prohibited to perform the action Action on the asset Asset. Poli-
cies like exPrm are user-level policies and might be added in-
crementally at runtime due to exceptional situations and thus
they may invalidate the consequences of predefined policies.

- Rule IR states that: if i) a context-dependent prohibition pol-
icy cdPrh is specified for any user, whose role is Role, to do an
action Action on an asset Asset under a specific context Context,
ii) a user User is assigned to the role Role, iii) the associated
context Context holds, iv) the user User is exceptionally permit-
ted (by exception policy ID) to perform the action Action on the
asset Asset, and v)the exception policy with id ID is withdrawn,
then the user User is prohibited to perform the action Action on
the asset Asset.

Rule IR; states that: if i) an exception permission policy with
id ID is specified for a user User to perform an action Action
on an asset Asset, and ii) the exception permission policy with
id ID is not withdrawn, then a concrete permission is inferred
for the user User to perform the action Action on the asset
Asset.

It is important to note that using the IR;_3 (i.e., using default
reasoning for concrete policy inference) exception policies take
precedence over context-dependent policies and in turn context-
dependent policies take precedence over default policies. This
precedence mechanism offers a clean strategy for defining and im-
plementing priorities among policies and thus an intuitive solution
to the conflict management and resolution problem, which will be
discussed in following sections.

In an analogous way, the concrete prohibition policies are de-
rived through the following ASP-based inference rules:

IR4. isProhibited (User, Action, Asset) :—
dPrh(Role, Action, Asset)
ua(User, Role)
not isPermitted (User, Action, Asset).

IRs. isPermitted (User, Action, Asset) :—
cdPrm(Role, Action, Asset, Context)
ua(User, Role)
holds(User, Action, Asset, Context)
not exPrh(User, Action, Asset, ID).

IR isPermitted (User, Action, Asset) :—
cdPrm(Role, Action, Asset, Context),
ua(User, Role),
holds(User, Action, Asset, Context),
exPrh(User, Action, Asset, ID),
withdraw(ID).

IRg. isProhibitted (User, Action, Asset) :—
exPrh(User, Action, Asset, ID),
not withdraw(ID).

- Rule IR, states that: if i) a default prohibition policy dPrh is
specified for any user, whose role is Role, to do an action Ac-
tion on an asset Asset, and ii) the user User is assigned to the
role Role, and iii) there is no reason to believe that (i.e., the
not) the user User is permitted to perform the action Action on
the asset Asset, then the user User is prohibited to perform the
action Action on the asset Asset.

Rule IRs5 states that: if i) a context-dependent permission pol-
icy cdPrm is specified for any user, whose role is Role, to do an
action Action on an asset Asset under a specific context Context,
ii) a user User is assigned to the role Role, iii) the associated
context Context holds, and iv) there is no reason to believe that
(i.e., the not) the user User is exceptionally prohibited to per-
form action Action on the asset Asset then the user User is not
prohibited to perform the action Action on the asset Asset. Poli-
cies like exPrh are user-level policies and might be added incre-
mentally at runtime due to exceptional situations and invalidate
the consequences of predefined policies.

Rule IR states that: if i) a context-dependent permission pol-
icy cdPrm is specified for any user, whose role is Role, to do an
action Action on an asset Asset under a specific context Context,
ii) a user User is assigned to the role Role, iii) the associated
context Context holds, and iv) there is exPrh policy with id ID,
stating that the user User is exceptionally prohibited to perform
action Action on the asset Asset then the user User is not pro-
hibited to perform the action Action on the asset Asset, and v)
the exception policy with id ID is withdrawn.

Rule IRg states that: if i) an exception prohibition policy with id
ID is specified for a user User to perform an action Action on an
asset Asset and ii) the exception prohibition policy with id ID is
not withdrawn, then a concrete prohibition is inferred for the
user User to perform the action Action on the asset Asset.

6. Management of incomplete policies

In context-sensitive access control models incompleteness may
refer to existence of some possible situations for which no explicit
policy is devised. In this section, we illustrate an incomplete access
control policy set to illustrate how the presented scheme is capable
of effectively managing these types of situations.

Example 1 (Incomplete Access Control Policies). Consider the
specification of two context-dependent policies devised for an au-
tomated health-care system:

- A nurse is allowed to read and write any patient’s records from
within the hospital’s emergency room.

- A nurse is disallowed to read or write any patient’s records
from outside of the hospital.

At a typical hospital, where this policy set is implemented, an
access control decision might not be determined when a nurse re-
quests to read/write a patient’s records from the operation room.
This happens because none of the policies in the policy set is as-
sociated with the operating room area. This example demonstrates
an incomplete policy case where policies are not predefined for all
possible locations at the hospital.

In traditional access control models, the undetermined access
control decisions are usually interpreted as implicit denials. How-
ever, this may not reflect the desired intention of a policy maker
[45]. The absence of explicit default policies in case of incomplete
context-dependent policy sets might cause undetermined access
decision and thus prevent achieving functional goals. This prob-
lem can be addressed by expressing access control policies using

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 57

many-valued logics as described in [4,46,47] and performing de-
fault reasoning to enable decision making based on defaults [6],
when none of the context-dependent policies in the policy set is
applicable.

Similarly, in the proposed adaptive access control scheme, we
categorize access control policies into three classes: default, con-
text dependent and exception policies. The access control policies
are expressed using three different types of predicates (e.g., dPrm,
cdPrm, and exPrm). We use defeasible inference rules (i.e., IR; to
IRg rules in Section 5.4) to enforce default access control policies
(e.g, dPrm) in the absence of applicable context-dependent policies
(e.g., cdPrm). Based on the introduced predicates and the defeasi-
ble inference rules, access control decisions are made based on de-
fault policies in the absence of either context-dependent policies
or context data.

7. Conflict management

In dynamic systems, conflicts might occur because of contin-
uously changing conditions in the environment, changing regula-
tions or by human mistakes when devising policies. In the context
of access control models, a conflict occurs when, for example, a
user is both permitted and prohibited to perform a certain action
on the same set of assets, simultaneously. In such cases, there is a
dilemma to decide whether to grant or revoke the access requests.
This section demonstrates the strength of the proposed adaptive
reasoning scheme for eliminating or detecting conflicts among ac-
cess control policies. In the following sections, first we categorize
conflicts among access control policies into two groups of inter-
class and intraclass conflicts. Then we explain how the instances
of each group are detected, eliminated or resolved in the proposed
approach.

7.1. Types of conflicts

With respect to the proposed access control scheme and repre-
sentation, conflicting access control policies can be classified into
two subcategories:

- Interclass conflicts. Conflicts among prohibition and permission
policies of different classes, e.g., conflicts between a default per-
mission (dPrm) and a context-dependent prohibition (cdPrh).

- Intra-class conflicts. Conflicts among policies within a class, e.g.,
conflicts between a context-dependent permission (cdPrm) and
a context-dependent prohibition (cdPrh).

7.2. Interclass conflict management

This section first presents a few illustrative examples to demon-
strate interclass conflict type. Then, it describes how the instances
of interclass conflicts are eliminated by the proposed adaptive ac-
cess control representation.

Example 2 (Conflicting Default and Exception Policies). Con-
sider the following default policy developed for a lab in Chemistry
department:

- Normally undergraduate advisers are disallowed to enter the
Chemistry labs.

Suppose the following policy is added to the policy set upon Dr.
Green’s request, the lab supervisor, while she is on travel:

- Nancy, the undergraduate adviser, is exceptionally allowed to
enter Dr. Green’s chemistry lab, while Dr. Green is traveling.

There is an apparent conflict between these two policies that
can be resolved by assigning a higher priority to the more specific
policy (i.e., in this example the second policy is more specific) [10].

Hence, the final access control decision cannot be decided with-
out giving precedence to one of these policies and thus ignoring
the other one. We propose to avoid this type of conflict by the
means of “default reasoning” instead of assigning explicit priori-
ties to policies manually, which introduces administrative overhead
and might lead to unintended behaviors when policy sets grow in
size.

In the proposed adaptive access control scheme, there are three
separate classes of policies: default, context-dependent, and excep-
tion policies. Using the proposed ASP-based inference rules (ex-
plained in Section 5.4) exception policies take priority over default
policies implicitly (Rules IR1-IR6). In other words, each exception
policy, when integrated into the policy set, invalidates default reg-
ulations. The idea of overriding default policies is similar to most
override strategy in [48] that has been introduced in the context of
authorization propagation policies. In most override strategy, au-
thorizations of a super-node is propagated to its sub-nodes if not
overridden (nodes represent subjects in a hierarchy of subjects).
We use the same idea in a different context, that is overriding de-
fault policies when more specific policies must be enforced.

Example 3 (Conflicting Default and Context-Dependent Poli-
cies). Imagine a digital library that offers online services for access-
ing published journal papers and databases to its clients. The ac-
cess privileges are regulated with respect to the organizations (i.e.,
where users are accessing the digital library). Consider the follow-
ing default and context-dependent policies:

- Generally, users are not allowed to download and save scientific
papers on their local computers.

- Users accessing from a certain network access point, e.g., Peo-
ple’s Community College, are allowed to download and save the
published journal papers retrieved from the online database.

An apparent conflict occurs when a user requests to download
and save a published journal paper on a local computer through
the People’s Community College’s network access point. The final
access control permission cannot be decided unless the context-
dependent policy takes precedence over the general policy [10].
This type of conflict also can be eliminated by the means of “de-
fault reasoning” rather than assigning explicit priorities to poli-
cies manually. By separating default and context-dependent pol-
icy classes and using the ASP-based inference rules (explained
in Section 5.4) context-dependent policies took precedence over
defaults implicitly (Rules IR1-IR6). In other words, each context-
dependent policy, when defined by policy maker, invalidates de-
fault regulations naturally.

7.3. Intraclass policies conflict management

As illustrated in aforementioned examples, the proposed ASP-
based reasoning scheme naturally eliminates interclass policy con-
flicts by the means of default reasoning. Moreover, security sys-
tems also need to detect and resolve intraclass conflicting policies.

Intraclass conflicting policies, are referred to policies of the
same class (i.e., default, context-dependent, or exception policies)
in which a policy permits and another one prohibits the same user
to perform the same action on the same set of assets. There has
been several works on detection and resolution of this type of con-
flicts [12,45,49-51]. This type of conflicts can be avoided by priori-
tizing policies and specifying separation of duty constraints usually
performed by a security administrator [12,50].

In this paper, there is no intention to presents a conflict reso-
lution approach for intraclass policies. Rather, We define and en-
code rules to detect possible conflicts in the proposed adaptive ac-
cess control. Once policy conflicts are detected then predefined ac-
cess control policies can be resolved by the security administrator.
However, since exception policies are added incrementally during

58 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

runtime, the conflicts among exception policies also need to be de-
tected and resolved without human intervention.

In the following subsections, first we define potential policy
conflicts in the proposed adaptive access control scheme. Then, we
present ASP rules for detecting the potential intraclass conflicts. Fi-
nally, we present an ASP rule for resolving conflicts among excep-
tion policies (i.e., a specific form of intraclass conflict that needs to
be resolved during runtime).

7.4. Formal definition of conflicting policies

This section defines potential conflicts that need to be detected
and resolved in the proposed adaptive reasoning scheme. It is im-
portant to note that, a typical interclass conflict is eliminated by
the proposed ASP-based representation implying that all potential
conflicts fall into intraclass conflict category.

Conflicting Default Policies. Let the followings be two default
access control policies representing the normal permission and
prohibition regulations, respectively:

dPrm(roleq, actiony, asset,)
dPrh(role,, action,, asset;)

These are conflicting default policies if all of the following three
conditions hold:

1. action, = action,

2. asset; = asset,

3. For some user, the knowledge-base contains both ua(user,
role;) and ua(user, role;)

In the case that all of these conditions hold, a concrete conflict
occurs because the user will be both permitted and prohibited to
perform the same action on the same set of assets.

Conflicting Context-Dependent Policies. Let the followings
be two context-dependent access control policies representing
context-dependent permission and prohibition regulations, respec-
tively:

cdPrm(roleq, actiony, assety, cey)
cdPrh(role,, action,, asset;, ce;)

These are conflicting context-dependent policies if all of the fol-
lowing four conditions hold:

1. actiony = action;

2. asset; = asset,

3. For some user, the knowledge base contains both ua(user,
role1) and ua(user, role;)

4, For some triple (user, action, asset), both ce; and ce, hold

In the case that all of these conditions hold, a concrete conflict
occurs because the user will be both permitted and prohibited to
perform the same action on the same asset, simultaneously.

Conflicting Exception Policies. Let the followings be two ex-
ception access control policies representing enforced permission
and prohibition policies, respectively:

exPrm(usery, actiony, assety, id)
exPrh(user,, action,, asset,, id;)

We say that exPrm and exPrh are conflicting exception policies
if all of the following conditions hold:

1. action, = action,

2. asset; = asset,

3. usery = user;

4. both exPrm and exPrh are active policies (i.e., are not with-
drawn).

In this case, a concrete conflict occurs because a user will be
both permitted and prohibited to perform the same action on the
same set of assets, simultaneously.

7.5. Conflict detection

This section presents an ASP rule for detecting each of the po-
tential access control policies defined in Section 7.4.

Generally, a policy maker devises default policies at design
time. For example, conflicting default policies can be detected stat-
ically using the following rule:

CD;. dConflict(Roleq, Role,, Action, Asset):—
dPrm(Roleq, Action, Asset),
dPrh(Role,, Action, Asset).

This rule states that: if i) a default permission policy dPrm is
specified for the role Role; to perform an action Action on the asset
Asset, and ii) a default prohibition policy dPrh is specified for the
role Role, to perform the same action on the same set of assets,
then there is a conflict between the default permission and prohi-
bition policies devised for role Role; and Role,, to perform action
Action on asset Asset.

It is possible to consider the Separation Of Duty (SOD) between
Role; and Role, and prevent assigning the same User to Role; and
Role,, simultaneously. To handle SOD, we can revise the conflict
detection rule to be the following rule:

CD,. dConflict (Roleq, Role;, Action, Asset):—
dPrm(Role,, Action, Asset),
dPrh(Role;, Action, Asset),
not sod(Roleq, Role;).

Similar to default policies, context-dependent policies are authored
at design time. Therefore, potential conflicting context-dependent
policies can be detected statically using conflict detection rules
which is analogous to default policies. Exception policies are added
incrementally during runtime. Therefore, conflicts among exception
policies must be detected and resolved automatically with mini-
mum human intervention. To do that, we use the following detec-
tion rule :

CDj3. exConflict(User, Action, Asset, ID1, ID,):—
exPrm(User, Action, Asset, ID+),
exPrh(User, Action, Asset, ID,),
not withdraw(IDy),
not withdraw(ID,).

This rule states that: if i) an exception permission policy exPrm is
specified for the user User to perform an action Action on the asset
Asset, ii) an exception prohibition policy exPrh is specified for the
same user to perform the same action on the same asset, and iii)
exPrm and exPrh policies are not withdrawn, then a conflict is de-
tected between exception permission and prohibition policies that
allow and at the same time disallow the user User to perform the
action Action on the asset Asset. Once a conflict between excep-
tion policies is detected exception permission policies should be
invalidated. To do so, the inference rule 5.4 can be changed to the
following rule:

isPermitted (User, Action, Asset):—
exPrm(User, Action, Asset, ID1),
not exConflict (User, Action, Asset, ID1, ID;).

This rule states that: if i) an exception permission policy is spec-
ified for a user User to perform an action Action on an asset As-
set, and ii) no conflicting exception policy is derived for the triple
(User, Action, Asset), then a concrete permission is inferred for the
user User to perform the action Action on the asset Asset.

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 59

Table 1
The City Hospital abstract policies.

Name Type Organization Role Activity View Context

P1 permission City extern analyze sample sample
hospital analysis

P2 permission City intern prescribe vpatient intern
hospital prescription presc_hour

P3 permission City medical prescribe vpatient default
hospital secreter appointment context

P4 permission City nurse analyze sample morning
hospital

P5 permission City doctor read medical referent
hospital file doctor

P6 permission City doctor read medical default
hospital file context

P7 permission City extern read medical emergency
hospital data context

I prohibition City extern prescribe vpatient default
hospital prescription context

12 prohibition City extern handle medical default
hospital file context

13 prohibition City medical handle medical default
hospital secreter data context

o1 obligation City surgeon operate vpatient anthesic
hospital patient

8. Case studies

To demonstrate the expressiveness and feasibility of the pro-
posed ASP-based reasoning scheme for effectively implementing
adaptive access control policies, we report the specification of the
introduced ASP-based access control on a hospital case study. The
case study is excerpted from [10]. The goal of this case study is
to evaluate the capability of the proposed ASP-based reasoning
scheme in comparison to OrBAC, as an instance of FOL-based ac-
cess control model. For this case study, we used SPARC system [52],
which provides explicit constructs and allows us to specify objects,
relations and their sorts. Declaring sorts allows us to avoid think-
ing about safety condition in ASP rules. SPARC passes the policy
specifications to a DLV solver for generating answer sets and an-
swering queries about policies.

The case study consists of three parts: In the first part, we
simulate an OrBAC policy system in terms of our ASP-based rep-
resentation and compare the results inferred by MotOrBAC (see
Section 2.1 for detailed descriptions) with the results obtained by
running our ASP-based representation using an ASP solver.

The goal of the first part is to show that our representation is at
least as expressive and effective as OrBAC’s first-order logic repre-
sentation. In the second part, we inject an exception policy to both
the OrBAC policy set and our ASP-based representation and com-
pare the MotOrBAC and ASP solvers’ results, accordingly. Finally, in
the third part, we provide scalability measures with regards to the
proposed policy inference mechanism when the policy model in-
crease in size.

Note that MotOrBAC is a tool designed for expressing and edit-
ing policies at design time; To simulate a runtime situation and
condition that might occur in dynamic systems, we inject runtime
exception policies. Our intend is to compare the capability of the
underlying reasoning schemes in handling exceptional situations.

The studied access control policy set regulates accesses to Elec-
tronic Health Records (EHR) in a hospital environment. The policy
set, accompanied by MotOrBAC, is an XML-based policy file repre-
senting the access control polices in an OrBAC model [53].

The domain consists of three hospitals: i) City hospital, ii) South
hospital, and iii) North hospital. The policy file includes 11 abstract
access control policies (shown in Table 1) including 7 permissions,
3 prohibitions and 1 obligation to control the accesses of users to
the electronic health records. 1 presents the abstract access con-

trol policies. The subjects are classified into 13 roles such as secre-
taries, doctors, and nurses. The subjects perform nine different ac-
tions such as read, write, and analyze. There are 6 different types
of objects (i.e., valuable assets to be protected), such as medical
and administration data in 9 environmental contexts. Context ex-
pressions might have various definitions in different organizations.
For example, in this case study, the intern_prescription_hour con-
text at the South hospital is defined to be from 8:00 - 12:00 am.
However, at the North hospital branch the same context expression
is defined to be from 2:00 - 6:00 pm.

8.1. Case 1: Orbac vs. ASP-based policy: static policies

Many of the policies specified for the hospital example depend
on the temporal properties and contexts. In this case study, first,
we used MotOrBAC to simulate the hospital abstract policy set (i.e.,
to infer concrete policies from abstract policies) at three differ-
ent times of the day as representatives of instances of morning,
afternoon, and evening contexts, respectively. A a result, from 11
abstract policies specified in the studied policy set, MotOrBAC in-
ferred 44, 42, and 39 concrete policies in the morning, afternoon,
and evening contexts, respectively. We transformed the XML-based
policy set into ASP rules, with similar context setups. Given the 11
abstract policies along with the associations between the abstract
and concrete entities, the ASP-solver also inferred 44, 42 and 39
concrete policies. The inferred concrete policies were exactly the
same concrete policies as produced by MotOrBAC. We used the fol-
lowing ASP-Based concrete permission inference rule:

isPermitted (Org, Subj, Action, Obj):—
Prm(Org, Role, Activity, View, Context),
empower (Org, Subj, Role),
consider (Org, Action, Activity),
use(Org, Obj, View),
holds(Org, Subj, Action, Obj, Context).

The obligation and prohibition inference rules were expressed
in a similar manner. Note that we did not use default reasoning
(i.e., negation as failure in the inference rules) in Case Study 1.
Therefore, the true benefit of ASP-based reasoning is not demon-

strated in this section. Rather, the intend of this study was two-
folds: 1) demonstrating the feasibility of the proposed idea, and 2)

60 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

illustrating that ASP-based policies are at least as effective as Or-
BAC policies.

8.2. Case 2: dynamic policies: Orbac vs ASP-based policy

The purpose of this case study is to compare the effectiveness
and expressiveness of OrBAC and the ASP-based policies in a dy-
namic environment when exceptions exist. We do that by inject-
ing an exception policy to the OrBAC and the ASP-based policies
manually.

One of the abstract policies expressed in the City hospital policy
file is as follows:

- At City hospital, doctors are normally allowed to modify medi-
cal files.

In OrBAC, this regulation is represented through the following
fact:

- permission(cityHospital, doctor, write, medicalFile, de fault_ctx).

According to the hospital policy file, writeDb(i.e., write on a
database) implements the write and patriceMedicalData is an in-
stance of medicalFile. We added a new subject called Sara, and em-
powered her as a doctor. However, Sara is an exception and not
allowed to perform any modification on Patrice medical data:

- Sara is disallowed to perform the writeDb action on patriceMed-
icalData.

This exception policy is semantically equivalent to the following
OrBAC concrete policy:

- isProhibited(cityHospital, Sara, writeDb, patriceMedicalData).

First, we tried to add such an exception policy using the Mo-
tOrBAC’s user interface. Unfortunately, MotOrBAC does not allow
regular users to express non-abstract exception policies directly.
Therefore, we injected the exception policy into the XML-based
policy file manually. But since the injected policy was not context-
dependent, MotOrBAC generated a stopping failure while simulat-
ing concrete policies. As the last resort, we tried to inject the ex-
ception policy by defining a new context called “exception” as fol-
lows:

- In the exception context, Sara is permitted to perform a writeDb
action on the patriceMedicalData object.

Note that the context-dependent concrete policy is not formally
defined in an OrBAC model. We injected this runtime exception
policy into the policy file to evaluate the capability of MotOrBAC
when reasoning with exception policies regardless of its formal se-
mantic model. After simulating the updated policy set in MotOr-
BAC, both of the following concrete policies were inferred by the
MotOrBAC simulator:

- Sara is permitted to perform a writeDb activity on patriceMedi-
calData.

- Sara is prohibited to perform a writeDb activity on patriceMedi-
calData.

Such an inconsistency is common when reasoning takes place
based on monotonic logics. This indicates that the OrBAC system
was not able to adapt itself when an exception policy needs to
be enforced. To solve this inconsistency MotOrBAC suggests solving
concrete conflict manually through prioritizing abstract policies or
defining constraints on abstract entities, which is a time consum-
ing and error prone manual task.

As an alternative solution as introduced in this paper, the
“negation as failure” can be used to invalidate normal policies au-
tomatically in exceptional contexts. We used the following ASP-
Based rule to infer concrete permission policies:

isPermitted (Org, Subj, Action, Obj):—

dPrm(Org, Role, Activity, View),
empower (Org, Subj, Role),

consider (Org, Action, Activity),

use(Org, Obj, View),

not isProhibited (Org, Subj, Action, Obj).

isProhibited (Org, Subj, Action, Obj):—
cdPrm(Org, Role, Activity, View, Context),
empower (Org, Subj, Role),
consider (Org, Action, Activity),
use(Org, Obj, View),
holds(Org, Subj, Action, Obj, Context),
not exPrm(Org, Subj, Action, Obj).

isPermitted (Org, Subj, Action, Obj):—
exPrm(Org, Subj, Action, Obj).

The term after “not” represents exceptions in ASP. In other
words, in this rule isProhibited concrete policy is an exception to
default permission policy and implicitly takes precedence over the
default policies.

In a similar manner, the MotOrBAC concrete prohibition and
obligation inference rules were modified. We added the exception
policy to our ASP-based knowledge-based system. Unlike MotOr-
BAC, the only concrete policy inferred by the ASP solver was:

- At the cityHospital, Sara is prohibited performing the writeDb
activity on patriceMedicalData.

The result of ASP-based policy setting indicates that the pro-
posed ASP-based system adapted itself by invalidating default con-
clusions when an exception occurred.

Eliminating Conflicts in Case 2. During this case study, we ob-
served that out of 27 potential conflicts detected by MotOrBAC
that needed to be resolved manually, 16 of which were poten-
tial conflicts between the abstract policies associated with default
contexts (i.e., default policies in the proposed reasoning scheme)
and abstract policies pertinent to the non-default contexts (i.e.,
context-dependent policies in the proposed reasoning scheme).
Fig. 1 shows some of the conflicts detected by MotOrBAC. How-
ever, by invalidating the default policies consequences when the
policy set contains context-dependent policies, the proposed ASP-
based policy inference mechanism decreases the number of poten-
tial conflicts from 27 to 11 potential conflicts.

8.3. Scalability of policy inference mechanism

We performed some scalability experiments with increased pol-
icy model sizes on a MacBook Pro-laptop equipped with 2.7 GHz
Intel Core i5 processor and memory limit of 8 GB RAM. We used
SPARC system [52] for specifying policies and inferring concrete
policies from ASP-based policy models. As indicated earlier, SPARC
system uses DLV [18] to solve ASP programs and generate answer
sets.

To demonstrate the scalability of the proposed policy inference
mechanism, we randomly generated policy models similar to those
in the case study, with up to 10,000 elements. The elements could
be basic such as subjects, roles, assets and contexts. The relations
imposed on basic elements could be abstract policies (i.e., per-
mission and prohibition policies), user-assignment predicates, and
holds predicates. The policy model and its elements are described
in Section 5.1.

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 61

N Abstract entities Contexts Abstract rules W >
m} W Concrete conflicts Separation constraints »
ag‘ @ update
{‘ Rule name Type Organizati... Role Activity View Context
=— pl permission city_hospital extern analyze sample sample_a...
5 il prohibition city_hospital extern prescribe... vPatient default_co...
— p5 permission city_hospital doctor read medical_file referent_...
a‘ i2 prohibition city_hospital medical_s... handle medical_d... default_co...
— p2 permission city_hospital intern prescribe... vPatient intern_pre...
.‘f—ﬁ‘ i2 prohibition city_hospital medical_s... handle medical_d... default_co...
i ol obligation city_hospital surgeon operate vPatient anesthesi...
i3 prohibition city_hospital extern handle medical_file default_co...
p7 permission city_hospital extern read medical_d... emergenc...
H ilaiei i H i dical 4 dafaude
Fig. 1. Potential conflicts derived by MotOrBAC.
Average response vs. Model size
1.2 r
@
e ®
D @
()] L @
a 0.8 .
o
3 o. e
v 0.6 [PS
A
E o
[} .
b
<
02 F
O L L L L L J
0 2000 4000 6000 8000 10000 12000
Model size (humber of elements)

Fig. 2. Scalability of policy inference mechanism.

We increased the policy model size and ran each experiment
using SPARC system on the same environment described in the
case study. For the purpose of consistency while increasing the
model size, each model contained a ratio of 40% subjects, 15%
roles, 10% assets, 10% contexts 15% user-assignment predicates and
and 10% specified policies. The ratios are based on similar exper-
iment designed and conducted by Bailey et. al., [3]. Additionally,
we imposed a holds predicate for each context in the generated
policy models. To ensure that increasing policy model size (i.e., the
input size) fully effect the execution time, the size of inferred poli-
cies (i.e., the output size) also increased proportionally to the pol-
icy model size. More specifically, in all experiments the number of
inferred policies was 15% of input size.

Each experiment was repeated 10 times and captured the aver-
age and standard deviation. Fig. 2 shows the average times of the
policy inference mechanism in seconds for each policy model size.
As the figure indicates, as the model size increases, the average re-
sponse time increases linearly. Also it is apparent from the figure
that policy models that have up to 9000 elements size can be han-
dled easily in less than 1 sec.

9. Discussion

There are two important problems that need to be addressed
and the applicability of the proposed formal model needs to be
discussed: 1) attribute hiding attacks, 2) context modeling, and
3) the usability of logic-based approaches to security modeling in
general.

9.1. Attribute Hiding Attack

Attribute Hiding Attack is a situation, where an attacker deliber-
ately hides attribute values in order to gain a higher level of priv-
ileges [47]. Attribute hiding attack is a potential problem for any
context-aware access control mechanism, in which decisions rely
on monitoring requesters’ attributes.The problem of attribute hid-
ing attack has been introduced and addressed in the context of at-
tribute based access controls [38,47].

The introduced access control scheme is also vulnerable to
attribute hiding attack. In particular, in the proposed reasoning
scheme, if a policy developer chooses to allow access by default

62 S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63

(i.e., specify dPrm) and conditionally disallow the access (i.e., spec-
ify cdPrh), a malicious user can hide the context data, which leads
to enforcing default permission policy. The vulnerability to at-
tribute hiding attack can be detected at design time using the fol-
lowing rule:

AHD;. attributeHiding(Roley, Role,, Action, Asset, Context):—
dPrm(Roley, Action, Asset),
cdPrh(Role,, Action, Asset, Context).

The solution to this problem using the introduced ASP-based ap-
proach depends on the decision made by the policy designer. For
instance, after the possibility is being detected, the policy devel-
oper can decide if she wants to allow access by default or disallow
access by default.

9.2. Context modeling

In this paper, context dependent policies are defined on the top
of context definition rules. Different types of contexts (e.g., spacial,
temporal) have different characteristics. In particular, some of con-
texts can never hold together (e.g., morning and afternoon). In some
other cases, contexts have hierarchical nature [41,54] (e.g., in_house
can be considered as a super-node of in_bedroom).

Context modeling is an important topic in self adaptive systems
but is not the main contribution of this paper. However, the nature
of contexts sometimes is an influential and determining factor that
affects the occurrence of conflicts. In particular, a cdPrm(Roleq, Ac-
tion, Asset, Context;) and cdPrm(Role;, Action, Asset, Context,) are
potentially conflicting if Context; and Context, can be true, simul-
taneously. A limitation of this work is that, a conflict is detected
even if Context; and Context, cannot be true simultaneously. Con-
text modeling and addressing this issue will be a part of our future
work.

9.3. Usability of logic-based policy security modeling

Logic-based policy schemes have been criticized for being less
usable in enabling effective communication with policy makers. To
overcome this concern, it would be ideal to allow policy makers to
model policies in a higher-level graphical notation and then trans-
late the notations into precise logic-based formalisms. One exam-
ple of such a high level notation is the graphical representation
and user interface offered by STS tool [56]. STS tool allows auto-
mated analysis through disjunctive Datalog while providing a secu-
rity requirements modeling graphical notation (STS-ml) that hides
the complexity of the logic and its representation from security
experts. Other approaches include providing user interfaces and
prompting users to enter access control policies in an interactive
graphical environment without delving into developing complex
logical rules (e.g., MotOrBAC).

Usability concern is also an issue when specifying XACML poli-
cies. Researchers have taken similar approaches to allow simple
specification and editing XACML rules independently and then
transform the rules to XACML policies. Axiomatic has created such
a policy editor that uses Axiomatics Language for Authorization
(ALFA) [57]. The Axiomatic policy editor is implemented as an
Eclipse plugin. Another popular language is PonderTalk, which al-
lows specifying policies in a higher-level language in Ponder2 en-
vironment [55].

Developing similar high level languages, graphical notations, in-
teractive user interfaces and developing optimal policies [58] can
be helpful to mitigate the issues related to the usability of the
proposed ASP-based formal modeling and thus ease the modeling
problem.

10. Conclusion and future work

This paper presented an ASP-based access control scheme to
support modeling and implementing adaptive security systems. In
order to improve the sensitivity of context-aware access control
models to runtime context changes, making policy management
easier, and reduce potential conflicts we separated the specifica-
tions of default, context-dependent, and exception policies and ex-
pressed them as ASP default and exceptions. The proposed model
utilized the non-monotonicity and efficiency of ASP solvers to
implement defeasible inference rules. We devised non-monotonic
policy inference rules to invalidate default policies at runtime
when exception or context-dependent policies need to be enforced.

The case study presented in this paper showed that the intro-
duced approach was useful in eliminating conflicts and inconsis-
tencies among default, context-dependent and exception policies
that are added incrementally at runtime. The results of case studies
demonstrate the applicability of the approach and encourage use
of ASP solvers for reasoning about access control policies. We be-
lieve that using non-monotonic logics for representing and reason-
ing about policies is beneficial for self adaptive systems that need
to adjust their protection decisions in changing environments.

The proposed reasoning scheme can be extended by including
access control model element hierarchies and context models. We
are currently, extending this work in three directions. First, we are
using structural models and runtime goal models for invalidating
predefined policies. The current reasoning scheme can also be ex-
tended by variant runtime contextual models. Runtime contextual
models need to be transformed and verified at runtime. Therefore
transformation and verification of each of new runtime models in-
troduces a new possible research direction.

Acknowledgement

This research work is funded in part by National Science Foun-
dation under grant number 1516636 and 1723765.

References

[1] Eric Y, Esfahani N, Malek S. A systematic survey of self-protecting software
systems. ACM Trans Auton Adapt Syst (TAAS) 2014;8.4:17.

[2] Mazeiar S, Pasquale L, Omoronyia I, Ali R, Nuseibeh B. Requirements-driven
adaptive security: protecting variable assets at runtime. Requirements engi-
neering conference (RE), 2012 20th IEEE international. IEEE; 2012.

[3] Christopher B, Montrieux L, De Lemos R, Yu Y, Wermelinger M. Run-time gen-
eration, transformation, and verification of access control models for self-pro-
tection. In: Proceedings of the 9th international symposium on software engi-
neering for adaptive and self-managing systems; 2014. p. 135-44. ACM.

[4] Srdjan M, Dulay N, Sloman M. Rumpole: an introspective break-glass access
control language. ACM Trans Inf Syst Secur(TISSEC) 2014;17(1):2.

[5] Moitrayee C, Namin AS. Detecting web spams using evidence theory. In:
2018 IEEE 42nd annual computer software and applications conference (COMP-
SAC); 2018. p. 695-700. IEEE.

[6] Sara S, Namin AS. Adaptive reasoning for context-sensitive access controls.
Computer software and applications conference (COMPSAC), 2016 IEEE 40th
annual. Vol. 1. IEEE; 2016.

[7] Lorenzo B, Bertino E, Hussain SR. A system for profiling and monitoring
database access patterns by application programs for anomaly detection. IEEE
Trans Software Eng 2017;43.5:415-31.

[8] Sara S, Namin AS. Poster: reasoning based on imperfect context data in adap-
tive security. In: 2015 I[EEE/ACM 37th IEEE international conference on software
engineering, vol. 2; 2015. p. 835-6. IEEE.

[9] Sandhu Ravi S, Coynek EJ, Feinsteink HL, Youmank CE. Role-based access con-
trol models. IEEE Comput 1996;29(2):38-47.

[10] El KAA, Baida REI, Balbiani P, Benferhat S, Cuppens F, Deswarte Y, Miege A,
Saurel C, Trouessin G. Organization based access control. In: Policies for dis-
tributed systems and networks, 2003. Proceedings. POLICY 2003. IEEE 4th in-
ternational workshop on; 2003. p. 120-31. IEEE.

[11] Fabien A, Cuppens F, Cuppens-Boulahia N, Coma C. MotorBAC 2: a security
policy tool. In: 3rd conference on security in network architectures and infor-
mation systems (SAR-SSI 2008). France: Loctudy; 2008. p. 273-88.

[12] Frederic C, Cuppens-Boulahia N, Ghorbel MB. High level conflict management
strategies in advanced access control models. Electron Notes Theor Comput Sci
186(2007):3-26.

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011

S. Sartoli and A.S. Namin/Journal of Information Security and Applications 44 (2019) 49-63 63

[13] Gerhard B, Eiter T, Truszczynski M. Answer set programming at a glance. Com-
mun ACM 2011;54(12):92-103.

[14] Vladimir L. What is answer set programming? AAAI 2008;8:1594-7.

[15] Raymond R. A logic for default reasoning. Artif Intell 1980;13(1):81-132.

[16] Michael G, Lifschitz V. The stable model semantics for logic programming.
ICLP/SLP 1988;88:1070-80.

[17] Martin G, Kaufmann B, Neumann A, Schaub T. Clasp: a conflict-driven answer
set solver. In: International conference on logic programming and nonmono-
tonic reasoning. Springer Berlin Heidelberg; 2007. p. 260-5.

[18] Nicola L, Pfeifer G, Faber W, Eiter T, Gottlob G, Perri S, Scarcello F. The DLV
system for knowledge representation and reasoning. ACM Trans Comput Log
(TOCL) 2006;7(3):499-562.

[19] Martin G, Schaub T, Thiele S. Gringo: a new grounder for answer set program-
ming. In: International conference on logic programming and nonmonotonic
reasoning. Springer Berlin Heidelberg; 2007. p. 266-71.

[20] Gelfond M, Kahl Y. Knowledge representation, reasoning, and the design of in-
telligent agents: the answer-set programming approach. Cambridge, England:
Cambridge University Press; 2014.

[21] Baral C. Knowledge representation, reasoning and declarative problem solving.
Cambridge university press; 2003.

[22] Erdem E, Gelfond M, Leone N. Applications of answer set programming. Al Mag
2016;37.3.

[23] Ahn G-], Hu H, Lee], Meng Y. Representing and reasoning about web access
control policies. In: Computer software and applications conference (COMP-
SAC), 2010 IEEE 34th Annual; 2010. p. 137-46. IEEE.

[24] Ayed D, Lepareux M-N, Martins C. Analysis of XACML policies with ASP. New
Technol Mobil Secur (NTMS), 2015 7th Int Conf IEEE 2015.

[25] Hu H, Ahn G-J, Jorgensen J. Multiparty access control for online so-
cial networks: model and mechanisms. IEEE Trans Knowl Data Eng
2013;25(7):1614-27.

[26] Gelfond M, Lobo J. Authorization and obligation policies in dynamic sys-
tems. In: In International conference on logic programming. Berlin, Heidelberg:
Springer; 2008. p. 22-36.

[27] Kuhn DR, Coyne EJ, Weil TR. Adding attributes to role-based access control.
Computer (Long Beach Calif) 2010;43.6:79-81.

[28] Moffett], Sloman M, Twidle K. Specifying discretionary access control policy
for distributed systems. Comput Commun 1990;13(9):571-80.

[29] Bell DE, Padula LjL. Secure computer system: Unified exposition and multics
interpretation. No. MTR-2997-REV-1. Bedford MA: Mitre Corp; 1990.

[30] Thomas RK, Sandhu RS. Task-based authorization controls (TBAC): a family
of models for active and enterprise-oriented authorization management. In:
Database security XI. US: Springer; 1998. p. 166-81.

[31] Bertino E, Bonatti PA, Ferrari E. TRBAC: A temporal role-based access control
model. ACM Trans Inf Syst Secur(TISSEC) 2001;4(3):191-233.

[32] Karp A, Haury H, Davis M. From ABAC to ZBAC: the evolution of access con-
trol models. International conference on cyber warfare and security. Academic
conferences international limited; 2010.

[33] Godik S, Moses T. OASIS Extensible access control markup language (XACML).
OASIS committee secification cs-xacml-specification-1.0; 2002. Harvard.

[34] Hughes G, Bultan T. Automated verification of access control policies using a
sat solver. Int] Softwa Tool Technol Transf (STTT) 2008;10.6:503-20.

[35] Turkmen F, Hartog Jd, Ranise S, Zannone N. Formal analysis of XACML policies
using SMT. Comput Secur 66(2017):185-203.

[36] Fisler K, Krishnamurthi S, Meyerovich LA, Tschantz MC. Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th
international conference on software engineering. ACM; 2005.

[37] Stepien B, Felty A, Matwin S. Challenges of composing XACML policies. Avail-
ability, reliability and security (ARES), 2014 ninth international conference on.
IEEE; 2014.

[38] Turkmen F, Hartog]d, Ranise S, Zannone N. Analysis of XACML policies with
SMT. International conference on principles of security and trust. Berlin, Hei-
delberg: Springer; 2015.

[39] Turkmen F, Hartog Jd, Zannone N. POSTER: Analyzing access control policies
with SMT. In: Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security. ACM; 2014.

[40] Crampton], Morisset C, Zannone N. On missing attributes in access control:
non-deterministic and probabilistic attribute retrieval. Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies ACM 2015.

[41] Sartoli S, Namin AS. A semantic model for action-based adaptive security. In:
Proceedings of the symposium on applied computing. ACM; 2017.

[42] Bettini C, Brdiczka O, Henricksen K, Indulska], Nicklas D, Ranganathan A, Ri-
boni D. A survey of context modelling and reasoning techniques. Pervasive
Mob Comput 2010;6(2):161-80.

[43] Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware com-
puting for the internet of things: a survey. IEEE Commun Surve Tutor
2014;16(1):414-54.

[44] Ali R, Dalpiaz a, Giorgini P. A goal-based framework for contextual require-
ments modeling and analysis. Requir Eng 2010;15(4):439-58.

[45] Shaikh RA, Adi K, Logrippo L. A data classification method for inconsistency
and incompleteness detection in access control policy sets. Int] Inf Secur
2016:1-23.

[46] Rao P, Lin D, Bertino E, Li N, Lobo J. An algebra for fine-grained integration of
XACML policies. In: Proceedings of the 14th ACM symposium on access control
models and technologies; 2009. p. 63-72. ACM.

[47] Crampton], Morisset C. PTACL: a language for attribute-based access control in
open systems. In: International conference on principles of security and trust.
Berlin Heidelberg: Springer; 2012. p. 390-409.

[48] Jajodia S, Samarati P, Sapino ML, Subrahmanian VS. Flexible support for multi-
ple access control policies. ACM Trans Database Syst (TODS) 2001;26.2:214-60.

[49] Bauer L, Garriss S, Reiter MK. Detecting and resolving policy misconfigurations
in access-control systems. ACM Trans Inf Syst Secur(TISSEC) 2011;14.1:2.

[50] Baracaldo N, Joshi J. An adaptive risk management and access control frame-
work to mitigate insider threats. Comput Secur 2013;39:237-54.

[51] Basin D, Burri S, Karjoth G. Obstruction-free authorization enforcement: align-
ing security and business objectives.] Comput Secur 2014;22(5):661-98.

[52] Balai E, Gelfond M, Zhang Y. Towards answer set programming with sorts. In:
International conference on logic programming and nonmonotonic reasoning.
Berlin Heidelberg: Springer; 2013. p. 135-47.

[53] Autrel E. MotorBAC. (march 2017). retrieved march 17, 2017. 2017. https://
sourceforge.net/projects/motorbac/ IEEE, 2006.

[54] Tsigkanos C, Pasquale L, Menghi C, Ghezzi C, Nuseibeh B. Engineering topol-
ogy aware adaptive security: preventing requirements violations at runtime.
In: Requirements engineering conference (RE). IEEE; 2014. p. 203-12.

[55] Kevin T, Dulay N, Lupu E, Sloman M. Ponder2: a policy system for au-
tonomous pervasive environments. In: Autonomic and autonomous systems,
2009. ICAS’09. Fifth International Conference on. IEEE; 2009.

[56] Elda P, Dalpiaz F, Poggianella M, Roberti P, Giorgini P. STS-Tool: socio-technical
security requirements through social commitments. Requirements engineering
conference (RE), 2012 20th IEEE international. IEEE; 2012.

[57] https://www.axiomatics.com/product/developer-tools-and-apis/.

[58] Jianjun Z, Namin AS. A markov decision process to determine optimal policies
in moving target. The 25th ACM conference on computer and communications
security (ACM CCS). ACM; 2018.

http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
https://sourceforge.net/projects/motorbac/
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
https://www.axiomatics.com/product/developer-tools-and-apis/
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052

	Modeling adaptive access control policies using answer set programming
	1 Introduction
	2 Motivation
	2.1 Organization-Based Access Control
	2.2 The adaptability issues of Organization-Based Access Control

	3 Answer Set Programming (ASP)
	4 Related work
	4.1 Access control models
	4.2 Logic-based approaches to reason about XACML policies

	5 Adaptive reasoning scheme for context-aware access controls
	5.1 Policy model
	5.2 Representing different types of contexts
	5.3 Default, context-Dependent, and exception policies
	5.4 Inferring concrete policies

	6 Management of incomplete policies
	7 Conflict management
	7.1 Types of conflicts
	7.2 Interclass conflict management
	7.3 Intraclass policies conflict management
	7.4 Formal definition of conflicting policies
	7.5 Conflict detection

	8 Case studies
	8.1 Case 1: Orbac vs. ASP-based policy: static policies
	8.2 Case 2: dynamic policies: Orbac vs ASP-based policy
	8.3 Scalability of policy inference mechanism

	9 Discussion
	9.1 Attribute Hiding Attack
	9.2 Context modeling
	9.3 Usability of logic-based policy security modeling

	10 Conclusion and future work
	Acknowledgement
	References

