
Journal of Information Security and Applications 44 (2019) 49–63

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Modeling adaptive access control policies using answer set

programming

Sara Sartoli a , Akbar Siami Namin

b , ∗

a Department of Computer Science and Information Systems, University of North Georgia, Dahlonega, Georgia, USA
b Computer Science Department, Texas Tech University, Lubbock, Texas, USA

a r t i c l e i n f o

Article history:

Available online 27 November 2018

Keywords:

Access control

Inference mechanism

Answer set programming

Policies

Exception handling

Conflict

a b s t r a c t

Many of the existing management platforms such as pervasive computing systems implement policies

that depend on dynamic operational environment changes. Existing formal approaches for automatically

enforcing access control policies are primarily expressed in conventional logic programming, also known

as monotonic logics, e.g., First Order Logic (FOL). The major issue with monotonic logics is that they are

not devised to invalidate initial believes in the light of further observations. This limitation makes these

traditional logical approaches less suitable for modeling and analyzing context-aware access control poli-

cies, where exceptional policies are introduced incrementally and adaptively during runtime. The inability

to invalidate initial policies when an exception needs to be enforced might result in inconsistencies and

violations that need to be resolved manually by human entities. To address the problems with conven-

tional logical approaches and more importantly prevent such inconsistencies, this paper presents a non-

monotonic logic-based reasoning scheme for modeling and analyzing adaptive access control policies. In

the proposed formalism, unavailable context data and incomplete access control policies can be explicitly

expressed. To do so, the paper distinguishes three kinds of policies: default, context-dependent and ex-

ception policies. The proposed formalism is based on Answer Set Programming (ASP), a non-monotonic

logic programming language that allows elegant representation of unavailability of context data in adap-

tive systems. We devise non-monotonic policy inference rules such that, when exception policies are

defined, they take precedence over default and context-dependent policies automatically. The results of

two case studies are reported to demonstrate the feasibility of the proposed policy representation scheme

compared to the Organizational-Based Access Control (OrBAC) model.

© 2018 Elsevier Ltd. All rights reserved.

1

a

o

p

m

c

t

m

o

t

d

s

i

s

h

2

. Introduction

Modern policy-based management systems must implement

nd enforce policies that depend on the contexts and dynamics

f underlying operational environments. The primary goal of im-

lementing an adaptive security mechanism is to enable manage-

ent systems adjust their protection strategies in the presence of

hanges occurred in their operational environment [1,2] . Hence, a

ypical adaptive access control framework must offer an effective

echanism in order to deal with exceptional situations that often

ccur due to unexpected events or behaviors occurred in the con-

exts of dynamic systems and thus enable runtime access control

ecisions to mitigate the security risks such as information expo-

itions caused by the changes [3–5] .
∗ Corresponding author.

E-mail address: akbar.namin@ttu.edu (A.S. Namin).

S

s

r

ttps://doi.org/10.1016/j.jisa.2018.10.007

214-2126/© 2018 Elsevier Ltd. All rights reserved.
To deal with context changes and thus make informed decision

n the presence of exceptional situations, a self-adaptive software

ystem must address a number of daunting challenges such as [6] :

1. reasoning based on “imperfect” context data, i.e. unavailable

or noisy context data;

2. reasoning based on “incomplete” set of policies, e.g., lack of

specified policies for some subjects, objects or environmen-

tal contexts;

3. resolving inconsistencies caused by runtime context changes

in dynamic systems; and

4. resolving inconsistencies caused by exception policies that

are added incrementally to the knowledge-base and are

in apparent conflicts with predefined default and context-

dependent policies.

In this paper, we use the phrase “Adaptive Access Control

cheme” to describe the capability of underlying (i.e. backend) rea-

oning engines of policy-based management systems to actively

efine policies in response to changes occurred in an operational

https://doi.org/10.1016/j.jisa.2018.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.10.007&domain=pdf
mailto:akbar.namin@ttu.edu
https://doi.org/10.1016/j.jisa.2018.10.007

50 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

c

t

t

2

t

B

a

u

L

b

c

t

W

t

2

a

A

o

p

r

d

t

c

i

p

s

t

r

p

f

c

e

i
environment. More specifically, we focus on the ability of man-

agement systems to override predefined policies (i.e., default and

context-dependent policies) automatically when exception policies

(i.e., user-level policies that might be injected incrementally to the

knowledge-base) must be enforced instead of predefined policies.

This ability is particularly important because the inability of man-

agement systems to override predefined policies often introduce

inconsistencies, unintended behavior or undetermined access de-

cisions in dynamic management systems. By Default policies, we

refer to general policies, which are predefined and thus are appli-

cable to normal executions of the systems. By context-dependent

policies, we refer to policies, which are associated with some ex-

pected conditions such as time and locations. Furthermore, default

and context-dependent policies are defined at the design stage of

a system. Whereas, exception policies refer to the policies that are

not predefined and are injected incrementally at runtime in un-

expected or unknown situations or when an abnormal behavior is

detected [7] . Exception policies can also be withdrawn at runtime

when the exceptional situation is resolved.

This paper proposes an automated reasoning scheme based on

Answer Set Programming (ASP) that explicitly represents imperfect

context data and incomplete set of policies. The scheme separates

the specification of default, context-dependent and exception poli-

cies. The proposed approach benefits from non-monotonicity char-

acteristic of ASP, where defaults and exceptions are explicitly rep-

resented using “negation as failure”. While enforcing access con-

trol policies, the non-monotonicity characteristic enables overrid-

ing predefined policies when environmental contexts change or ex-

ception policies must be enforced. This feature prevents inconsis-

tencies that often occur due to context changes in dynamic sys-

tems and thus require to be resolved manually. The scheme also

offers a means to default decision-making, when context data are

imperfect or the policy set is incomplete.

The proposal of this research has been presented as a poster

[8] . This paper is an extended and enhanced version of our short

paper [6] where we introduced the core elements of an adaptive

access control scheme. This paper also explores the problem of in-

complete access control and conflicting policies. Moreover, the pa-

per presents a detailed research problem and an additional case

study in comparison to its shorter version.The main contribution

of this paper is to build an automated reasoning scheme that en-

ables reasoning about expressive access control policies. The rea-

soning scheme can be used as a backend for security management

systems. The key contribution can be broken down as follows:

- A formal logic-based representation of context-aware access

control, in which imperfect context data and incomplete ac-

cess control policy sets are explicitly taken into account and

expressed.

- A semantic model that distinguishes three types of policies: i)

default, ii) context-dependent, and iii) exception policies.

- A formal approach to devising non-monotonic policy inference

rules and automate prioritization of exceptions policies over

predefined regulations.

- The implementation of the proposed adaptive security reason-

ing using off-the-shelf efficient ASP solvers and

- The results of two case studies with the purpose of assessing

the feasibility and expressiveness of the presented approach

compared to context-aware access control models based on

First-Order Logic (FOL).

The rest of this paper is organized as follows: Section 2 presents

a detailed research problem and motivates the needs for an adap-

tive access control. Section 3 briefly introduces the notation and

semantic of Answer Set Programming (ASP). Section 4 reviews

the related work. The ASP-based reasoning scheme is presented

through Section 5.1 . Concerns regarding incomplete policy sets and
onflict management are discussed in Section 7 . Section 8 reports

wo case studies and Section 10 concludes the paper and highlights

he future work directions.

. Motivation

This section motivates the needs for an adaptive access con-

rol modeling approach. To do this, we briefly review Organization-

ased Access Control (OrBAC), one of the well-known context-

ware access control models. This type of access control model is

sually expressed using monotonic logic, in particular First Order

ogic(FOL). We argue that even though FOL-based reasoning can

e useful for design-time policy specification of context-aware ac-

ess control models, it is not properly devised for modeling adap-

ive reasoning where exceptions must be handled during runtime.

e also highlight deficiencies in expressing adaptive access control

hrough a few of examples.

.1. Organization-Based Access Control

Organization-Based Access Control (OrBAC) is a context-aware

ccess control model which is an extension of popular Role Based

ccess Control [9] model represented in first-order logic [10] . One

f the key features of OrBAC is that it enables expressing security

olicies at a high-level of abstraction, i.e., abstract policies. As a

esult, the concrete policies pertinent to the operation of the un-

erlying system are then inferred from the abstract policies.

Abstract policies are specified based on three abstracted enti-

ies: i) roles, ii) activities, and iii) views. In an analogous way, con-

rete policies are expressed based on three concrete-level entities:

) subjects, ii) actions, and iii) objects. Hence, in order to define

olicies at an abstract level, subjects, actions and objects are ab-

tracted into roles, activities and views, respectively.

Abstract Policies. Basically, in OrBAC, the abstract access con-

rol policies can be expressed through three types of facts that are

epresented by following predicates:

- permission(org, role, activity, view, context) , stating that in an or-

ganization org , anyone, whose role is classified as role , is al-

lowed to perform the activity activity on the view view when

the given context context holds.

- prohibition(org, role, activity, view, context) , stating that in an or-

ganization org , anyone, whose role is classified as role , is disal-

lowed to perform the activity activity on the view view when

the given context context holds.

- obligation(org, role, activity, view, context) , stating that in the

organization org , anyone, whose role is classified as role , is

obliged to perform the activity activity on the view view when

the given context context holds.

Concrete Policies . An OrBAC model represents concrete level

olicies, i.e., policies in a lower level of abstraction that are in-

erred from abstract policies, through the following three predi-

ates:

- isPermitted (org, subj, action, obj) , stating that in an organization

org , the subject subj is allowed to perform the action action on

an object obj .

- isProhibited (org, subj, action, obj) , stating that in an organization

org , the subject subj is disallowed to perform the action action

on an object obj .

- isObliged (org, subj, action, obj) , stating that in an organization

org , the subject subj is forced to perform the action action on

an object obj .

MotOrBAC [11] is a user interface that enables specifying and

diting OrBAC model policies. The tool is capable of automatically

nferring concrete policies given certain abstract policies along

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 51

w

t

M

s

c

c

i

j

(

e

2

c

t

j

c

r

p

v

E

h

c

b

h

i

P

t

p

t

d

m

fi

a

c

k

t

o

s

e

t

r

n

i

T

e

a

t

c

m

l

P

a

P

d

i

i

r

t

t

s

p

e

s

t

E

e

i

e

l

p

a

C

s

s

u

i

s

o

t

t

p

e

i

h

O

i

ith the association rules between the abstract and concrete en-

ities. It is important to note that the expression of policies in

otOrBAC is based on a first-order logic (FOL) semantic. For in-

tance, MotOrBAC uses the following FOL-based rule to infer the

oncrete permission policies from the abstract permission poli-

ies:

sP ermitted (Org, Sub j, Action, Ob j) : − (1)

per mission (Or g, Role, Act i v it y, V iew, Context) , (2)

empower (Or g, Sub j, Role) , (3)

consider (Or g, Action, Act i v it y) , (4)

use (Org, Ob j, V iew) , (5)

hold(Org, Sub j, Action, Ob j, Context) . (6)

This inference rule states that in an organization Org , the sub-

ect Subj is permitted to perform the action Action on an object Obj

line 1) if:

1. a permission is specified for any user whose role is Role to

do the actions abstracted into the activity Activity on the ob-

jects abstracted into the view View in the context Context

(line 2),

2. the subject Subj is empowered as the role Role (line 3),

3. the Action Action implements (considers) the activity Activity

(line 4),

4. the object Obj is an instance of a view View (line 5), and

5. the context associated with the concrete entities is currently

held in the organization Org (line 6).

The FOL-based rules to infer isObliged and isProhibited can be

xpressed in analogous ways.

.2. The adaptability issues of Organization-Based Access Control

This section presents two examples through which the defi-

iency of OrBAC-based reasoning scheme, as an instance of mono-

onic logic-based reasoning schemes, is illustrated. The examples

ustify the need for an adaptive reasoning scheme for enforcing

ontext-aware access control policies. The prospective scheme is

equired to be more sensitive to context changes and exception

olicies and hence thus naturally adapt to frequently changing en-

ironments.

xample 1 Handling Exception Policies in OrBAC. Consider a city

ospital where OrBAC-based policies are devised to enforce access

ontrols. A permission policy can be expressed in terms of OrBAC-

ased model as follows [10] :

- permission (city _ hospital, intern, handle, medical _ f ile, morning) .

This policy states that at City Hospital, any intern is allowed to

andle medical files in the morning.

Now, let us assume a scenario where i) Bob is appointed as an

ntern, ii) the action read implements the handle activity, and iii)

atrice-medical-file is an instance of medical _ f ile . Bob is an excep-

ional intern, whose access to Patrice’ s data is restricted due to

ersonal conflicts. Therefore, Bob exceptionally must be disallowed

o read Patrice’ s medical file, even though, according to the pre-

efined abstract policy, he should be able to have access to any

edical files including Patrice medical data.

Given the fact that it is unrealistic and infeasible to prede-

ne all possible policies for every possible context, the policy sets

re usually incomplete. To ease handling such cases, an access

ontrol model must enable integrating exceptional cases into the

nowledge-base incrementally at runtime. Because of the restric-

ions inherited by monotonic logics, OrBAC-based representations
f policies cannot enable integrating exceptional concrete policies,

uch as the Bob and Patrice’ s conflict case. The reason is that,

ven if exception policies are added to the policy set at runtime,

he consequences inferred by the abstract policies cannot be over-

idden without manual administration, which is impractical in dy-

amic environments.

Let us assume that OrBAC has been extended in such a way that

t allows expressing concrete policies along with the abstract ones.

hus, the following exception policy could be integrated into the

xisting policy set:

- isP rohibited(city _ hospital, bob, read, patrice _ medical _ f ile) .

Integrating this exception policy to the pool of policies causes

 conflicting problem between the concrete permission policy

hat is inferred from the abstract permission policy and the con-

rete exception prohibition policy. According to the abstract per-

ission policy Bob, who is an intern at the hospital, is al-

owed to read medical files and thus is still permitted to read

atrice’s medical file. On the contrary, according to the newly

dded exception prohibition policy, Bob is prohibited to read

atrice’s medical file. In fact, the OrBAC-based knowledge-base

oes not adapt to the newly added exception and still infers

sPermit ted(cit y _ hospital, bob, read, patrice _ medical _ f ile) , which is

n apparent conflict with the added exception policy.

As a matter of fact, extending the OrBAC-based policies to rep-

esent exceptional cases does not imply suspending or bypassing

he abstract policies’ consequences. This issue causes an inconsis-

ency between the exception and inferred concrete policies. A pos-

ible solution to resolve this type of conflict is through i) assigning

riorities to policies, or ii) defining clear separation between abstract

ntities [12] . Without a rigorous representation of policies, this is-

ue adds additional complexities to the policy management sys-

ems that operate in highly dynamic systems with exceptions.

xample 2 Difficulties in Reasoning When Context Changes. This

xample illustrates the deficiency of FOL-based reasoning schemes

n dynamic environments where OrBAC-based predicates and infer-

nce rules are used to express adaptive scenarios. Consider the fol-

owing two policies in a research lab at City University (CU) where

olicies are expressed through an OrBAC-based model.

- prohibition (cu, und ergrad _ stud ent, access, research _ lab,

de fault _ ctx) .

- per mission (cu, under grad _ st udent , access, research _ lab,

accompanied _ by _ grad _ st udent) .

The first policy states that: normally (i.e., in default context),

ny undergrad student is disallowed to access a research lab at

U; Whereas, the second policy states that at CU any undergrad

tudent is allowed to have access to the research lab if a graduate

tudent is already present in the lab.

Let us consider a scenario where Mary, who is an undergrad-

ate student, attempts to enter EC202 when no graduate student

s present in the lab. In this scenario, the action enter is ab-

tracted into an access activity, and the EC202 lab is an instance

f research _ lab. With respect to the specified abstract policies and

he association rules between the concrete and abstract policies,

he OrBAC FOL-based inference rule infers the following concrete

olicy:

- isProhibited (cu, mary, enter, ec 202).

Now, assume another scenario where Mary again attempts to

nter EC202 at a later time. Alice, a graduate student, is already

n the lab and therefore the context accompanied _ by _ grad _ st udent

olds. Since a graduate student now accompanies Mary in the lab,

rBAC FOL-based inference rule infers the following concrete pol-

cy:

52 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

f

t

i

i

a

f

T

o

v

s

g

a

m

w

t

b

f

p

T

o

t

m

r

t

d

c

n

n

s

a

e

- isPermitted (cu, mary, enter, ec 202).

It is important to note that, because FOL is used in representing

the policies, even after inferring isPermitted(cu, mary, enter, ec202) ,

the concrete policy isProhibited(cu, mary, enter, ec202) is not inval-

idated and thus there is an apparent conflict between these two

concrete policies. As a result, the security administration needs to

manually resolve this type of conflict at the design time.

A key feature missing in FOL-based reasoning schemes that

makes them less attractive in modeling dynamic domains is the

lack of reasoning capability in invalidating earlier consequences

and believes when changes occur in the contexts or an additional

piece of knowledge is gained and added to the knowledge-base.

This problem is caused by the monotonicity characteristic of first-

order logic in which new observations are never invalidated earlier

consequences and therefore it is always assumed that the underly-

ing system is complete and certain.

This paper proposes a formal scheme that employs non-

monotonic logic for implementing context-aware access control

policies. More specifically, as a non-monotonic declarative language

employed in our scheme, Answer Set Programming (ASP) offers an

elegant way to represent the knowledge that might be even in-

complete or unavailable ahead of time yet make informed deci-

sion through uncertain reasoning inherited from its non-monotonic

characteristic. The non-monotonicity of ASP makes this declarative

logic programming language a suitable tool for automated reason-

ing for enforcing security policies and requirements in dynamic en-

vironments during runtime.

3. Answer Set Programming (ASP)

Answer Set Programming (ASP) [13,14] is a non-monotonic,

declarative, and logic programming language. ASP has its origin in

default logics [15] and constraint satisfaction paradigm. It is based

on stable models [16] , also known as answer set semantics of logic

programming. What distinguishes ASP from other non-monotonic

logic-based approaches is that it is supported with a good num-

ber of well-developed and efficient solvers and grounders such as

Clasp [17] , DLV [18] , and Gringo [19] . ASP has been successfully

used for reasoning efficiently with incomplete knowledge and also

for representing and reasoning about dynamic domains [20,21] . It

has recently been used to resolve challenges in different applica-

tion areas such as robotics, computational biology and e-medicine

[22] . In the context of access control, ASP has been used by re-

searchers for XACML policy verification purpose [23–25] . Furtur-

more, it has been used to provide a simple authorization and obli-

gation language as well as ASP-based compliance checking algo-

rithms [26] .

The basic building blocks of ASP programs are atoms. Atoms are

factual statements that are evaluated to be true or false. Literals are

either atoms or the negation of atoms. An atom p (t 1 , . . . , t n) is a

ground atom if all of t i s are constants (i.e. none of them is a vari-

able). Ground literals are either ground atoms or their negations.

ASP rules are ordered pairs in the general form of:

Head : − Body

The Head and the Body are finite sets of literals. Using : − in

rules means that the ASP rules are executable. In this paper, we

use a subset of ASP programs, in which every rule after expanding

Head and Body is in the form of:

a : − b 1 , . . . , b i , not c 1 , . . . , not c j

The rule states that a , (i.e., the Head) is true if all of the atoms

in the Body (the right side of the rule) are true. In other words,

a is true if b 1 , . . . , b i are believed, whereas, c 1 , . . . , c j are not be-

lieved. The symbol not is called “default negation ” or “negation as
ailure .” The not c i notation can be interpreted as: there is no reason

o believe that c i is true . Unlike the classical negation, not does not

mply that c i is believed to be false. Rather it implies that there

s not enough evidence to believe in c i (i.e., the value of c i is not

vailable). ASP facts are expressed as rules with empty bodies as

ollows:

a : −

he empty Body is always evaluated to be true. In this paper, we

mit : − when expressing facts.

An ASP program, i.e., a set of ASP rules, can semantically be

iewed as a specification for answer sets. Answer sets can be de-

cribed as sets of beliefs that can be associated with an ASP pro-

ram. Answer sets are represented by a collection of ground liter-

ls. Forming answer sets are guided by the following set of infor-

al principles [20] :

1 . Believe in the head of a rule if its body is believed.

2. Do not believe in contradictions (i.e., a and -a).

3. Believe nothing if it it not forced to be believed.

In the rest of this section, we illustrate the principles together

ith the notion of classical and default negation.

Example 3.2.1. [A Program with Classical Negation.] Consider

he following ASP program with two rules:

q : − −p “If it is believed that p is false, then q must be

believed”

−p “It is believed that p is false”

In this example, the second rule is a fact and facts are always

elieved, since their body is a collection of empty literals. There-

ore, based on first principle, it is believed that p is false. The same

rinciple is applicable to the first rule enforcing us to believe q .

herefore, the answer set { −p, q } can be associated with the rules

f the program.

Example 3.2.2. [A Program with Default Negation.] Some-

imes reasoning can be performed based on the absence of infor-

ation. For example, Alice, who is a nurse, might be permitted to

ead John’s records, who is a patient, while lacking the evidence

o the contrary (i.e. by default). Such reasoning can be captured by

efault negation and can be represented by an ASP program that

ontains the following type of rules:

q : − not p “If there is no reason to believe p , then q must be

believed ”

Since there is no rule in the program that has p on its head,

othing forces to believe p . So, by principle 3, the answer set does

ot contain p . Consequently, to satisfy the only rule of the program,

ince p is not believed q must be believed. Therefore, { q } is the

nswer set of the program.

ASP has several features that makes it a suitable tool to express

volving knowledge in dynamic systems:

- Explicit and distinct Representations of Default and Excep-

tion policies. The elegance and expressiveness of ASP in rep-

resenting defaults and exceptions by the means of negation as

failure offers two valuable benefits to modeling access control

systems:

- Reasoning with Imperfect Data . This feature enables making

informed decisions about access control permissions when

context data are imperfect ahead of time or the set of poli-

cies is incomplete and evolving. In such cases, privileges can

be granted based on defaults (i.e., context defaults are rep-

resented through the general abstract policies) [8] .

- Resolving Conflicts and Dealing with Inconsistencies . Rep-

resenting defaults and exceptions and invalidating de-

faults, when exceptions are added to the knowledge base,

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 53

4

4

c

B

i

c

[

a

t

b

l

t

t

c

c

s

l

t

A

w

i

t

a

[

l

i

l

s

t

fi

o

a

d

i

m

c

c

t

O

t

p

m

f

m

4

r

p

a

fi

r

c

s

a

c

m

a

a

t

m

a

F

c

e

s

t

m

r

m

s

p

p

i

f

[

m

s

a

t

a

f

v

e

t

t

d

fi

t

e

v

e

o

o

a

5

f

a

5

b
help avoiding conflicts between the default and context-

dependent (i.e., predefined policies) on one side and the ex-

ception policies on the other side naturally, as illustrated in

motivating Examples 1 and 2 .

- A Declarative Way to Program and Knowledge Representa-

tion. Declarative programming is a paradigm, in which a pro-

grammer intends to describe a problem (i.e., what) rather than

the solution (i.e., how). Using declarative languages, policies

and requirements can be added incrementally to the knowledge

base regardless of being concerned about their side effects and

potential inconsistencies. By enabling one to express what re-

strictions need to be enforced rather than describing how to

enforce them, this feature supports adding exceptional policies

incrementally at runtime.

. Related work

.1. Access control models

Traditional access control models such as Discretionary Access

ontrol (DAC) [28] , Mandatory Access Control (MAC) [29] , and Task-

ased Authorization Controls (TBAC) [30] are restricted to model-

ng permission controls using static policies. Unlike traditional ac-

ess control modeling schemes, Role Based Access Control (RBAC)

9] enables expressing policies for dynamic systems. RBAC policies

re defined based on roles and privileges (i.e.,permissions). Fur-

hermore, RBAC allows coping with operating environment changes

y changing user roles when privileges need to be restricted or re-

axed. Bertino et. al., introduced Temporal Role-based Access Con-

rol (TRBAC) model [31] , which extends RBAC to support periodic

ime triggering roles. However, similar to other traditional access

ontrol models, TRBAC also does not allow specifying contexts.

As indicated by Kuhn et. al., RBAC has been criticized for diffi-

ulties in modeling role-engineering process and have inadequate

upport for operating environment context such as time of day and

ocation [27] . The criticisms gave birth to access control models

hat allow specifying conditions (i.e., contexts) such as OrBAC and

ttribute Based Access Control (ABAC) [32] . OrBAC extends RBAC

ith the notion of prohibition policies and contexts and is formal-

zed in first order logic. Standard implementation of ABAC is eX-

ensible Access Control Markup Language (XACML) which defines

 policy language and an architectural scheme for expressing ABAC

33] . In addition to the RBAC model elements, XACML language al-

ows specifying prohibition (using Deny effect) and contexts (us-

ng Condition construct). XACML has been complemented by some

ogic-based specification approaches that offer formal verification

ervices for XACML policies. Context-aware access control some-

imes operates under the assumption that it is possible to prede-

ne access control policies in all possible contexts. However, some

f the contexts such as emergency can never be fully defined. The

ccess control in unanticipated conditions are usually denied by

efault [4] .

Building upon the reviewed access control models and having

nto consideration the reviewed criticisms, this paper proposes to

odel access control policies within three classes: 1) default poli-

ies (similar to RBAC policies but extended with prohibition), 2)

ontext-aware policies (similar to OrBAC policies), and 3) excep-

ions policies (user level policies to model unanticipated contexts).

nce policies are modeled, they can be validated and transformed

o policy languages such as XACML. In the proposed model, adding

rohibition policies and also the notion of context to RBAC ele-

ents enable utilizing denial and condition constructs of XACML

eatures. It also adds exception policies as well as capability to

odeling incomplete context data to OrBAC (See Section 6).
.2. Logic-based approaches to reason about XACML policies

XACML is the standard implementation for ABAC that incorpo-

ates a rich set of features and constructs and allows expressing

olicies and specifying policy combination mechanisms. However,

ccording to several research, specifying policies in XACML is a dif-

cult and error-prone task [34–36] . In other words, specifying cor-

ect and efficient policies in XACML depends on policy makers de-

isions [35,37] . For instance, as indicated by [37] “existing policy

tructuring mechanisms do not prevent efficiency problems that

re caused by bad specifications of policies, especially when poli-

ies evolve over time.” Furthermore, XACML does not have a for-

al semantic. However, since most of the XACML constructs have

 declarative flavor, researchers formalize the required constructs

nd map them to logical semantics which also takes into account

he policy verification and validation.

To assist policy developers in order to detect and resolve hu-

an errors in XACML policies, formal logic-based verification and

nalysis tools and techniques have been developed [34,36,38,40] .

isler et. al., [36] present a software suite for analyzing RBAC ac-

ess control policies, expressed in XACML. In the software suite,

ach XACML policy is represented as a multi-terminal binary deci-

ion diagram (MTBDD) model in first order logic. The policies are

hen combined by MTBDD-based combining algorithms that imple-

ent the XACML combining algorithms. Safety properties are rep-

esented in the Scheme programming language. The suite has two

ain components: 1) a verification component that takes a policy

et and a formal property as inputs and determines whether the

olicy satisfies the property; and 2) a change-impact analysis com-

onent that takes as inputs two policies and spans a set of changes

n order to identify effects of policy changes.

Hughes and Bultan [34] use a SAT solver to check the satis-

action of some boolean logic based properties. Turkmen et. al.,

38] develop a SMT-based policy analysis framework that auto-

atically translate XACML policies into the corresponding formal

pecification of policies [39] . The specification enables analysis

gainst a wider range of properties including non-boolean proper-

ies that are usually left uninterpreted using the SAT solver based

pproaches. The SMT-based approach also improves analysis per-

ormance in comparison to SAT solvers.

Crampton et. al., [40] address the problem of missing attribute

alues in analyzing attribute-based access control policies initially

xpressed in PTaCL and XACML. The solution proposed by Cramp-

on et. al., is based on non-deterministic evaluation. In particular,

hey use PRISM, a probabilistic model checker, to simulate the non-

eterminism of retrieving attributes.

The proposed reasoning scheme, presented in this paper, bene-

ts from expressiveness of ASP to model and analyze access con-

rol policies. In particular, using default negation we can define el-

gant context definitions (e.g., modeling topology of operating en-

ironment as a complex context [41]) and constraint about non-

xistence of context data and policies (e.g., scenarios in [8]). One

f the distinguishable aspects of our scheme compared to some

ther non-monotonic approaches is the utilization of efficient and

vailable ASP solvers.

. Adaptive reasoning scheme for context-aware access controls

This section presents a semantic model that enables making in-

ormed decision with the goal of enforcing adaptive context-aware

ccess control policies.

.1. Policy model

We present the policy model using the formalization offered

y the traditional Role-Based Access Control (RBAC) [9] and its

54 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

d

o

u

M

p

t

f

a

r

h

o

d

c

i

t

o

5

i

[

p

t

u

i

c

a

p

p

K

c

t

fi

t

e

t

t

t

u
context-aware variation, OrBAC [10] . The basic key elements are

described in terms of the following sets:

- Roles (R) , where set R is a finite set of m roles R = { r 1 , . . . , r m

} .
A role is defined according to a user’ job description, e.g., in-

tern.

- Users(U) , where set U is a finite set of n users U = { u 1 , . . . , u n } .
A user is an entity that requests having access to valuable as-

sets, e.g., Mary.

- Assets (AS) , where set AS is a finite set of p valuable objects

AS = { as 1 , . . . , as p } . An asset is an instance of a protected valu-

able object, e.g., a confidential data container.

- Actions (AC) , where set AC = { ac 1 , . . . , ac q } is a set of q opera-

tions defined on assets. Actions are basic operations allowable

on assets, e.g., reading confidential data.

- Context Expressions (CE) , where the set CE is a finite set of

o context expressions CE = { ce 1 , . . . , ce o } . Contexts are concrete

environmental conditions that have effects on access control

decisions, e.g., morning time.

- Exception Identification Numbers (ID) , where the set ID is a

finite set of o identification numbers ID = { ID 1 , . . . , ID o } . Identi-

fication numbers are numbers that are associated with excep-

tion policies and enable distinguishing different occurrence of

exceptions from each other.

Using the above sets, we are now in a position to describe the

syntax and informal semantic of relations among these sets that

will be used in the proposed reasoning scheme. The user role as-

signment is expressed as follows:

- User Assignment (UA) : UA ⊆ U × R is a many to many relation-

ship imposed on the sets of users U and roles R . This relation-

ship is used to associate users with their roles in the system.

An ASP fact such as ua (user 1 , role 1) states that user user 1 is as-

sociated with role role 1 and is expected to perform the duties

described for role 1 .

On the other hand, the default policies can be expressed as fol-

lows:

- Default Permission (dPrm) : dPrm ⊆ R × AC × AS is a ternary re-

lationship imposed on the sets of roles R , actions AC and assets

AS . An ASP fact such as dPrm (role, action, asset) states that nor-

mally and by default, any user with the assigned role role is

allowed to perform action action on asset asset .

- Default Prohibition (dPrh) : dPrh ⊆ R × AC × AS is a ternary re-

lationship imposed on the sets of roles R , actions AC and as-

sets AS . Similarly, an ASP fact such as dPrh (role 1 , action 1 , asset 1)

states that normally and by default, any user with the assigned

role role 1 is disallowed to perform the action action 1 on the as-

set asset 1 .

In an analogous way, the context-dependent policies are ex-

pressed as follows:

- Context-Dependent Permission (cdPrm) : cdPrm ⊆ R × AC × AS

× CE is a relationship imposed on the sets of roles R , actions

AC , assets AS , and context expressions CE . An ASP fact such as

cdPrm (role 1 , action 1 , asset 1 , ce 1) states that any user, whose role

is role 1 , is allowed to perform the action action 1 on the asset

asset 1 when the context expression ce 1 holds, i.e., is evaluated

to be true.

- Context-Dependent Prohibition (cdPrh) : cdPrh ⊆ R × AC × AS

× CE is a relationship imposed on the sets of roles R , actions

AC , assets AS , and context expressions CE . An ASP fact such as

cdPrh (role 1 , action 1 , asset 1 , ce 1) states that any user, whose role

is role 1 , is disallowed to perform the action action 1 on the as-

set asset 1 when the context expression ce 1 does not hold, i.e.,
is valuated to be true. c
Similarly, the exception policies are expressed as follows:

- Exception Permission (exPrm) : exPrm ⊆ U × AC × AS × ID is a

relationship imposed on the sets of Users U , actions AC , and

assets AS . An ASP fact such as exPrm (user 1 , action 1 , asset 1 , ex-

ceptionId) states that the user user 1 is exceptionally allowed to

perform the action action 1 on the asset asset 1 . The exPrm is as-

sociated with an exceptionId that allows distinguishing different

occurrences of exceptions from each other.

- Exception Prohibition (exPrh) : exPrh ⊆ U × AC × AS × ID is a re-

lationship imposed on the sets of Users U , actions AC , assets

AS , and Identifiers ID . An ASP fact such as exPrh (user 1 , action 1 ,

asset 1 , exceptionId) states that the user user 1 is exceptionally

disallowed to perform the action action 1 on the asset asset 1 .

The exPrh is associated with an exceptionId that allows distin-

guishing different occurrences of exceptions.

Note that in this paper, the term “exception” is used in two

ifferent meanings. We use the “exception policy ” in the context

f access control policies; whereas, the “ASP-based exceptions” are

sed in the context and semantic of ASP-based default reasoning.

ore specifically, by “exception policy”, we mean the user-level

olicies are specified for individuals and added incrementally to

he knowledge-base; whereas, by an “ASP-based exception”, we re-

er to an element of the default reasoning that represents a fact or

 logical inference that is followed by default negation in an ASP

ules. Finally, contexts are defined through logical rules that have

old predicates on their heads, i.e., the left part of the rules:

- holds ⊆ U × AC × AS × CE is a relationship imposed on the sets

of users U, actions AC, assets AS, and CE. An ASP fact such as

holds (user 1 , action 1 , asset 1 , context 1) states that the user user 1 is

allowed to perform the action action 1 on the asset asset 1 while

the condition context 1 holds.

In the following sections, we present an in-depth description

f the key concepts such as contexts, default policies, context-

ependent and exception policies as well as Incompleteness and

onflict management as framed in the presented adaptive reason-

ng scheme. We employ the convention of using lowercase letters

o represent objects and uppercase letters to express variables in

rder to be consistent with the ASP’ s syntax.

.2. Representing different types of contexts

There is a good body of knowledge on the use of contexts

n different context-aware applications (for a good survey see

42] and [43]). These context-aware applications use contexts to

erform reasoning and adapt their behaviors in order to response

o changes occurred in their environments in which changes are

sually detected by sensors. The context data detected by sensors

s usually unavailable beforehand. Therefore, it is important for a

ontext-modeling scheme to deal with incomplete and noisy data

nd support self-esteem reasoning to automate decision-making

rocesses.

An attempt to precisely define a context depends on the ap-

lication domain. From the perspective of access control models,

alam et al., [10] defined contexts as specifications of concrete cir-

umstances used to express dynamic access control policies. From

he perspective of requirements engineering, contexts can be de-

ned as a partial view of a state of an environment that influence

he decisions of the system [44] . For example, we are not inter-

sted in the part of states of the world that are uniform because

hey do not influence the decisions of an access control system. In

his paper, we adopt the requirements engineering perspective of

he contexts associated with access control policies. To do so, we

se the following types of contexts to express access control poli-

ies:

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 55

a

f

t

o

a

i

t

C

C

C

o

C

w

i

p

p

5

t

g

g

c

t

i

d

m

c

(

t

p

p

a

c

t

a

f

p

c

l

w

u

c

c

u

f

p

b

5

c

I

.

I

,

I

,

I

not withdraw (ID) .
- Basic Entities Contexts . Conditions that are used to describe

a certain attribute of model entities. For example, laborato-

ryRecord can be a context expression, used to describe the type

of an asset, i.e., the value of type attribute of an asset is labora-

toryRecord .

- Relational Contexts . Conditions that are used to describe a re-

lationship or interaction between instances of model entities.

For example, attendingPhysician is a context expression that de-

scribes the relationship between the owner of a certain asset

and a physician, i.e., an attending physician has been assigned

as the physician of the owner of an asset.

- Environmental Contexts . Conditions that are used to describe

the operating environment. The environmental contexts are in-

dependent from basic entities. For example, at a typical hospi-

tal, workingHours is a context expression that can be used to

describe working hours and shifts of the hospital.

In the presented ASP-based reasoning model, atomic contexts

re inferred from the ASP facts, where the head of rules are in-

erred using the holds predicates (defined in Section 5.1); whereas,

he bodies of rules are facts that describe attributes of the entities

r the environment. Compound contexts can be inferred based on

tomic contexts, where both the head and the body of the rules

nclude the “holds” predicates. CDR 1 and CDR 2 illustrate the defini-

ion of an atomic context and a compound context, respectively.

DR 1 . holds (User, Action, Asset, workingHours) : −
afterTime (8) ,

beforeTime (18) ,

−onDay (saturday) .

DR 2 . holds (User, Action, Asset, internPrescriptionHour) : −
ua (User, intern) ,

holds (User, Action, Asset, morning) ,

holds (User, Action, Asset, evenDays) .

DR 1 states that “workingHour” context holds (for all of triples

f < user, action, asset >) from 8 to 18 everyday except Saturdays.

DR 2 states that “internPrescriptionHour” context holds for users

ho are assigned as interns, with the condition that if “morn-

ng” and “evenDay” contexts are hold. Note that in this paper, we

resent only a semantic model to reason about policies that de-

end on contexts and leave out presenting a context model.

.3. Default, context-Dependent, and exception policies

Due to the complexity of regulations and security goals in a

ypical dynamic domain, the number of access control policies can

row substantially. Specifying policies and regulations in large or-

anizations is a very tedious and error-prone task. As a result, in-

onsistencies in policies may occur due to missing policies for cer-

ain contexts or possible conflicts among policies pertinent to var-

ous contexts. Furthermore, redundant policies [12] may be intro-

uced due to human errors while intending to prioritizing policies

anually. For example, redundant policies might be introduced be-

ause of assigning lower-ranked priorities to more specific policies

e.g., policies defined for a short period of time).

To address these problems, we propose to separate access con-

rol policies into three classes: 1) default policies, 2) context de-

endent policies, and 3) exception policies. Default access control

olicies are expressed in a fashion similar to RBAC policies, which

re typically generic and context-independent. Unlike, traditional

ontext-aware access control models that have an implicit prohibi-

ion default, we enable policy makers to express defaults explicitly

nd directly. Context-dependent access control policies are defined
or certain contexts. Finally, exception policies are access control

olicies defined for individual users (syntax and semantic of these

lasses are presented in Section 5.1). We present an example to il-

ustrate these classes of access control policies.

Example 5.3.1 . Consider an academic research group affiliated

ith a research lab. The lab members consist of advisers and grad-

ate students. There are also visitors who might need to have ac-

ess to the lab occasionally. The following descriptive default and

ontext-dependent access control policies are specified for individ-

als, labeled as visitors, at design time:

- A Default Policy . A visitor normally is not allowed to enter the

“CHE-202” lab (Policy D 1).

- A Context-Dependent Policy . A visitor, however, is allowed to

enter “CHE-202” lab during the group meeting time (Policy C 1).

The following exception policy needs to be integrated and en-

orced at runtime:

- An Exception Policy . John, who is a visitor, is exceptionally al-

lowed to enter “CHE-202” lab (Policy E 1).

The default, context-dependent, and exception access control

olicies can be formally expressed through the following ASP-

ased facts:

- The Default Policy . dPrh(visitor, enter, che-202) , where the visi-

tor is a role, the enter is an action, and the CHE-202 is an asset,

i.e., the ASP-based expression of Policy D 1.

- The Context-Dependent Policy . cdPrm(visitor, enter, che-202,

meetingTime) , where the visitor is a role, the enter is an action,

the CHE-202 is an asset, and the meetingTime is a temporal con-

text expression, i.e., the ASP-based expression of Policy C 1.

- The Exception Policy . exPrm(john, enter, che-202,1) , where John

is a user, the enter is an action, the CHE-202 is an asset, and 1

is an id for the exception policy, i.e., the ASP-based expression

of Policy E 1.

.4. Inferring concrete policies

Using the ASP’s default representation feature, concrete policies

an be inferred using the following inference rules:

R 1 . is Permitted (User, Action, Asset) : −
dPrm (Role, Action, Asset) ,

ua (User, Role) ,

not isProhibited (User, Action, Asset)

R 2 . is Prohibited (User, Action, Asset) : −
cdPrh (Role, Action, Asset, Context)

ua (User, Role) ,

holds (User, Action, Asset, Context) ,

notexPrm (User, Action, Asset, ID) .

R

′
2 . is Prohibited (User, Action, Asset) : −

cdPrh (Role, Action, Asset, Context)

ua (User, Role) ,

holds (User, Action, Asset, Context) ,

exPrm (User, Action, Asset, ID) ,

withdraw (ID) .

R 3 . isP ermit ted(User, Act ion, As set) : −
exP rm (User, Action, Asset, ID) ,

56 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

6

r

p

c

o

s

t

a

q

T

s

a

p

c

e

[

c

d
- Rule IR 1 states that: if i) a default permission policy dPrm is

specified for any user, whose role is Role , to do an action Ac-

tion on an asset Asset , and ii) the user User is assigned to the

role Role , and iii) there is no reason to believe that (i.e., the not)

user User is prohibited to perform the action Action on the as-

set Asset , then the user User is permitted to perform the action

Action on the asset Asset .

- Rule IR 2 states that: if i) a context-dependent prohibition pol-

icy cdPrh is specified for any user, whose role is Role , to do an

action Action on an asset Asset under a specific context Context ,

ii) a user User is assigned to the role Role , iii) the associated

context Context holds, and iv) there is no reason to believe that

(i.e., the not) the user User is exceptionally permitted to per-

form the action Action on the asset Asset then the user User is

prohibited to perform the action Action on the asset Asset . Poli-

cies like exPrm are user-level policies and might be added in-

crementally at runtime due to exceptional situations and thus

they may invalidate the consequences of predefined policies.

- Rule IR ′
2

states that: if i) a context-dependent prohibition pol-

icy cdPrh is specified for any user, whose role is Role , to do an

action Action on an asset Asset under a specific context Context ,

ii) a user User is assigned to the role Role , iii) the associated

context Context holds, iv) the user User is exceptionally permit-

ted (by exception policy ID) to perform the action Action on the

asset Asset , and v)the exception policy with id ID is withdrawn,

then the user User is prohibited to perform the action Action on

the asset Asset .

- Rule IR 3 states that: if i) an exception permission policy with

id ID is specified for a user User to perform an action Action

on an asset Asset , and ii) the exception permission policy with

id ID is not withdrawn, then a concrete permission is inferred

for the user User to perform the action Action on the asset

Asset .

It is important to note that using the IR 1 −3 (i.e., using default

reasoning for concrete policy inference) exception policies take

precedence over context-dependent policies and in turn context-

dependent policies take precedence over default policies. This

precedence mechanism offers a clean strategy for defining and im-

plementing priorities among policies and thus an intuitive solution

to the conflict management and resolution problem, which will be

discussed in following sections.

In an analogous way, the concrete prohibition policies are de-

rived through the following ASP-based inference rules:

IR 4 . isP rohibited(User, Action, Asset) : −
dP rh (Role, Action, Asset)

ua (User, Role)

not isP ermit ted(User, Act ion, Asset) .

IR 5 . isP ermit ted(User, Act ion, Asset) : −
cdP rm (Role, Act ion, Asset , Context)

ua (User, Role)

holds (User, Action, Asset, Context)

not exP rh (User, Action, Asset, ID) .

IR

′
5 . isP ermit ted(User, Act ion, Asset) : −

cdP rm (Role, Act ion, Asset , Context) ,

ua (User, Role) ,

holds (User, Action, Asset, Context) ,

exP rh (User, Action, Asset, ID) ,

withdraw (ID) .
l
IR 6 . isP rohibit ted(User, Act ion, Asset) : −
exP rh (User, Action, Asset, ID) ,

not withdraw (ID) .

- Rule IR 4 states that: if i) a default prohibition policy dPrh is

specified for any user, whose role is Role , to do an action Ac-

tion on an asset Asset , and ii) the user User is assigned to the

role Role , and iii) there is no reason to believe that (i.e., the

not) the user User is permitted to perform the action Action on

the asset Asset , then the user User is prohibited to perform the

action Action on the asset Asset .

- Rule IR 5 states that: if i) a context-dependent permission pol-

icy cdPrm is specified for any user, whose role is Role , to do an

action Action on an asset Asset under a specific context Context ,

ii) a user User is assigned to the role Role , iii) the associated

context Context holds, and iv) there is no reason to believe that

(i.e., the not) the user User is exceptionally prohibited to per-

form action Action on the asset Asset then the user User is not

prohibited to perform the action Action on the asset Asset . Poli-

cies like exPrh are user-level policies and might be added incre-

mentally at runtime due to exceptional situations and invalidate

the consequences of predefined policies.

- Rule IR ′ 5 states that: if i) a context-dependent permission pol-

icy cdPrm is specified for any user, whose role is Role , to do an

action Action on an asset Asset under a specific context Context ,

ii) a user User is assigned to the role Role , iii) the associated

context Context holds, and iv) there is exPrh policy with id ID ,

stating that the user User is exceptionally prohibited to perform

action Action on the asset Asset then the user User is not pro-

hibited to perform the action Action on the asset Asset , and v)

the exception policy with id ID is withdrawn.

- Rule IR 6 states that: if i) an exception prohibition policy with id

ID is specified for a user User to perform an action Action on an

asset Asset and ii) the exception prohibition policy with id ID is

not withdrawn, then a concrete prohibition is inferred for the

user User to perform the action Action on the asset Asset .

. Management of incomplete policies

In context-sensitive access control models incompleteness may

efer to existence of some possible situations for which no explicit

olicy is devised. In this section, we illustrate an incomplete access

ontrol policy set to illustrate how the presented scheme is capable

f effectively managing these types of situations.

Example 1 (Incomplete Access Control Policies) . Consider the

pecification of two context-dependent policies devised for an au-

omated health-care system:

- A nurse is allowed to read and write any patient’s records from

within the hospital’s emergency room.

- A nurse is disallowed to read or write any patient’s records

from outside of the hospital.

At a typical hospital, where this policy set is implemented, an

ccess control decision might not be determined when a nurse re-

uests to read/write a patient’s records from the operation room.

his happens because none of the policies in the policy set is as-

ociated with the operating room area. This example demonstrates

n incomplete policy case where policies are not predefined for all

ossible locations at the hospital.

In traditional access control models, the undetermined access

ontrol decisions are usually interpreted as implicit denials . How-

ver, this may not reflect the desired intention of a policy maker

45] . The absence of explicit default policies in case of incomplete

ontext-dependent policy sets might cause undetermined access

ecision and thus prevent achieving functional goals. This prob-

em can be addressed by expressing access control policies using

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 57

m

f

w

a

c

t

a

c

I

(

(

b

f

o

7

u

t

o

u

o

d

T

r

c

c

c

o

a

7

s

t

7

s

o

c

s

d

G

c

p

H

o

t

m

t

a

s

s

t

p

p

p

u

o

a

t

o

W

f

c

i

c

w

i

a

t

a

d

T

f

c

i

i

d

d

f

7

b

fl

t

s

i

t

b

fl

t

p

l

c

c

c

H
any-valued logics as described in [4,46,47] and performing de-

ault reasoning to enable decision making based on defaults [6] ,

hen none of the context-dependent policies in the policy set is

pplicable.

Similarly, in the proposed adaptive access control scheme, we

ategorize access control policies into three classes: default, con-

ext dependent and exception policies. The access control policies

re expressed using three different types of predicates (e.g., dPrm,

dPrm , and exPrm). We use defeasible inference rules (i.e., IR 1 to

R 6 rules in Section 5.4) to enforce default access control policies

e.g, dPrm) in the absence of applicable context-dependent policies

e.g., cdPrm). Based on the introduced predicates and the defeasi-

le inference rules, access control decisions are made based on de-

ault policies in the absence of either context-dependent policies

r context data.

. Conflict management

In dynamic systems, conflicts might occur because of contin-

ously changing conditions in the environment, changing regula-

ions or by human mistakes when devising policies. In the context

f access control models, a conflict occurs when, for example, a

ser is both permitted and prohibited to perform a certain action

n the same set of assets, simultaneously. In such cases, there is a

ilemma to decide whether to grant or revoke the access requests.

his section demonstrates the strength of the proposed adaptive

easoning scheme for eliminating or detecting conflicts among ac-

ess control policies. In the following sections, first we categorize

onflicts among access control policies into two groups of inter-

lass and intraclass conflicts. Then we explain how the instances

f each group are detected, eliminated or resolved in the proposed

pproach.

.1. Types of conflicts

With respect to the proposed access control scheme and repre-

entation, conflicting access control policies can be classified into

wo subcategories:

- Interclass conflicts. Conflicts among prohibition and permission

policies of different classes, e.g., conflicts between a default per-

mission (dPrm) and a context-dependent prohibition (cdPrh).

- Intra-class conflicts. Conflicts among policies within a class, e.g.,

conflicts between a context-dependent permission (cdPrm) and

a context-dependent prohibition (cdPrh).

.2. Interclass conflict management

This section first presents a few illustrative examples to demon-

trate interclass conflict type. Then, it describes how the instances

f interclass conflicts are eliminated by the proposed adaptive ac-

ess control representation.

Example 2 (Conflicting Default and Exception Policies) . Con-

ider the following default policy developed for a lab in Chemistry

epartment:

- Normally undergraduate advisers are disallowed to enter the

Chemistry labs.

Suppose the following policy is added to the policy set upon Dr.

reen’s request, the lab supervisor, while she is on travel:

- Nancy, the undergraduate adviser, is exceptionally allowed to

enter Dr. Green’s chemistry lab, while Dr. Green is traveling.

There is an apparent conflict between these two policies that

an be resolved by assigning a higher priority to the more specific

olicy (i.e., in this example the second policy is more specific) [10] .
ence, the final access control decision cannot be decided with-

ut giving precedence to one of these policies and thus ignoring

he other one. We propose to avoid this type of conflict by the

eans of “default reasoning” instead of assigning explicit priori-

ies to policies manually, which introduces administrative overhead

nd might lead to unintended behaviors when policy sets grow in

ize.

In the proposed adaptive access control scheme, there are three

eparate classes of policies: default, context-dependent, and excep-

ion policies. Using the proposed ASP-based inference rules (ex-

lained in Section 5.4) exception policies take priority over default

olicies implicitly (Rules IR1-IR6). In other words, each exception

olicy, when integrated into the policy set, invalidates default reg-

lations. The idea of overriding default policies is similar to most

verride strategy in [48] that has been introduced in the context of

uthorization propagation policies. In most override strategy, au-

horizations of a super-node is propagated to its sub-nodes if not

verridden (nodes represent subjects in a hierarchy of subjects).

e use the same idea in a different context, that is overriding de-

ault policies when more specific policies must be enforced.

Example 3 (Conflicting Default and Context-Dependent Poli-

ies) . Imagine a digital library that offers online services for access-

ng published journal papers and databases to its clients. The ac-

ess privileges are regulated with respect to the organizations (i.e.,

here users are accessing the digital library). Consider the follow-

ng default and context-dependent policies:

- Generally, users are not allowed to download and save scientific

papers on their local computers.

- Users accessing from a certain network access point, e.g., Peo-

ple’s Community College, are allowed to download and save the

published journal papers retrieved from the online database.

An apparent conflict occurs when a user requests to download

nd save a published journal paper on a local computer through

he People’s Community College’s network access point. The final

ccess control permission cannot be decided unless the context-

ependent policy takes precedence over the general policy [10] .

his type of conflict also can be eliminated by the means of “de-

ault reasoning” rather than assigning explicit priorities to poli-

ies manually. By separating default and context-dependent pol-

cy classes and using the ASP-based inference rules (explained

n Section 5.4) context-dependent policies took precedence over

efaults implicitly (Rules IR1-IR6). In other words, each context-

ependent policy, when defined by policy maker, invalidates de-

ault regulations naturally.

.3. Intraclass policies conflict management

As illustrated in aforementioned examples, the proposed ASP-

ased reasoning scheme naturally eliminates interclass policy con-

icts by the means of default reasoning. Moreover, security sys-

ems also need to detect and resolve intraclass conflicting policies.

Intraclass conflicting policies, are referred to policies of the

ame class (i.e., default, context-dependent, or exception policies)

n which a policy permits and another one prohibits the same user

o perform the same action on the same set of assets. There has

een several works on detection and resolution of this type of con-

icts [12,45,49–51] . This type of conflicts can be avoided by priori-

izing policies and specifying separation of duty constraints usually

erformed by a security administrator [12,50] .

In this paper, there is no intention to presents a conflict reso-

ution approach for intraclass policies. Rather, We define and en-

ode rules to detect possible conflicts in the proposed adaptive ac-

ess control. Once policy conflicts are detected then predefined ac-

ess control policies can be resolved by the security administrator.

owever, since exception policies are added incrementally during

58 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

7

t

t

i

s

A

r

t

b

A

R

R

d

S

a

p

w

i

p

m

t

T

s

A

s

e

t

a

a

t

i

f

T

i

s

(

u

runtime, the conflicts among exception policies also need to be de-

tected and resolved without human intervention.

In the following subsections, first we define potential policy

conflicts in the proposed adaptive access control scheme. Then, we

present ASP rules for detecting the potential intraclass conflicts. Fi-

nally, we present an ASP rule for resolving conflicts among excep-

tion policies (i.e., a specific form of intraclass conflict that needs to

be resolved during runtime).

7.4. Formal definition of conflicting policies

This section defines potential conflicts that need to be detected

and resolved in the proposed adaptive reasoning scheme. It is im-

portant to note that, a typical interclass conflict is eliminated by

the proposed ASP-based representation implying that all potential

conflicts fall into intraclass conflict category.

Conflicting Default Policies . Let the followings be two default

access control policies representing the normal permission and

prohibition regulations, respectively:

dP rm (role 1 , action 1 , asset 1)

dP rh (role 2 , action 2 , asset 2)

These are conflicting default policies if all of the following three

conditions hold:

1. action 1 = action 2
2. asset 1 = asset 2
3. For some user , the knowledge-base contains both ua (user,

role 1) and ua (user, role 2)

In the case that all of these conditions hold, a concrete conflict

occurs because the user will be both permitted and prohibited to

perform the same action on the same set of assets.

Conflicting Context-Dependent Policies . Let the followings

be two context-dependent access control policies representing

context-dependent permission and prohibition regulations, respec-

tively:

cdP rm (role 1 , action 1 , asset 1 , ce 1)

cdP rh (role 2 , action 2 , asset 2 , ce 2)

These are conflicting context-dependent policies if all of the fol-

lowing four conditions hold:

1. action 1 = action 2
2. asset 1 = asset 2
3. For some user , the knowledge base contains both ua (user,

role 1) and ua (user, role 2)

4. For some triple (user, action, asset), both ce 1 and ce 2 hold

In the case that all of these conditions hold, a concrete conflict

occurs because the user will be both permitted and prohibited to

perform the same action on the same asset, simultaneously.

Conflicting Exception Policies . Let the followings be two ex-

ception access control policies representing enforced permission

and prohibition policies, respectively:

exP rm (user 1 , action 1 , asset 1 , id 1)

exP rh (user 2 , action 2 , asset 2 , id 2)

We say that exPrm and exPrh are conflicting exception policies

if all of the following conditions hold:

1. action 1 = action 2
2. asset 1 = asset 2
3. user 1 = user 2
4. both exPrm and exPrh are active policies (i.e., are not with-

drawn).

In this case, a concrete conflict occurs because a user will be

both permitted and prohibited to perform the same action on the

same set of assets, simultaneously.
.5. Conflict detection

This section presents an ASP rule for detecting each of the po-

ential access control policies defined in Section 7.4 .

Generally, a policy maker devises default policies at design

ime. For example, conflicting default policies can be detected stat-

cally using the following rule:

C D 1 . dC on f lict(Role 1 , Role 2 , Action, Asset) : −
dP rm (Role 1 , Action, Asset) ,

dP rh (Role 2 , Action, Asset) .

This rule states that: if i) a default permission policy dPrm is

pecified for the role Role 1 to perform an action Action on the asset

sset , and ii) a default prohibition policy dPrh is specified for the

ole Role 2 to perform the same action on the same set of assets,

hen there is a conflict between the default permission and prohi-

ition policies devised for role Role 1 and Role 2 , to perform action

ction on asset Asset .

It is possible to consider the Separation Of Duty (SOD) between

ole 1 and Role 2 and prevent assigning the same User to Role 1 and

ole 2 , simultaneously. To handle SOD, we can revise the conflict

etection rule to be the following rule:

C D 2 . dC on f lict(Role 1 , Role 2 , Action, Asset) : −
dP rm (Role 1 , Action, Asset) ,

dP rh (Role 2 , Action, Asset) ,

not sod(Role 1 , Role 2) .

imilar to default policies, context-dependent policies are authored

t design time. Therefore, potential conflicting context-dependent

olicies can be detected statically using conflict detection rules

hich is analogous to default policies. Exception policies are added

ncrementally during runtime. Therefore, conflicts among exception

olicies must be detected and resolved automatically with mini-

um human intervention. To do that, we use the following detec-

ion rule :

C D 3 . exC on f lict(User, Action, Asset, ID 1 , ID 2) : −
exP rm (User, Action, Asset, ID 1) ,

exP rh (User, Action, Asset, ID 2) ,

not withdraw (ID 1) ,

not withdraw (ID 2) .

his rule states that: if i) an exception permission policy exPrm is

pecified for the user User to perform an action Action on the asset

sset , ii) an exception prohibition policy exPrh is specified for the

ame user to perform the same action on the same asset, and iii)

xPrm and exPrh policies are not withdrawn, then a conflict is de-

ected between exception permission and prohibition policies that

llow and at the same time disallow the user User to perform the

ction Action on the asset Asset . Once a conflict between excep-

ion policies is detected exception permission policies should be

nvalidated. To do so, the inference rule 5.4 can be changed to the

ollowing rule:

isP ermit ted(User, Act ion, Asset) : −
exP rm (User, Action, Asset, ID 1) ,

not exCon f lict(User, Action, Asset, ID 1 , ID 2) .

his rule states that: if i) an exception permission policy is spec-

fied for a user User to perform an action Action on an asset As-

et , and ii) no conflicting exception policy is derived for the triple

 User, Action, Asset), then a concrete permission is inferred for the

ser User to perform the action Action on the asset Asset .

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 59

Table 1

The City Hospital abstract policies.

Name Type Organization Role Activity View Context

P1 permission City extern analyze sample sample

hospital analysis

P2 permission City intern prescribe vpatient intern

hospital prescription presc_hour

P3 permission City medical prescribe vpatient default

hospital secreter appointment context

P4 permission City nurse analyze sample morning

hospital

P5 permission City doctor read medical referent

hospital file doctor

P6 permission City doctor read medical default

hospital file context

P7 permission City extern read medical emergency

hospital data context

I1 prohibition City extern prescribe vpatient default

hospital prescription context

I2 prohibition City extern handle medical default

hospital file context

I3 prohibition City medical handle medical default

hospital secreter data context

O1 obligation City surgeon operate vpatient anthesic

hospital patient

8

p

a

i

c

t

s

c

w

r

i

s

s

s

r

S

r

l

s

t

p

t

p

c

i

c

e

u

t

s

s

h

a

3

t

t

t

t

o

a

p

F

t

H

i

8

o

w

t

e

a

a

f

a

p

a

a

c

s

l

i

(

T

s
. Case studies

To demonstrate the expressiveness and feasibility of the pro-

osed ASP-based reasoning scheme for effectively implementing

daptive access control policies, we report the specification of the

ntroduced ASP-based access control on a hospital case study. The

ase study is excerpted from [10] . The goal of this case study is

o evaluate the capability of the proposed ASP-based reasoning

cheme in comparison to OrBAC, as an instance of FOL-based ac-

ess control model. For this case study, we used SPARC system [52] ,

hich provides explicit constructs and allows us to specify objects,

elations and their sorts. Declaring sorts allows us to avoid think-

ng about safety condition in ASP rules. SPARC passes the policy

pecifications to a DLV solver for generating answer sets and an-

wering queries about policies.

The case study consists of three parts: In the first part, we

imulate an OrBAC policy system in terms of our ASP-based rep-

esentation and compare the results inferred by MotOrBAC (see

ection 2.1 for detailed descriptions) with the results obtained by

unning our ASP-based representation using an ASP solver.

The goal of the first part is to show that our representation is at

east as expressive and effective as OrBAC’s first-order logic repre-

entation. In the second part, we inject an exception policy to both

he OrBAC policy set and our ASP-based representation and com-

are the MotOrBAC and ASP solvers’ results, accordingly. Finally, in

he third part, we provide scalability measures with regards to the

roposed policy inference mechanism when the policy model in-

rease in size.

Note that MotOrBAC is a tool designed for expressing and edit-

ng policies at design time; To simulate a runtime situation and

ondition that might occur in dynamic systems, we inject runtime

xception policies. Our intend is to compare the capability of the

nderlying reasoning schemes in handling exceptional situations.

The studied access control policy set regulates accesses to Elec-

ronic Health Records (EHR) in a hospital environment. The policy

et, accompanied by MotOrBAC, is an XML-based policy file repre-

enting the access control polices in an OrBAC model [53] .

The domain consists of three hospitals: i) City hospital, ii) South

ospital, and iii) North hospital. The policy file includes 11 abstract

ccess control policies (shown in Table 1) including 7 permissions,

 prohibitions and 1 obligation to control the accesses of users to

he electronic health records. 1 presents the abstract access con-

f
rol policies. The subjects are classified into 13 roles such as secre-

aries, doctors, and nurses. The subjects perform nine different ac-

ions such as read, write, and analyze. There are 6 different types

f objects (i.e., valuable assets to be protected), such as medical

nd administration data in 9 environmental contexts. Context ex-

ressions might have various definitions in different or ganizations.

or example, in this case study, the inter n _ prescr iption _ hour con-

ext at the South hospital is defined to be from 8:00 - 12:00 am.

owever, at the North hospital branch the same context expression

s defined to be from 2:00 – 6:00 pm.

.1. Case 1: Orbac vs. ASP-based policy: static policies

Many of the policies specified for the hospital example depend

n the temporal properties and contexts. In this case study, first,

e used MotOrBAC to simulate the hospital abstract policy set (i.e.,

o infer concrete policies from abstract policies) at three differ-

nt times of the day as representatives of instances of morning,

fternoon, and evening contexts, respectively. A a result, from 11

bstract policies specified in the studied policy set, MotOrBAC in-

erred 44, 42, and 39 concrete policies in the morning, afternoon,

nd evening contexts, respectively. We transformed the XML-based

olicy set into ASP rules, with similar context setups. Given the 11

bstract policies along with the associations between the abstract

nd concrete entities, the ASP-solver also inferred 44, 42 and 39

oncrete policies. The inferred concrete policies were exactly the

ame concrete policies as produced by MotOrBAC. We used the fol-

owing ASP-Based concrete permission inference rule:

isP er mitted(Or g, Sub j, Action, Ob j) : −
P r m (Or g, Role, Act i v it y, V iew, Context) ,

empower (Or g, Sub j, Role) ,

consider (Or g, Action, Act i v it y) ,
use (Org, Ob j, V iew) ,

holds (Org, Sub j, Action, Ob j, Context) .

The obligation and prohibition inference rules were expressed

n a similar manner. Note that we did not use default reasoning

i.e., negation as failure in the inference rules) in Case Study 1.

herefore, the true benefit of ASP-based reasoning is not demon-

trated in this section. Rather, the intend of this study was two-

olds: 1) demonstrating the feasibility of the proposed idea, and 2)

60 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

i

w

d

d

o

p

B

p

c

s

t

t

c

a

c

F

e

p

b

t

8

i

I

S

p

s

s

m

i

b

i

m

h

i

illustrating that ASP-based policies are at least as effective as Or-

BAC policies.

8.2. Case 2: dynamic policies: Orbac vs ASP-based policy

The purpose of this case study is to compare the effectiveness

and expressiveness of OrBAC and the ASP-based policies in a dy-

namic environment when exceptions exist. We do that by inject-

ing an exception policy to the OrBAC and the ASP-based policies

manually.

One of the abstract policies expressed in the City hospital policy

file is as follows:

- At City hospital, doctors are normally allowed to modify medi-

cal files.

In OrBAC, this regulation is represented through the following

fact:

- permission (cityHospital, doctor, write, medical F il e, de faul t _ ctx) .

According to the hospital policy file, writeDb (i.e., write on a

database) implements the write and patriceMedicalData is an in-

stance of medicalFile . We added a new subject called Sara, and em-

powered her as a doctor. However, Sara is an exception and not

allowed to perform any modification on Patrice medical data:

- Sara is disallowed to perform the writeDb action on patriceMed-

icalData .

This exception policy is semantically equivalent to the following

OrBAC concrete policy:

- isProhibited (cityHospital, Sara, writeDb, patriceMedicalData).

First, we tried to add such an exception policy using the Mo-

tOrBAC’s user interface. Unfortunately, MotOrBAC does not allow

regular users to express non-abstract exception policies directly.

Therefore, we injected the exception policy into the XML-based

policy file manually. But since the injected policy was not context-

dependent, MotOrBAC generated a stopping failure while simulat-

ing concrete policies. As the last resort, we tried to inject the ex-

ception policy by defining a new context called “exception” as fol-

lows:

- In the exception context, Sara is permitted to perform a writeDb

action on the patriceMedicalData object.

Note that the context-dependent concrete policy is not formally

defined in an OrBAC model. We injected this runtime exception

policy into the policy file to evaluate the capability of MotOrBAC

when reasoning with exception policies regardless of its formal se-

mantic model. After simulating the updated policy set in MotOr-

BAC, both of the following concrete policies were inferred by the

MotOrBAC simulator:

- Sara is permitted to perform a writeDb activity on patriceMedi-

calData .

- Sara is prohibited to perform a writeDb activity on patriceMedi-

calData .

Such an inconsistency is common when reasoning takes place

based on monotonic logics. This indicates that the OrBAC system

was not able to adapt itself when an exception policy needs to

be enforced. To solve this inconsistency MotOrBAC suggests solving

concrete conflict manually through prioritizing abstract policies or

defining constraints on abstract entities, which is a time consum-

ing and error prone manual task.

As an alternative solution as introduced in this paper, the

“negation as failure” can be used to invalidate normal policies au-

tomatically in exceptional contexts. We used the following ASP-

Based rule to infer concrete permission policies:

isP er mitted(Or g, Sub j, Action, Ob j) : −
dP r m (Or g, Role, Act i v it y, V iew) ,

empower (Or g, Sub j, Role) ,

consider (Or g, Action, Act i v it y) ,
use (Org, Ob j, V iew) ,

not isP rohibited(Org, Sub j, Action, Ob j) .

isP rohibited(Org, Sub j, Action, Ob j) : −
cdP r m (Or g, Role, Act i v it y, V iew, Context) ,

empower (Or g, Sub j, Role) ,

consider (Or g, Action, Act i v it y) ,
use (Org, Ob j, V iew) ,

holds (Org, Sub j, Action, Ob j, Context) ,

not exP r m (Or g, Sub j, Action, Ob j) .

sP er mitted(Or g, Sub j, Action, Ob j) : −
exP r m (Or g, Sub j, Action, Ob j) .

The term after “not” represents exceptions in ASP. In other

ords, in this rule isProhibited concrete policy is an exception to

efault permission policy and implicitly takes precedence over the

efault policies.

In a similar manner, the MotOrBAC concrete prohibition and

bligation inference rules were modified. We added the exception

olicy to our ASP-based knowledge-based system. Unlike MotOr-

AC, the only concrete policy inferred by the ASP solver was:

- At the cityHospital , Sara is prohibited performing the writeDb

activity on patriceMedicalData .

The result of ASP-based policy setting indicates that the pro-

osed ASP-based system adapted itself by invalidating default con-

lusions when an exception occurred.

Eliminating Conflicts in Case 2. During this case study, we ob-

erved that out of 27 potential conflicts detected by MotOrBAC

hat needed to be resolved manually, 16 of which were poten-

ial conflicts between the abstract policies associated with default

ontexts (i.e., default policies in the proposed reasoning scheme)

nd abstract policies pertinent to the non-default contexts (i.e.,

ontext-dependent policies in the proposed reasoning scheme).

ig. 1 shows some of the conflicts detected by MotOrBAC. How-

ver, by invalidating the default policies consequences when the

olicy set contains context-dependent policies, the proposed ASP-

ased policy inference mechanism decreases the number of poten-

ial conflicts from 27 to 11 potential conflicts.

.3. Scalability of policy inference mechanism

We performed some scalability experiments with increased pol-

cy model sizes on a MacBook Pro-laptop equipped with 2.7 GHz

ntel Core i5 processor and memory limit of 8 GB RAM. We used

PARC system [52] for specifying policies and inferring concrete

olicies from ASP-based policy models. As indicated earlier, SPARC

ystem uses DLV [18] to solve ASP programs and generate answer

ets.

To demonstrate the scalability of the proposed policy inference

echanism, we randomly generated policy models similar to those

n the case study, with up to 10,0 0 0 elements. The elements could

e basic such as subjects, roles, assets and contexts. The relations

mposed on basic elements could be abstract policies (i.e., per-

ission and prohibition policies), user-assignment predicates, and

olds predicates. The policy model and its elements are described

n Section 5.1 .

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 61

Fig. 1. Potential conflicts derived by MotOrBAC.

Fig. 2. Scalability of policy inference mechanism.

u

c

m

r

a

i

w

p

i

c

i

i

a

p

A

s

t

d

9

a

d

3

g

9

a

i

c

o

i

t

a

s
We increased the policy model size and ran each experiment

sing SPARC system on the same environment described in the

ase study. For the purpose of consistency while increasing the

odel size, each model contained a ratio of 40% subjects, 15%

oles, 10% assets, 10% contexts 15% user-assignment predicates and

nd 10% specified policies. The ratios are based on similar exper-

ment designed and conducted by Bailey et. al., [3] . Additionally,

e imposed a holds predicate for each context in the generated

olicy models. To ensure that increasing policy model size (i.e., the

nput size) fully effect the execution time, the size of inferred poli-

ies (i.e., the output size) also increased proportionally to the pol-

cy model size. More specifically, in all experiments the number of

nferred policies was 15% of input size.

Each experiment was repeated 10 times and captured the aver-

ge and standard deviation. Fig. 2 shows the average times of the

olicy inference mechanism in seconds for each policy model size.

s the figure indicates, as the model size increases, the average re-

ponse time increases linearly. Also it is apparent from the figure

hat policy models that have up to 90 0 0 elements size can be han-

led easily in less than 1 sec.
. Discussion

There are two important problems that need to be addressed

nd the applicability of the proposed formal model needs to be

iscussed: 1) attribute hiding attacks, 2) context modeling, and

) the usability of logic-based approaches to security modeling in

eneral.

.1. Attribute Hiding Attack

Attribute Hiding Attack is a situation, where an attacker deliber-

tely hides attribute values in order to gain a higher level of priv-

leges [47] . Attribute hiding attack is a potential problem for any

ontext-aware access control mechanism, in which decisions rely

n monitoring requesters’ attributes.The problem of attribute hid-

ng attack has been introduced and addressed in the context of at-

ribute based access controls [38,47] .

The introduced access control scheme is also vulnerable to

ttribute hiding attack. In particular, in the proposed reasoning

cheme, if a policy developer chooses to allow access by default

62 S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63

1

s

o

m

e

t

p

u

i

p

w

d

t

t

d

o

l

i

t

a

a

u

p

t

m

t

t

A

d

R

(i.e., specify dPrm) and conditionally disallow the access (i.e., spec-

ify cdPrh), a malicious user can hide the context data, which leads

to enforcing default permission policy. The vulnerability to at-

tribute hiding attack can be detected at design time using the fol-

lowing rule:

AHD 1 . at t ributeHiding(Role 1 , Role 2 , Action, Asset, Context) : −
dP rm (Role 1 , Action, Asset) ,

cdP rh (Role 2 , Act ion, Asset , Context) .

The solution to this problem using the introduced ASP-based ap-

proach depends on the decision made by the policy designer. For

instance, after the possibility is being detected, the policy devel-

oper can decide if she wants to allow access by default or disallow

access by default.

9.2. Context modeling

In this paper, context dependent policies are defined on the top

of context definition rules. Different types of contexts (e.g., spacial,

temporal) have different characteristics. In particular, some of con-

texts can never hold together (e.g., morning and afternoon). In some

other cases, contexts have hierarchical nature [41,54] (e.g., in _ house

can be considered as a super-node of in _ bedroom).

Context modeling is an important topic in self adaptive systems

but is not the main contribution of this paper. However, the nature

of contexts sometimes is an influential and determining factor that

affects the occurrence of conflicts. In particular, a cdPrm (Role 1 , Ac-

tion, Asset, Context 1) and cdPrm (Role 1 , Action, Asset, Context 2) are

potentially conflicting if Context 1 and Context 2 can be true, simul-

taneously. A limitation of this work is that, a conflict is detected

even if Context 1 and Context 2 cannot be true simultaneously. Con-

text modeling and addressing this issue will be a part of our future

work.

9.3. Usability of logic-based policy security modeling

Logic-based policy schemes have been criticized for being less

usable in enabling effective communication with policy makers. To

overcome this concern, it would be ideal to allow policy makers to

model policies in a higher-level graphical notation and then trans-

late the notations into precise logic-based formalisms. One exam-

ple of such a high level notation is the graphical representation

and user interface offered by STS tool [56] . STS tool allows auto-

mated analysis through disjunctive Datalog while providing a secu-

rity requirements modeling graphical notation (STS-ml) that hides

the complexity of the logic and its representation from security

experts. Other approaches include providing user interfaces and

prompting users to enter access control policies in an interactive

graphical environment without delving into developing complex

logical rules (e.g., MotOrBAC).

Usability concern is also an issue when specifying XACML poli-

cies. Researchers have taken similar approaches to allow simple

specification and editing XACML rules independently and then

transform the rules to XACML policies. Axiomatic has created such

a policy editor that uses Axiomatics Language for Authorization

(ALFA) [57] . The Axiomatic policy editor is implemented as an

Eclipse plugin. Another popular language is PonderTalk, which al-

lows specifying policies in a higher-level language in Ponder2 en-

vironment [55] .

Developing similar high level languages, graphical notations, in-

teractive user interfaces and developing optimal policies [58] can

be helpful to mitigate the issues related to the usability of the

proposed ASP-based formal modeling and thus ease the modeling

problem.
0. Conclusion and future work

This paper presented an ASP-based access control scheme to

upport modeling and implementing adaptive security systems. In

rder to improve the sensitivity of context-aware access control

odels to runtime context changes, making policy management

asier, and reduce potential conflicts we separated the specifica-

ions of default, context-dependent, and exception policies and ex-

ressed them as ASP default and exceptions. The proposed model

tilized the non-monotonicity and efficiency of ASP solvers to

mplement defeasible inference rules. We devised non-monotonic

olicy inference rules to invalidate default policies at runtime

hen exception or context-dependent policies need to be enforced.

The case study presented in this paper showed that the intro-

uced approach was useful in eliminating conflicts and inconsis-

encies among default, context-dependent and exception policies

hat are added incrementally at runtime. The results of case studies

emonstrate the applicability of the approach and encourage use

f ASP solvers for reasoning about access control policies. We be-

ieve that using non-monotonic logics for representing and reason-

ng about policies is beneficial for self adaptive systems that need

o adjust their protection decisions in changing environments.

The proposed reasoning scheme can be extended by including

ccess control model element hierarchies and context models. We

re currently, extending this work in three directions. First, we are

sing structural models and runtime goal models for invalidating

redefined policies. The current reasoning scheme can also be ex-

ended by variant runtime contextual models. Runtime contextual

odels need to be transformed and verified at runtime. Therefore

ransformation and verification of each of new runtime models in-

roduces a new possible research direction.

cknowledgement

This research work is funded in part by National Science Foun-

ation under grant number 1516636 and 1723765 .

eferences

[1] Eric Y , Esfahani N , Malek S . A systematic survey of self-protecting software
systems. ACM Trans Auton Adapt Syst (TAAS) 2014;8.4:17 .

[2] Mazeiar S , Pasquale L , Omoronyia I , Ali R , Nuseibeh B . Requirements-driven
adaptive security: protecting variable assets at runtime. Requirements engi-

neering conference (RE), 2012 20th IEEE international. IEEE; 2012 .
[3] Christopher B , Montrieux L , De Lemos R , Yu Y , Wermelinger M . Run-time gen-

eration, transformation, and verification of access control models for self-pro-

tection. In: Proceedings of the 9th international symposium on software engi-
neering for adaptive and self-managing systems; 2014. p. 135–44 . ACM.

[4] Srdjan M , Dulay N , Sloman M . Rumpole: an introspective break-glass access
control language. ACM Trans Inf Syst Secur(TISSEC) 2014;17(1):2 .

[5] Moitrayee C , Namin AS . Detecting web spams using evidence theory. In:
2018 IEEE 42nd annual computer software and applications conference (COMP-

SAC); 2018. p. 695–700 . IEEE.

[6] Sara S , Namin AS . Adaptive reasoning for context-sensitive access controls.
Computer software and applications conference (COMPSAC), 2016 IEEE 40th

annual. Vol. 1. IEEE; 2016 .
[7] Lorenzo B , Bertino E , Hussain SR . A system for profiling and monitoring

database access patterns by application programs for anomaly detection. IEEE
Trans Software Eng 2017;43.5:415–31 .

[8] Sara S , Namin AS . Poster: reasoning based on imperfect context data in adap-

tive security. In: 2015 IEEE/ACM 37th IEEE international conference on software
engineering, vol. 2; 2015. p. 835–6 . IEEE.

[9] Sandhu Ravi S , Coynek EJ , Feinsteink HL , Youmank CE . Role-based access con-
trol models. IEEE Comput 1996;29(2):38–47 .

[10] El KAA , Baida REI , Balbiani P , Benferhat S , Cuppens F , Deswarte Y , Miege A ,
Saurel C , Trouessin G . Organization based access control. In: Policies for dis-

tributed systems and networks, 20 03. Proceedings. POLICY 20 03. IEEE 4th in-
ternational workshop on; 2003. p. 120–31 . IEEE.

[11] Fabien A , Cuppens F , Cuppens-Boulahia N , Coma C . MotorBAC 2: a security

policy tool. In: 3rd conference on security in network architectures and infor-
mation systems (SAR-SSI 2008). France: Loctudy; 2008. p. 273–88 .

[12] Frederic C, Cuppens-Boulahia N, Ghorbel MB. High level conflict management
strategies in advanced access control models. Electron Notes Theor Comput Sci

186(2007):3–26.

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0011

S. Sartoli and A.S. Namin / Journal of Information Security and Applications 44 (2019) 49–63 63

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[13] Gerhard B , Eiter T , Truszczynski M . Answer set programming at a glance. Com-
mun ACM 2011;54(12):92–103 .

[14] Vladimir L . What is answer set programming? AAAI 2008;8:1594–7 .
[15] Raymond R . A logic for default reasoning. Artif Intell 1980;13(1):81–132 .

[16] Michael G , Lifschitz V . The stable model semantics for logic programming.
ICLP/SLP 1988;88:1070–80 .

[17] Martin G , Kaufmann B , Neumann A , Schaub T . Clasp: a conflict-driven answer
set solver. In: International conference on logic programming and nonmono-

tonic reasoning. Springer Berlin Heidelberg; 2007. p. 260–5 .

[18] Nicola L , Pfeifer G , Faber W , Eiter T , Gottlob G , Perri S , Scarcello F . The DLV
system for knowledge representation and reasoning. ACM Trans Comput Log

(TOCL) 2006;7(3):499–562 .
[19] Martin G , Schaub T , Thiele S . Gringo: a new grounder for answer set program-

ming. In: International conference on logic programming and nonmonotonic
reasoning. Springer Berlin Heidelberg; 2007. p. 266–71 .

20] Gelfond M , Kahl Y . Knowledge representation, reasoning, and the design of in-

telligent agents: the answer-set programming approach. Cambridge, England:
Cambridge University Press; 2014 .

[21] Baral C . Knowledge representation, reasoning and declarative problem solving.
Cambridge university press; 2003 .

22] Erdem E , Gelfond M , Leone N . Applications of answer set programming. AI Mag
2016;37.3 .

23] Ahn G-J , Hu H , Lee J , Meng Y . Representing and reasoning about web access

control policies. In: Computer software and applications conference (COMP-
SAC), 2010 IEEE 34th Annual; 2010. p. 137–46 . IEEE.

[24] Ayed D , Lepareux M-N , Martins C . Analysis of XACML policies with ASP. New
Technol Mobil Secur (NTMS), 2015 7th Int Conf IEEE 2015 .

25] Hu H , Ahn G-J , Jorgensen J . Multiparty access control for online so-
cial networks: model and mechanisms. IEEE Trans Knowl Data Eng

2013;25(7):1614–27 .

26] Gelfond M , Lobo J . Authorization and obligation policies in dynamic sys-
tems. In: In International conference on logic programming. Berlin, Heidelberg:

Springer; 2008. p. 22–36 .
[27] Kuhn DR , Coyne EJ , Weil TR . Adding attributes to role-based access control.

Computer (Long Beach Calif) 2010;43.6:79–81 .
28] Moffett J , Sloman M , Twidle K . Specifying discretionary access control policy

for distributed systems. Comput Commun 1990;13(9):571–80 .

29] Bell DE , Padula LJL . Secure computer system: Unified exposition and multics
interpretation. No. MTR-2997-REV-1. Bedford MA: Mitre Corp; 1990 .

30] Thomas RK , Sandhu RS . Task-based authorization controls (TBAC): a family
of models for active and enterprise-oriented authorization management. In:

Database security XI. US: Springer; 1998. p. 166–81 .
[31] Bertino E , Bonatti PA , Ferrari E . TRBAC: A temporal role-based access control

model. ACM Trans Inf Syst Secur(TISSEC) 2001;4(3):191–233 .

32] Karp A , Haury H , Davis M . From ABAC to ZBAC: the evolution of access con-
trol models. International conference on cyber warfare and security. Academic

conferences international limited; 2010 .
[33] Godik S , Moses T . OASIS Extensible access control markup language (XACML).

OASIS committee secification cs-xacml-specification-1.0; 2002 . Harvard.
34] Hughes G , Bultan T . Automated verification of access control policies using a

sat solver. Int J Softwa Tool Technol Transf (STTT) 2008;10.6:503–20 .
[35] Turkmen F, Hartog Jd, Ranise S, Zannone N. Formal analysis of XACML policies

using SMT. Comput Secur 66(2017):185–203.

36] Fisler K , Krishnamurthi S , Meyerovich LA , Tschantz MC . Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th

international conference on software engineering. ACM; 2005 .
[37] Stepien B , Felty A , Matwin S . Challenges of composing XACML policies. Avail-
ability, reliability and security (ARES), 2014 ninth international conference on.

IEEE; 2014 .
38] Turkmen F , Hartog Jd , Ranise S , Zannone N . Analysis of XACML policies with

SMT. International conference on principles of security and trust. Berlin, Hei-
delberg: Springer; 2015 .

39] Turkmen F , Hartog Jd , Zannone N . POSTER: Analyzing access control policies
with SMT. In: Proceedings of the 2014 ACM SIGSAC conference on computer

and communications security. ACM; 2014 .

40] Crampton J, Morisset C, Zannone N. On missing attributes in access control:
non-deterministic and probabilistic attribute retrieval. Proceedings of the 20th

ACM Symposium on Access Control Models and Technologies ACM 2015.
[41] Sartoli S , Namin AS . A semantic model for action-based adaptive security. In:

Proceedings of the symposium on applied computing. ACM; 2017 .
42] Bettini C , Brdiczka O , Henricksen K , Indulska J , Nicklas D , Ranganathan A , Ri-

boni D . A survey of context modelling and reasoning techniques. Pervasive

Mob Comput 2010;6(2):161–80 .
43] Perera C , Zaslavsky A , Christen P , Georgakopoulos D . Context aware com-

puting for the internet of things: a survey. IEEE Commun Surve Tutor
2014;16(1):414–54 .

44] Ali R , Dalpiaz a , Giorgini P . A goal-based framework for contextual require-
ments modeling and analysis. Requir Eng 2010;15(4):439–58 .

45] Shaikh RA , Adi K , Logrippo L . A data classification method for inconsistency

and incompleteness detection in access control policy sets. Int J Inf Secur
2016:1–23 .

46] Rao P , Lin D , Bertino E , Li N , Lobo J . An algebra for fine-grained integration of
XACML policies. In: Proceedings of the 14th ACM symposium on access control

models and technologies; 2009. p. 63–72 . ACM.
[47] Crampton J , Morisset C . PTACL: a language for attribute-based access control in

open systems. In: International conference on principles of security and trust.

Berlin Heidelberg: Springer; 2012. p. 390–409 .
48] Jajodia S , Samarati P , Sapino ML , Subrahmanian VS . Flexible support for multi-

ple access control policies. ACM Trans Database Syst (TODS) 2001;26.2:214–60 .
49] Bauer L , Garriss S , Reiter MK . Detecting and resolving policy misconfigurations

in access-control systems. ACM Trans Inf Syst Secur(TISSEC) 2011;14.1:2 .
50] Baracaldo N , Joshi J . An adaptive risk management and access control frame-

work to mitigate insider threats. Comput Secur 2013;39:237–54 .

[51] Basin D , Burri SJ , Karjoth G . Obstruction-free authorization enforcement: align-
ing security and business objectives. J Comput Secur 2014;22(5):661–98 .

52] Balai E , Gelfond M , Zhang Y . Towards answer set programming with sorts. In:
International conference on logic programming and nonmonotonic reasoning.

Berlin Heidelberg: Springer; 2013. p. 135–47 .
53] Autrel F. MotorBAC. (march 2017). retrieved march 17, 2017. 2017. https://

sourceforge.net/projects/motorbac/ IEEE, 2006.

54] Tsigkanos C , Pasquale L , Menghi C , Ghezzi C , Nuseibeh B . Engineering topol-
ogy aware adaptive security: preventing requirements violations at runtime.

In: Requirements engineering conference (RE). IEEE; 2014. p. 203–12 .
55] Kevin T , Dulay N , Lupu E , Sloman M . Ponder2: a policy system for au-

tonomous pervasive environments. In: Autonomic and autonomous systems,
2009. ICAS’09. Fifth International Conference on. IEEE; 2009 .

56] Elda P , Dalpiaz F , Poggianella M , Roberti P , Giorgini P . STS-Tool: socio-technical
security requirements through social commitments. Requirements engineering

conference (RE), 2012 20th IEEE international. IEEE; 2012 .

[57] https://www.axiomatics.com/product/developer-tools-and-apis/ .
58] Jianjun Z , Namin AS . A markov decision process to determine optimal policies

in moving target. The 25th ACM conference on computer and communications
security (ACM CCS). ACM; 2018 .

http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0015
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0017
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0025
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0026
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0427
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0033
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0038
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0041
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0046
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0048
https://sourceforge.net/projects/motorbac/
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0051
https://www.axiomatics.com/product/developer-tools-and-apis/
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30286-2/sbref0052

	Modeling adaptive access control policies using answer set programming
	1 Introduction
	2 Motivation
	2.1 Organization-Based Access Control
	2.2 The adaptability issues of Organization-Based Access Control

	3 Answer Set Programming (ASP)
	4 Related work
	4.1 Access control models
	4.2 Logic-based approaches to reason about XACML policies

	5 Adaptive reasoning scheme for context-aware access controls
	5.1 Policy model
	5.2 Representing different types of contexts
	5.3 Default, context-Dependent, and exception policies
	5.4 Inferring concrete policies

	6 Management of incomplete policies
	7 Conflict management
	7.1 Types of conflicts
	7.2 Interclass conflict management
	7.3 Intraclass policies conflict management
	7.4 Formal definition of conflicting policies
	7.5 Conflict detection

	8 Case studies
	8.1 Case 1: Orbac vs. ASP-based policy: static policies
	8.2 Case 2: dynamic policies: Orbac vs ASP-based policy
	8.3 Scalability of policy inference mechanism

	9 Discussion
	9.1 Attribute Hiding Attack
	9.2 Context modeling
	9.3 Usability of logic-based policy security modeling

	10 Conclusion and future work
	Acknowledgement
	References

