Zheng J, Namin AS. A survey on the moving target defense strategies: An architectural perspective. JOURNAL OF
COMPUTER SCIENCE AND TECHNOLOGY 34(1): 207-233 Jan. 2019. DOI 10.1007/s11390-019-1906-z

A Survey on the Moving Target Defense Strategies: An Architectural
Perspective

Jianjun Zheng and Akbar Siami Namin

Department of Computer Science, Texas Tech University, Lubbock, Texas 79409, U.S.A.
E-mail: {jianjun.zheng, akbar.namin}@ttu.edu

Received July 15, 2018; revised October 14, 2018.

Abstract
security defense has become a challenging task for network administrators, and many network devices may not be updated

As the complexity and the scale of networks continue to grow, the management of the network operations and

timely, leaving the network vulnerable to potential attacks. Moreover, the static nature of our existing network infrastructure
allows attackers to have enough time to study the static configurations of the network and to launch well-crafted attacks at
their convenience while defenders have to work around the clock to defend the network. This asymmetry, in terms of time
and money invested, has given attackers greater advantage than defenders and has made the security defense even more
challenging. It calls for new and innovative ideas to fix the problem. Moving Target Defense (MTD) is one of the innovative
ideas which implements diverse and dynamic configurations of network systems with the goal of puzzling the exact attack
surfaces available to attackers. As a result, the system status with the MTD strategy is unpredictable to attackers, hard to
exploit, and is more resilient to various forms of attacks. There are existing survey papers on various MTD techniques, but
to the best of our knowledge, insufficient focus was given on the architectural perspective of MTD strategies or some new
technologies such as Internet of Things (IoT). This paper presents a comprehensive survey on MTD and implementation
strategies from the perspective of the architecture of the complete network system, covering the motivation for MTD, the
explanation of main MTD concepts, ongoing research efforts of MTD and its implementation at each level of the network
system, and the future research opportunities offered by new technologies such as Software-Defined Networking (SDN) and
Internet of Things (IoT).

Keywords moving target defense, network security, Software-Defined Networking (SDN)

1 Introduction on the security status of all connected computers and

thus on the entire network hosting these computers.
1.1 Easy Targets: Static Nature of Networks In a highly connected network, attackers can uti-
Computer system administrators have been strug- lize any exploited computer system as a platform

gling with harmful attackers since the beginning of the for launching further attacks against other connected

digital era. In the past, when not many computer sys- computers and eventually the entire network. More-

tems were interconnected, attackers had very limited
capabilities to launch harmful attacks. The situation,
however, has quickly turned into a complex one, as
more and more computers are interconnected for the
purpose of sharing data and services. Nowadays, even
without having physical access to vulnerable targets,
attackers can utilize emailing services, craft malicious
network packets, or employ some other network services
to launch attacks remotely and anonymously. The secu-
rity status of one computer may have significant impact

over, by utilizing powerful publicly available scripting
tools, these malicious entities are capable of automat-
ing their attack scenarios at their convenient time and
location and launch them with little cost. To defend
against malicious attackers, computer administrators
or security administrators must closely monitor their
systems around the clock, analyze network traffic care-
fully, patch up any discovered vulnerabilities, and keep
all computers and software systems up to date. As the
network size grows, the workload and the cost of main-

Survey

This project was supported in part by the National Science Foundation of USA under Grant Nos. 1516636 and 1564293.
(©2019 Springer Science + Business Media, LLC & Science Press, China

208

tenance and more importantly security management
grow rapidly. Therefore, security administrators must
employ new tools and techniques to protect the un-
derlying operational infrastructure. For instance, the
use of network scanning and fingerprinting tools (e.g.,
Nmap®) is very popular nowadays. Ironically, profes-
sional attackers also utilize these types of tools to detect
vulnerabilities in the network with the intention of ex-
ploiting the discovered security loopholes in the system.

Besides scanning tools, other network defense ser-
vices are also implemented, such as firewalls, Intru-
sion Detection Systems (IDS), and Intrusion Prevention
Systems (IPS) with the aim of monitoring network traf-
fic and blocking unauthorized access to valuable data
and assets on networks.

Any vulnerable component in a system is associated
with a great risk that might be exploited by attackers.
The collection of such vulnerabilities is referred to as
the attack surface usually examined by malicious enti-
In computer networking, at-
tack surface may refer to any system resources exposed

ties over the network!!.

to attackers, such as software residing on the hosts,
communication ports between hosts[? or active virtual
machine (VM) instances(®!
system and enhance the security of the underlying in-
frastructure, network administrators must clearly tag
the attack surface and then employ security techniques
to minimize or eliminate it. For instance, to ensure
timely the installation of OS security patches, the secu-
rity administrators need to shut down unused services,
close unused open ports, delete obsolete user accounts,
and remove unnecessary software. It is a typical and
effective approach to defend against various attacks.
However, even with these sophisticated security de-

. In order to strengthen the

fense tools and other resources invested, cyber attack-
ers still are able to discover vulnerabilities in network
systems. According to the Symantec Internet Security
Report published in April 2016@, on average a new
zero-day vulnerability was found each week in 2015,
more than double compared with 2014. The report also
showed more than 75% of all legitimate websites had
unpatched vulnerabilities and 15% of legitimate web-
sites had critical vulnerabilities. Some possible reasons
for this situation are as follows. Firstly, it is a heavy
and expensive workload for administrators to maintain
and manage the efficiency and performance of the large
enterprise networks. As a result, security checkups and

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

updates are often delayed. Secondly, not all admin-
istrators have enough ongoing training on the latest
security measures that can be utilized and deployed
to enhance the network security. Thirdly, the exist-
ing architectures for typical networks are usually de-
signed to ensure the reliability of processes for mission
critical operations, but are less focused on the security
aspect. Therefore, the configurations and settings of
these networks usually remain unchanged for a consid-
erably long time. While the static nature of the existing
architectures for networks is beneficial to ensuring the
high performance of business operations, it could leave
networks a clean target for attacks and give attackers
big advantages over security administrators considering
the time and resources invested: it takes trivial efforts
for attackers to discover and exploit such static net-
works because they can do it anytime and anywhere
without being concerned about changes in the configu-
ration of the targeted infrastructure. In order to change
this situation and better defend networks, new defense
strategies are indeed needed.

1.2 Moving Target Defense: A Game Changer

Moving Target Defense (MTD) is one of the game
changing strategies proposed in the National Cyber
Leap Year Summit in 2009®. MTD is based on the idea
of security through diversification and its main focus is
to dynamically and randomly change the configurations
of a target, i.e., a host computer or a whole network.
Such random changes in the configuration of systems
increase uncertainty, complexity and unpredictability,
making it computationally harder for attackers to ex-
ploit such a constantly changing environment.

This paper presents a comprehensive literature sur-
vey on Moving Target Defense (MTD) to date with a
leveled approach based on how MTD is researched, eval-
uated, and implemented.

This survey paper is organized as follows. Sec-
tion 2 presents our survey methodology and contribu-
tions. Section 3 provides the background information
of MTD. Section 4 covers the cyber attacks that can be
addressed by MTD strategies. Section 5 presents the
classifications of MTD strategies. Section 6 provides
an overview of the existing MTD analysis work. Sec-
tion 7 sketches future research directions for MTD, and
Section 8 concludes this survey paper.

®https://nmap.org, Nov. 2018.

@https://www.symantec.com/content/dam/symantec/docs/reports/istr—?1—2016—en.pdf, Nov. 2018.
®https://www.nitrd.gov/nitrdgroups/index.php?title:National_Cyber-Leap_Year_Summit_2009, Nov. 2018.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 209

2 Survey Methodology

The official website of Department of Homeland Se-
curity defines the MTD approach as follows®:

“Moving Target Defense (MTD) is the concept of
controlling change across multiple system dimensions
in order to increase uncertainty and apparent comple-
zity for attackers, reduce their window of opportunity,
and increase the costs of their probing and attack ef-
forts. MTD enables us to create, analyze, evaluate,
and deploy mechanisms and strategies that are diverse
and that continually shift and change over time to in-
crease complexity and cost for attackers, limit the expo-
sure of vulnerabilities and opportunities for attack, and
increase system resiliency.”

However, among all research articles related to mov-
ing target defense techniques we surveyed, none of the
reviewed papers have provided a formal definition of
moving target defense, including the three previous sur-
vey papers!*~ but the characteristics of MTD are de-
scribed in almost every paper.

By compiling the information from different sources
such as [4], the National Cyber Leap Year Summit in
2009, and NITRD@@, we provide a formal definition
of Moving Target Defense in this survey paper as fol-
lows.

A target refers to an entity or asset, such as an ap-
plication, a computer, or a system that is exploitable
by adversaries with malicious intentions. Moving Tar-
get Defense in this survey paper refers to the techniques
that can change a target’s properties or configurations
randomly and regularly or the techniques that can in-
crease a target’s uncertainty and unpredictability, with
the goal of enhancing the security defense of the tar-
get while maintaining the essential functionality of the
target intact.

With this definition in mind, the authors initially
collected around 100 published papers with relevant
keywords and subjects, in addition to many online ar-
ticles. Each paper was carefully reviewed and summa-
rized. Then we finalized around 80 papers in this survey
based on the publication date, relevance to MTD, and
the publication venues. Most of the chosen papers were
from the ACM and IEEE digital libraries ranging from
the late 90s, when the basic idea of MTD was first intro-
duced, to the time of the writing of this survey paper.
The selected papers then were grouped into three cat-

egories with respect to the implementation approaches
of the MTD techniques addressed in each paper: 1) the
OS level approach, 2) the software/application level ap-
proach, and 3) the network level approach.

e The OS level approach includes research studies
that aim to implement MTD at the operating system
and the machine code level.

e The software/application level approach covers re-
search efforts that aim to integrate MTD into software
or application natively or through third-party tools be-
fore the software or application is released.

e The network level approach focuses on research
findings that aim at introducing MTD into specific
hosts on a network and even the entire network.

These three categories are not mutually exclusive.
For instance, TALENTI"8] uses a portable checkpoint
compiler to compile the application for different archi-
tectures. This compiler technique can be categorized as
the software/application level approach, but since mul-
tiple MTD techniques are integrated and orchestrated
in TALENT to protect mission critical applications on
a network, we can also consider TALENT as a network
level approach of MTD. The authors believe the paper
selection strategy resulted in a representative collection
of papers reflecting the state-of-the-art of this line of re-
search.

2.1 Architectural Perspective of MTD

Okhravi et al.l¥) published a technical report for the
Department of Defense on various moving target de-
fense techniques. It provides a technical and qualitative
summary of different moving target techniques, threat
modeling, and their strengths along with their weak-
nesses. The work is very informative and useful, but it
is less focused on quantitative and analytical aspects of
the MTD line of research.

Published by Cai et al.l’l, a collection of papers in
moving target defense field is reviewed. The papers are
categorized in three main topic areas: 1) MTD theory,
2) MTD strategy, and 3) MTD evaluation. The review
lays a good foundation of MTDs but missing some nece-
ssary information. More precisely, some detailed infor-
mation on the history of MTD, which explains the re-
cent shift of MTD research from application-oriented to
network-oriented, is missing from the research paper. It
is also less focused on discussing the weaknesses of the

@https://www.dhs.gov/science—and—technology/csd—mtd, Nov. 2018.
@https://www.nitrd.gov/cybersecurity/documents/NITRDHST2010.pdf, Nov. 2018.
https://www.nitrd.gov/cybersecurity/documents/NITRD-IEEE-SSP-QO11.pdf, Nov. 2018.

210

surveyed MTD strategies. Finally, Software-Defined
Networking (SDN) has become an important and in-
tegral part of MTDs, but it is only briefly mentioned in
the survey paper published by Cai et al.l?]

A recently published survey by Lei et al.l® reviews
MTD research work from the perspectives of the theory
and design of MTD, the key techniques in MTD, and
the application of MTD. This review provides in-depth
information of MTD and future research opportunities,
but the application of MTD in their paper only focuses
on the network level and is less emphasized on the cov-
erage of the application of MTD on the lower level,
such as ASLR and software diversification. Our survey
paper, in addition to providing in-depth analysis and
reviews on the low-level approaches to MTD, also dis-
cusses the strength and weakness of the surveyed MTD
techniques and covers some new research work in the
Internet of Things and other small embedded systems.

This survey paper provides an alternative view and
comprehensive survey on MTD research that covers a
wide range of aspects of MTD such as the MTD his-
tory, implementation, strength and weakness compa-
rison, and an overview of existing MTD analysis. In
comparison to the survey papers published by Cai et

5] and by Lei et al.[%], this work is more focused on

al.
architectural aspects and classifications of MTD strate-
gies. This survey divides MTD strategies into three

broad categories based on the architectural view, where

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

a given MTD strategy aims to protect a system: 1)
the OS level, 2) the software/application level, and 3)
the network level. This type of structure of the survey
not only describes the practical and implementation in-
sights of the MTD research, but also shows a clear focus
shift in the MTD research: from the low level (the OS
level and the application level) to the high level (the
network level). The architectural view of MTD tech-
niques and the research focus shift revealed by our sur-
vey are major differences between ours and the previous
survey papers*~6. Table 1 shows a road map of the
survey.

3 Moving Target Defense: Background

Since the introduction of Moving Target Defense
at the National Cyber Leap Year Summit in 2009,
many researchers in many research articles have quickly
adopted the term. The fundamental concepts of MTD
can be traced in many other areas with a long history.
For example, the “shell game” is a good illustration of
the moving target concepts. In this game, an operator
places a target such as a pea under one of the three
identical face-down shells and shuffles them quickly for
many times. When stopped, the player, who can cor-
rectly identify which shell contains the pea, wins. Since
the target (the pea) is randomly moving, it is difficult
for the player to identify it. This dynamic defense strat-

Table 1. Roadmap of the Survey

Topic Classification Subsections & References
Introduction (Section 1) N/A [1-3]
Methodology & Contribution N/A [4-8]
(Section 2)
Background of N/A [9-19]
MTD (Section 3)
Cyber Attacks that MTD Can N/A 4.1 Reconnaissance Attack
Defend Against (Section 4) 4.2 Code Injection Attacks
4.2.1 Buffer Overflow
4.2.2 SQL Injection(20]
4.2.3 Cross-Site Scripting (XSS)[21]
4.3 DDoS Attack[?2:23]
4.4 Computer Worm Attack[18]
Key Strategies in MTD OS level [24-31]
(Section 5) approaches

Software level approaches

Network level approaches

Overview of Existing MTD
Analysis Studies (Section 6)

N/A

5.2.1 Software Diversification!32—43]
5.2.2 Software Diversification Through Middleware[20:33,36,44—46]

5.3.1 IP Address Randomization[47~55]

5.3.2 Virtualization-Based MTD(7:8:19,56,57]

5.3.3 Decoy-Based MTDI[52,58]

5.3.4 Software-Defined Networking Based MTDI[59-65]
5.3.5 Lightweight MTDI[66-68]

[2, 8-10, 25-30, 40, 49, 50, 69-80]

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 211

egy was gradually adapted into the computer security
as computer administrators start to recognize the fact
that perfect security is unattainable and start to shift
their focus on building alternative defensible systems
rather than perfectly securing systems. Randomness
and diversity are two essential components in the dy-
namic defense strategy and many defense research stu-
dies involve these two components.

In 2001, the PaX team introduced a technique called
Address Space Layout Randomization (ASLR)®@ for
the Linux kernel to defend memory corruption attacks
by randomizing the memory address locations of key
data areas of a process. The implementation of ASLR
was effective and other major operating systems, such
as Windows, OS X and Solaris, later implemented
ASLR on their own platforms.

In 2003, the Instruction Set Randomization (ISR)
technique was proposed independently[g’w] with diffe-
rent designs and implementation and presented in the
10th ACM Conference on Computer and Communica-
tion Security. Unlike ASLR, ISR works at the machine
code level and aims to prevent code injection attacks
by randomizing the instruction set before sending it to
the processor for execution. The vulnerability of ap-
plication/software is a major security threat not only
to the computer where the application is installed but
also to the network to which the computer is connected.
In 2004, Just and Cornwell™ and Stamp'? pointed
out that monoculture enabled attackers to quickly at-
tack application vulnerabilities in a large scale and they
proposed to introduce diversity in software to mitigate
vulnerabilities. Many research studies confirm that di-
versity in software is effectivel3—17.

As networking has become an essential part of ev-
ery company’s infrastructure, network security has at-
tracted researchers’ attention®19. In 2009, the Na-
tional Cyber Leap Year Summit was held, and Moving
Target Defense idea was introduced by researchers as a
new defense strategy, and many research studies have
emerged ever since. For instance, Springer published
two books on Moving Target Defense and ACM started
the first Moving Target Defense Workshop in 2014.

MTDs are not meant to replace the current security
defense strategies, such as the reduction of attack sur-
faces, but to add another layer of security defense to
assist security administrators in employing a dynamic
approach for protecting the operational infrastructure.
The ultimate goal of MTD is to employ various tech-
niques and approaches to dynamically and randomly

change the configuration of the system in an unpre-
dictable manner. This will help in increasing the un-
certainty and unpredictability of the system behavior
and accordingly results in a constantly changing attack
surface leaving malicious entities puzzled with the tar-
geted system. MTD not only can confuse attackers and
increase their burden to launch attacks, but also can
thwart some common cyber attacks pertinent to this
type of dynamic security strategy.

4 Cyber Attacks Targeted with MTD
Strategies

The randomness, diversity, unpredictability, and
uncertainty introduced into a system by MTD tech-
niques can effectively defend against a certain range of
cyber attacks. This section gives an overview of four
types of popular cyber attacks and the MTD strategies
against them.

4.1 Reconnaissance Attacks

Rather than being a true attack, reconnaissance is
technically the initial phase of almost all attacks. Dur-
ing the reconnaissance phase, attackers utilize various
techniques and automated tools to probe and scan char-
acteristics of a certain target with the aim of gather-
ing important information about the target such as
OS types, running services and protocols, and open
ports, for potential vulnerability exploitation and at-
tacks. A system with an enabled MTD strategy is ef-
fective against a reconnaissance attack because the ran-
dom changes in the system orchestrated by the MTD
strategy will invalidate the information that the attack-
ers previously obtained.

4.2 Code Injection Attacks

A code injection attack happens when attackers take
advantage of vulnerabilities in a computer program or
the underlying system to inject and execute a piece
of malicious code. A carefully crafted code injection
attack can even grant the attacker with the adminis-
trative privilege to control the whole system. There
are different techniques that attackers use to achieve to
inject the malicious code, and some well-known tech-
niques are listed below.

Cahttps://pax.grsecurity.net/docs./aw.lr.txt7 Nov. 2018.

212

4.2.1 Buffer Overflow

Buffer overflow is a vulnerability in computer pro-
grams or the underlying languages that allows data
to be written into the buffer in the memory without
checking the boundary of the buffer. Attackers can
use carefully-crafted data to overrun the buffer boun-
dary to inject the malicious code past the end of the
buffer, resulting in a buffer overflow attack. Address
Space Layout Randomization (ASLR) is an effective
MTD technique against buffer overflow and some other
code injection attacks that rely on the address loca-
tion of the memory layout. Instruction Set Random-
ization (ISR)!% is another MTD technique that has
been claimed to be effective against any code injection
attack including buffer overflow attacks. ASLR and ISR
will be discussed more in Subsection 5.1.

4.2.2 SQL Injection

The SQL injection is a type of code injection tar-
geting vulnerable data-driven applications. When an
application fails to filter or sanitize the user inputs be-
fore sending it to the database engine for execution,
the attacker can exploit this vulnerability to inject ma-
licious SQL queries into the user inputs to gain the
access to the protected data and even play the role of
the administrator of the database server.

SQLrandY is introduced as an MTD technique to
prevent the SQL injection attack at the language level
and will be discussed more in Subsection 5.2.2.

4.2.3 Cross-Site Scripting (XSS)

A cross-site scripting attack is another type of code
(client-side script) injection, in which malicious scripts
are injected into vulnerable websites viewed by other
users. When a user clicks a script-injected URL or visits
a web page infected by a malicious script, the malicious
script will be executed on the user’s computer with-
out the knowledge of the user. To protect users from
XSS attacks, all major web browsers include whitelist-
based protection feature. On the other hand, Portner
et al.2!] believed that utilization and maintenance of
such whitelisting was inflexible and therefore they pro-
posed a new approach to defend against XSS attacks
based on the principles of moving target defense. This
approach will be discussed more in Subsection 5.2.2.

4.3 DDoS Attack

A Distributed Denial of Service (DDoS) attack usu-
ally targets certain hosts on a typical network via two

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

steps to launch: 1) attackers compromise and take con-
trol of a myriad of computers on different networks;
2) attackers organize the compromised computers in
such a way that they simultaneously send large vol-
ume of traffic messages to flood the target host and
eventually force it to shut down or deny all service
requests from legitimate users. As proposed by sev-
22,23] MTD is an effective technique

for defending and mitigating DDoS attacks. More de-

eral researchers!

scriptions will be presented and discussed in Subsec-
tion 5.3.1.

4.4 Computer Worm Attack

A computer worm is a stand-alone computer pro-
gram created with malicious purposes. These malicious
programs can cause various damages such as consuming
excessive network bandwidth, stealing information from
infected computers, and taking control of the infected
computers for launching some other attacks. Randomly
changing hosts’ IP addresses based on the MTD prin-
ciple can be an effective way to prevent the spread of
the computer worms, as stated in [18] which will be
discussed more in Section 5.3.1.

5 Key Strategies in Moving Target Defense

This survey divides MTD strategies into three broad
categories with respect to the architectural perspective:
1) the operating system level, 2) the software level, and
3) the network level.

5.1 Operating System Level Approaches

Some programming languages, e.g., C and C++, of-
fer low-level memory manipulation but do not provide
built-in libraries and packages specifically for protec-
tion against buffer boundaries violations. Hence, pro-
grams written in these languages are often vulnerable to
buffer overflow attacks if no explicit boundary checking
is implemented in the given program. Moreover, once
programs are loaded into the main memory, an attacker
can easily target and inject malicious code into those
memory locations.

In the past, the prevention of buffer overflow at-
tacks mainly relied on the implementation of buffer
bounds checking by programmers. Due to human er-
rors, however, buffer overflow problems continued to
exist in many released software applications. As a mat-
ter of fact, this type of vulnerability had been a com-
monly exploited vulnerability until the introduction of

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 213

Address Space Layout Randomization (ASLR) in ma-
jor operating systems.

Address Space Layout Randomization (ASLR) is a
moving target defense strategy that prevents the ex-
ploitation of various memory corruption vulnerabilities,
such as buffer overflow attacks, by randomizing the
memory address locations of key data areas of a process.
As a result, it will be extremely difficult, if not impos-
sible, for attackers to predict the memory address lay-
out of the target’s loaded program for launching buffer
bounds attack through code injection. ASLR was first
implemented and released for the Linux PaX project
in July 2001 and was later implemented in other ma-
jor operating systems such as Windows, Mac OS, and
Solaris. The effectiveness of ASLR, depends largely on
the performance of the randomization algorithm, which
is usually determined by the number of memory ad-
dresses available for randomization procedure. It has
been proven that ASLR is less effective when imple-
mented in computers whose architecture is 32-bit[24.

The number of possible settings of a randomized
memory layout can be computed by the following equa-
tion:

N, = 2n,
where n is the number of address bits available for ran-
domization. For 32-bit computers, only 16 of 32 address
bits can be utilized for randomization, yielding up to
216 — 65 536 different settings for the randomized mem-
ory layout. This is a relatively small number and a sim-
ple brute force attack with 65536 linear probes can find
out about all combinations within a short time. For 64-
bit architecture, however, there are at least 40 address
bits available for randomization which yields at least
240 = 1099511627 776 combinations. Even though it
is possible to figure out all the combinations with a
brute force attack, the magnitude of the attack will be
large, and the attack will be quickly detected and ap-
propriate mitigation strategy can be adopted prior to
the attack being successful.

Besides being vulnerable to brute force attacks on
a 32-bit system, ASLR can also be bypassed by us-
ing memory disclosure technique@@ on vulnerable ap-

[25—-27]

plications on a system To prevent memory

disclosure issues, some schemes have been proposed

by randomizing the data and code segments of each
application?®29 However, Snow et al.% suggested
that these schemes may not be as promising as expected
and call for research on developing more comprehensive
defense techniques.

It is worth noting that to further protect the ope-
rating system from code injection attacks, a technique
called non-executable memory protection was proposed
and adopted by major OS vendors@@. The non-
executable memory protection in an operating system
marks all writable regions of memory as non-executable
and it can prevent any injected code from being exe-
cuted. All current major operating systems have imple-
mented ASLR and non-executable memory protection
mechanism to provide protection against code injection
attacks.

In addition to buffer overflow attacks that target
the memory layouts, some other types of attacks inject
code to the low-level machine code, i.e., the instruc-
tion set. This type of code injection usually does not
necessarily cause programs or the underlying operating
system to crash. Therefore, these types of attacks are
harder to detect.
tacks, a technique called “Instruction Set Randomiza-
tion (ISR)” was proposed independently by University
of New Mexico research group and Columbia University
research group, which uses a key-based XOR, operation

To defend against this type of at-

to randomize the instruction set before it is passed to
the processor!®%. The processor will then use the same
key to reconstruct the instruction set for execution.
Without having knowledge about the key, any code
injected after the randomization will not be executed
by the processor because the processor will fail to re-
construct the instruction set. Since the ISR technique
works at the low level, it is transparent to applications,
languages, and compilers. The implementation of ISR
in practice, however, is limited mainly due to two ma-
jor drawbacks as noted by the Columbia group'?l: 1)
the performance overhead is high, and it needs hard-
ware support to be practical; 2) ISR requires applica-
tions to be statically linked to work efficiently. Later,
Hu et al.BY proposed a new implementation of ISR
by utilizing the Software Dynamic Translation (SDT)
and Advanced Encryption Standard (AES). SDT pro-
vides a virtual execution environment that is responsi-
ble for loading, encrypting applications, decrypting ap-

https://media.blackhat.com/bh—us—12/Brieﬁngs/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf, Nov. 2018.
@https://www.blackhat.com/presentations/bh—usa—OB/Sotirov_Dowd/bh08—sotir0v—dowd.pdf, Nov. 2018.
®https://docs.microsoft.com/en—us/previous—Versions/windows/it—pro/windows—xp/bb457155(V:technet. 10, Nov. 2018.

@Dhttp://pax.grsecurity.net/docs/lrxoexec.txt7 Nov. 2018.

214

plication instructions, and verifying the decrypted in-
structions in preparation for execution. AES is used to
replace XOR operations in the previous ISR research
work to increase the security. Their experiment showed
that the performance results and the increased security
make their implementation a viable approach for pro-
tecting mission critical server applications, even with-
out special hardware support.

The Columbia University research group!!?! stated
that the principle of ISR could be applied to protect
programming languages such as Perl and SQLI[20:27],

5.2 Software/Application Level Approaches

Both ASLR and ISR can significantly prevent low-
level code injection attacks on computer systems. On
the other hand, attackers have found other ways to ex-
ecute their malicious code on the target system. The
computer worms Confickerl®? and Stuxnet@ are two
instances that demonstrate how attackers have taken
advantages of vulnerabilities at the application level,
where malicious programs are attached to certain run-
ning processes. This type of code “injection” is difficult
to detect because the code can stay dormant until a cer-
tain process executes or an event occurs. As a remedy,
[33] proposes to adopt the ISR technique across all soft-
ware layers and requires all programs be randomized
during the program installation process using various
keys. A special run-time environment is however re-
quired to translate the randomized programs into valid
executable ones before execution. As a result, any pro-
gram that fails the translation process will not be exe-
cuted.

The static code analysis tools, either open source
such as IntelliJ or Eclipse or proprietary such as Fortify
or AppScan@*, are widely used to detect and fix pro-
gram bugs and potential vulnerabilities during the early
stages of the application development. These tools can
be launched to parse a given source code at any time
without executing the application. While these tools
can detect many potential vulnerabilities such as buffer
overflow and SQL injection, they cannot detect seman-
tic errors in the logic of the program. On the other
hand, the dynamic program analysis tools execute an

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

application at runtime by using specialized tools and
thus are capable of detecting semantic problems such
as logic errors, authentication problems, and authoriza-
tion issues. These dynamic analysis tools, however, re-
quire developing effective test cases, which may indicate
the high cost associated with this approach, especially
when the program under test is large and complex.
Ironically, malicious entities also utilize similar static
and dynamic analysis tools to discover potential vul-
nerabilities in an application, assuming having access
to the source code of the application, i.e., open source
software.

Software producer companies usually employ diffe-
rent secure programming techniques such as obfusca-
tion, wrapper, and encryption to protect their source
code from being reverse engineered. However, profes-
sional hackers always find a way to circumvent these
techniques and reverse engineer the source code. Once
vulnerabilities are discovered, they will be used to
This situation is attributed to soft-
»[1112] i which the binary code for
widely used software is identical and runs on a large
scale of computers, where the vulnerability found in one
copy of the software can be used to attack all the other
copies of the software. To address the monoculture is-
sue and its security consequence, researchers!'>=17 pro-
posed to use software “diversification” techniques for
defense purposes.

launch attacks.
ware “monoculture

5.2.1 Software Diversification

Software diversification was first introduced as
a means for increasing the reliability and fault-
tolerance of software through N-version programming
approaches[®4.
software team generates N semantically equivalent pro-
grams from the same initial specifications. The ap-
proach greatly reduces the probability of identical soft-
ware faults occurring in two or more versions of the

Through N-version programming, the

program. In an analogous way, in security context,
software diversity works in such a way that multiple, se-
mantically equivalent versions of the software are gene-
rated. As a result, if attackers breach one of the ver-
sions, the knowledge gained from the damaged version

would not be applicable for the other versions of the

®https:/ /www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf, Nov.

2018.
@)https://www.jetbmins.com/idea7 Nov. 2018.
https://www.eclipse.org7 Nov. 2018.

@9https://software.microfocus.com/en—us/products/s.tatic—code—anuadysis—sast/overview7 Nov. 2018.

https://www.ibm.com/security/app1ication—security/appscan, Nov. 2018.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 215

software. Therefore, this approach reduces the success
rate of the attack.

There exist some other techniques for diversifying
software applications. For example, adding a nonfunc-
tional piece of code, called no-op or NOP, randomly
into the compiled code may disrupt code injection at-
tacks. The technique diversifies the memory layout of a
running application using techniques such as randomly
padding stack frames, randomizing the locations global
variables, and newly allocated stack frames['3].

Modern compilers are very intelligent and uti-
lize several optimization techniques to improve perfor-
mance. The optimization techniques employed are a
great source of variations for a given program. Su-
per optimization is a compiler technique introduced by
Massalin®® to minimize the size of compiled code us-
ing a brute-force search. This type of optimization finds
the shortest instruction sequences for a desired function
implementation. Jacob et al.l7) extended the research
of super optimizer to create a super diversifier toolkit
to customize programs at the machine-code level. By
using a secret key, user-defined parameters, and empir-
ical data, the super diversifier guides the brute-force
search procedure to generate an individualized copy of
the compiled code. The research results indicate that
the user diversification is an effective way to defend
against signature-based attacks, in which malware or
viruses look for particular byte patterns in the exe-
cutable parts of the applications!!™. A direct benefit
of code individualization is the obfuscation of a given
binary code, which is typically used to prevent reverse
engineering. Reverse engineering in computer world
refers to the process of extracting design information
from a software product. It is beneficial and useful for
many occasions, but attackers may use this technique
to gain the insight knowledge of the targeted software
with the hope of finding vulnerabilities. With program
individualization, each copy of the program is unique,
and the launched reverse-engineering would only work
on the local copy of the program that the attacker owns.
Thus, the knowledge the malicious entities gain would
not be beneficial to attack other copies of the program.
However, recent research shows that a diversified pro-
gram can still be compromised by taking advantage of
memory corruptions2” or stack vulnerability[25.

Based on the ideas of super diversifier, Jackson et
al.®% proposed another compiler-based diversification
technique. Instead of substituting and pruning the ex-
isting instructions, the proposed technique randomly
inserts non-alignment NOP instructions to create di-

versity. A major advantage of this approach is its abi-
lity to generate a large number of software variants,
resulting in high unpredictability, which can greatly in-
crease the cost for malicious entities to launch attacks
against a system. Instead of diversifying the low-level
code, Cabutto et al.l37] presented a high-level technique
called “code mobility”. In code mobility, some parts
of the binary code blocks are removed from the soft-
ware before deployment and stored on a remote and
trusted server, and when the software is executed on
the client computer, the missing binary code blocks will
be fetched from the trusted server and injected into the
running process’ memory for execution. Code mobil-
ity aims to protect software from reverse engineering,
but Cabutto et al.l37 claimed that it can be combined
with any software diversification technique to improve
software protection.

Franz[®8! argued that it is time to apply compiler-
generated diversity mechanism to a massive scale and
proposed a design idea for massive-scale software diver-
sity (MSSD) and delivery system based on the architec-
ture of online App Store. The core component in the de-
sign is a software diversification engine, which compiles
the software in a Just-In-Time (JIT) mode to generate
a unique version of the software each time when it is
downloaded by a client, resulting in a large number of
variants of the software. This scale of diversification
will make vulnerability exploitation difficult and will
increase the cost to the attacker dramatically. Jackson
et al.P extended Franz’s research[®®! and introduced
another design idea called Multi-Variant Execution En-
vironment (MVEE) that can detect the exploitation of
vulnerabilities in a program at the runtime. To protect
a program, MVEE stores all variants of the program
and their normal behavior as a baseline, and then any
input to the program will be fed to all variants and be
monitored. A malicious input will cause a divergence
and MVEE will detect it and alert the user to take ac-
tions. MVEE can bring extra security to organizations,
but at a cost of computational overhead and perfor-
mance loss. Therefore, Jackson et al.l3% recommended
MVEE be implemented in organizations that can trade
off performance for extra security.

Challenges in Software Diversification. Despite all
the key advantages of various software diversification
techniques in security defense, there are three major
challenges that need to be addressed prior to the preva-
lently adapting of software diversification.

1) Cost of Generating Code Variants. In order to
be effective, a software diversification technique must

216

generate a sufficient number of variants to ensure high
unpredictability, which can be measured by entropy
H(D)®. For a given moving target mechanism, D
stands for the dynamic portion of the attack surface
and H(D) is the entropy of D defined by:

H(X)=— ZP(%) log,, (p(z4)),

where p(z;) is the probability of the i-th instance of
the moving target. If H(D) > 0, then the technique
meets the unpredictability requirement. However, it is
computationally expensive to generate all the variants,
even for an even small program. In practice, larger pro-
grams are more complex and would require a tremen-
dous number of variants. How to efficiently generate the
sufficient number of variants with low cost is a daunt-
ing challenge. The design of MSSDI8 can generate
variants in a massive scale to meet the unpredictabil-
ity requirement of MTD defense, but the cost can be
high. Franz®®¥ recommended MSSD be implemented in
a cloud computing environment for performance and af-
fordability, and argues that the cost associated with the
cloud computing can be absorbed either by the software
vendor or by the user who downloads the software.

2) Delivery of Software Variants. Another challenge
in performing software diversification at machine-code
level is the distribution of the large number of variants
to clients efficiently. For instance, it is a major chal-
lenge to deliver 2! 990 versions of the software to clients.
The physical shipment of the large number of software
variants is impractical if not impossible. Moreover, dig-
ital downloading is less helpful because it would take up
huge amounts of space to store all the software variants
on the server.

MSSD8! can address the challenge in the delivery
of software variants because each variant is generated
on demand whenever a client requests the software.
The software is downloaded to the client without the
needs for storing the variant on the server. However, as
mentioned above, the cost in MSSD can be high when a
large number of variants are generated and downloaded;
therefore, more research needs to be conducted on the
costs versus variants scale and delivery.

3) Software Updates and Patches. Software updates
and patches are usually applied for fixing discovered
vulnerabilities or bugs introduced through new features
in the software application or fixing existing or hidden
security problems. The common practice among soft-
ware companies, such as Microsoft, Google and Apple,
is to use a technique, called delta update, to achieve

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

fast delivery and installation of the software updates
and patches. A delta update file contains only the code
that has changed since the last update of the software,
avoiding the update of the entire application. Users
need only download and install a small patch file to up-
date the existing software. The delta approach to up-
dating applications turns out to be challenging as each
copy of the software running on the client’s computer is
diversified and unique. This is due to the fact that the
delta updating procedure is not aware of the exact loca-
tion in the code to start the software update process. A
straightforward solution to this challenge could be that
each client would be required to download a new diver-
sified version of the updated software. However, this
is apparently not efficient even for delivering a small
software update or patch. Another solution is to use a
random key to identify each version that is generated,
but it will require a complicated tracking process be-
sides the diversification and delivery process. This will
open many future research questions on performance,
cost, and security of the complex system.

4) Integrity and Verification of Software Variants.
When an application is distributed over the Internet,
the software company must ensure clients that the
downloaded software can be trusted, i.e., it contains no
flaws due to transmission failure, or is not being tam-
pered by malicious entities. This process is called Soft-

(41,42] For example, a soft-

ware Integrity Verification
ware company may apply a hash function, such as MD5
or SHA1, to generate a unique digital signature from its
software and distribute it along with the software over
the Internet. Then the client can use the same hash
function to generate a signature from the downloaded
software and compare it with the distributed signature.
If the two signatures match, then the downloaded soft-
ware can be trusted; otherwise, the integrity of the
downloaded software cannot be verified or trusted, and
the client should not use the software. When software is
diversified, however, each variant is unique and will re-
sult in a unique signature for integrity verification. For
software with a large number of variants, the integrity
verification process could become cumbersome. The ef-
ficiency and scalability of the integrity verification of
diversified software has not been fully investigated.

5) Validation of Software Variants. Software testing
is an important phase in the software lifecycle in which
software applications are tested as thoroughly as pos-
sible by using various rigorous methods, such as func-
tional testing and structural testing, before the software

43].

products are released! This important task could be

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 217

very challenging when testing diversified software, due
to the randomness and unpredictability introduced by
software diversification on functional or structural level.

5.2.2 Software Diversification Through Middleware

Software diversification can be achieved by using a
middleware, which is a special program or an execution
environment, installed on the host computer, to pro-
vide the diversity for other applications running on the
same host. The idea of delegating the diversification
process to middleware applications is useful especially
when some vulnerabilities are discovered by malicious
entities, but the software developers have released no
security patches. The middleware program can diver-
sify the vulnerable software and prevent it from being
exploited by the attackers.

As discussed in Subsections 5.1, ALSR, non-
executable memory protection mechanism, and ISR
are efficient for defending against code injection at-
tacks. However, attackers have already developed
a new exploitation called “Return-Oriented Program-
ming” (ROP) to bypass those protections/*4. In ROP-
based exploitations, attackers do not inject any code
into the system memory, instead they carefully exploit
specific vulnerable programs. A successful exploit will
enable them to link together a number of machine in-
struction sequences in the memory, called “gadgets”,
for execution. Using the gadgets, attackers perform ar-
bitrary operations on a target computer even when the
computer has implemented the non-executable memory
protection.

Pappas et al.[*! proposed a technique called “in-
place code randomization”, which can be used directly
on executable versions of third-party software applica-
tions to defend against the ROP exploitation. In-place
code randomization is a code transformation technique
and uses a statistical model to determine which piece
of code can be safely extracted from the compiled bina-
ries, and the transformation is the key to defeat ROP
exploitation because the success of ROP exploitation
relies on the successful execution of all linked gadgets.
Any modified gadget can break the link causing the
exploitation to fail.

The experimental results!*® show that in-place code
randomization is a practical and effective way to thwart
ROP attacks directly on the third-party software, e.g.,
Adobe Flash Player. The major limitation of this tech-
nique, however, is that it cannot be used on software
with self-checksum feature because any code injection
can cause a checksum to fail.

Inspired by the ISR technique (see Subsection 5.1),
Boyd and Keromytis?? implemented ISR on SQL to
defend against SQL injection attacks. The implemen-
tation is called SQLrand (SQL randomization). It re-
quires a middleware on the web server to randomize
standard operators such as keywords and commands
in SQL before accepting user input. On the database
end, it requires a proxy to de-randomize the query re-
turned from the web server, and then passes the query
to database engine for execution. Any user input con-
taining malicious code will not be derandomized and
thus will be dismissed from the execution.

In a book chapter, Portokalidis and Keromytis!33]
proposed that the ISR technique can be adopted glob-
ally across all layers of the software stack. The ba-
sic principle is to randomize keywords, operators and
function calls in the language before accepting user in-
put, and then de-randomize the instructions before exe-
cution. Two languages are used to demonstrate the
process: Perl and SQL, and their results show that ISR
is versatile and the implementation is successful with
low overhead.

Another approach to software diversification via
middleware is to use middleware software components
to monitor the target program and offer defense ser-
vices when needed. Although the target program might
not be able to be diversified natively for different rea-
sons, the middleware can be easily diversified in diffe-
rent ways. The combination of the target program and
the diversified middleware creates a diversified entity
with a better defense strategy. The aforementioned
MVEEP® is an example of using middleware to monitor
and protect the target program.

Inspired by a common biological phenomenon,
called the symbiotic mutualistic relationship, in which
two organisms live together to provide mutual defense
against predators, Cui and Stolfol*6] proposed a host-
based defense mechanism called “Symbiotic Embedded
Machines” (SEM). SEM is a code structure injected
into the target program (host) to provide monitoring
and defense for the host program. Unlike anti-virus
or anti-spyware programs, SEMs are not installed on
the target computer, instead each SEM is infused into
the host software and yet each is self-contained, self-
fortified, and is executed along-side the host software.
The code of SEM can be randomized before injecting
into the host software and the combination of SEM and
the host software creates a unique executable, which
makes it much harder for attackers to exploit the sys-
tem with the knowledge gained from the executable.

218

The principle of SEM can be used to develop applica-
tions, e.g., host-based IDS and rootkit detection. More
research and data are needed to evaluate its feasibility
and performance.

Challenges in Software Diversification via Middle-
ware. The use of middleware software in this type of
diversification techniques requires a special execution
platform and it might impose significant performance
overhead on the target program and even the entire
system. This could be very challenging to implement
the middleware at a large scale (i.e., enterprise level) or
in an environment where the program performance is
mission-critical and thus cannot be sacrificed.

5.3 Network Level Approaches

The network stability and performance are two ut-
most concerns for enterprises. The network stability
refers to the requirement that the network must be
able to continue to function even when some hosts
on the network become nonoperational for any reason.
For network performance, the network must be able to
transmit data efficiently and correctly between hosts.
These requirements have led to the current conventional
network architecture, which is distributed (for stability)
and static (for performance). For example, the Internet
Protocol (IP)®, a core protocol in the current Internet
architecture, is designed for efficient data transmission
between hosts on network that requires an IP address
to be assigned to each host. The IP addresses of the
source and the destination hosts are critical to the data
transmission between hosts. Unfortunately, attackers
can utilize this protocol to exploit the target hosts.

Once a network is configured and is operational, the
configurations of the network and even hosts usually
remain unchanged until further changes need to be im-
plemented. The static configuration of a network and
its hosts is important to stabilize the network in a dis-
tributed environment. However, it makes the imple-
mentation of MTD-based techniques very challenging.

There are many research studies that aim at em-
ploying MTD to protect specific hosts on a network, or
even the entire network system. This subsection will
cover these techniques in four subcategories.

o [P Address Randomization. The IP address ran-
domization includes MTD strategies via the randomiza-
tion of IP addresses, port numbers, and network proto-
cols.

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

o Virtualization-Based MTD. The virtualization-
based MTD includes research that utilizes the virtuali-
zation technology to create an MTD defense system.

e Decoy-Based MTD. The decoy-based MTD sec-
tion, as the name suggests, includes researches that in-
troduce decoys into a network system as an MTD de-
fense strategy.

e Software-Defined Networking Based MTD. The
Software-Defined Networking based MTD subsection
includes researches that take advantage of SDN techno-
logy to provide MTD defense.

e Lightweight M'TD. This subsection includes the re-
search studies that focus on the use of MTDs on small
embedded systems (i.e., wireless sensor networks) and
Internet of Things devices.

These subcategories are not mutually exclusive, and
some research studies might be a part of multiple sub-
categories based on the technologies they use. In these
cases, we classify the research based on the overall goal
of the work and the technology used. For instance,
Zhuang et al.[*") combined virtualization and IP address
randomization in their research. However, we include
the research in the IP address randomization subsec-
tion because the paper’s main focus is to investigate
the MTD performance vs the adaption interval and the
adaption includes the IP address randomization.

5.3.1 IP Address Randomization

The IP address randomization, also called IP ad-
dress mutation, is a basic MTD technique that has
been discussed in several lines of research!!®47-531 A
typical network attack usually starts off with a recon-
naissance phase during which the attacker uses vari-
ous scanning and probing tools (e.g., Nmap) combined
with carefully-crafted packets to exploit the target host.
The reconnaissance attack is usually an automated and
scripted exploitation on a list of predefined IP ad-
dresses. Therefore, an intuitive way to countermeasure
the attack is to change the host’s IP address frequently
in order to invalidate the information previously ex-
posed to the attacker. This is the deriving idea behind
the IP address randomization technique.

The IP address randomization technique randomly
picks a new IP address from a pool of available IP ad-
dresses and assigns it to the target host. If the IP ad-
dress change happens between the reconnaissance phase
and the actual attack phase, then it thwarts the attack.
Otherwise, the attack will be successful. Fig.1 demon-

strates the IP address randomization defense modell3],

@https://tools.ietf.org/html/rfc791, Nov. 2018.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 219

Host IP Address
Change

tO <

* Attack Crafting Period

<

K,

t
2 Time

—
Attack (Successful)

Attack Crafting Period
K,

Scan

4— Attack (Unsuccessful)

K,

Fig.1. IP address randomization defense model.

In this model, the period (¢;,¢;) is called the IP ad-
dress retention period, during which the host holds the
same [P address until it changes. The attack crafting
period (K, K,) refers to the period between the com-
pletion of a malicious scan and the launch of an attack.
Then the outcome of an attack can be expressed as in

(1):

1
Oy = {0
(1)

The IP address randomization technique is effective
for defending against reconnaissance or scanning at-

(successful), it t, < Kp < K, <ty,

(unsuccessful), otherwise.

tacks. Antonatos et al.'® used IP address randomiza-
tion technique in their research. They called their tech-
nique the “Network Space Address Randomization”
(NSAR) to defend against the hit-list worm attack. The
hit-list worms are specialized computer worms that are
spread to target computers based on predetermined list
of IP addresses of vulnerable targets. The technique
uses a customized version of Internet Systems Consor-
tium (ISC) open source DHCP server®, which expires
the IP allocations of all clients and then reassigns each
client a new IP address. The network address change
can invalidate partial or even complete list of IP ad-
dresses in the hit-list worm, and hence can slow down
the spread of the worm. The preliminary simulation of
this research on 1000000 vulnerable clients shows that
NASR can increase the time of infecting 90% of clients
from five minutes without NASR to between 24 and 32
minutes, and can effectively contain the worm infection
rate under 15% of the vulnerable clients.

An important feature in the current network archi-
tecture is the efficient communication among hosts on
the network. To ensure a reliable network, network
protocols require hosts to exchange important informa-
tion such as connectivity status, running services, open

ports, and OS types. The information enables the net-
work administrator to objectively monitor the network
activities, locate and patch vulnerable hosts, and man-
age some other aspects of the network. Ironically, at-
tackers also take advantages of this feature to launch
“fingerprinting” attack against a network. A finger-
printing attack is an exploitation in which an attacker
sends various well-crafted requests to a target host and
obtains important information of the network with re-
spect to the responses received from the target.

Al-Shaerl*8! proposed an MTD-based architecture,
called Mutable Networks (MUTE), to defend against
network reconnaissance, i.e., scanning and fingerprint-
ing. The MUTE architecture can periodically create al-
ternative random configurations (called mutation con-
sisting of host’s location and other identity information)
and apply them to the network without disrupting the
normal network operations and services. The periodic
random mutation in the network invalidates and de-
ceives the adversary’s fingerprinting results. Two tech-
niques are proposed in the MUTE architecture’s imple-
mentation.

1) Random Host Hopping. This technique is the
same with the IP address randomization technique as
described earlier.

2) Random Finger Printing. Host responses are in-
tercepted and randomly modified to contain false fin-
gerprinting information to deceive adversaries.

The randomization of host responses can be
achieved through two mechanisms. One is to inter-
cept and modify the session control messages (TCP
The
other is to utilize the network firewall to generate posi-

3-way handshake) to include false information.

tive responses for all denied packets to deceive scan-
ners. Al-Shaer[*8] shed some lights on some research
challenges on the MUTE architecture, such as fast and
unpredictable creation of mutation, deployability, and
scalability.

http://www.isc.org/downloads/dhcp7 Nov. 2018.

220

An MTD technique based on IP address random-
ization requires a large number of unallocated IP ad-
dresses to ensure the newly assigned IP address is truly
random and unpredictable. This means that any IPv4
(Internet Protocol version 4) network cannot meet this
requirement to implement effective IP address random-
ization MTD defense. The problem is rooted in the fact
that the current worldwide use has already exhausted
the available IPv4 addresses. Because of this limita-
tion, Network Address Translation (NAT) is commonly
used to expand the IP address space. Some research
also uses the combination of IP address, port number
and running servicel*”) or uses virtual IP addresses!®’!
to improve the randomization process. However, the
more feasible and efficient solution is to switch to the
new Internet Protocol version 6 (IPv6) which can pro-
duce over 3.4 x 103® possible IPv6 addresses.

The adoption of IPv6, however, introduces new
security challenges. For example, instead of relying
on a DHCP server to assign IP addresses to hosts,
IPv6 protocol allows an IPv6 host to self-configure its
unique IPv6 address automatically. This method is
called Stateless Address Auto-Configuration (SLAAC).
SLAAC can reduce network administrative cost because
there is no need to use any DHCP server or NAT (Net-
work Address Translation) service®. In SLAAC, the
IEEE Extended Unique Identifier (EUI-64)® is com-
monly used to generate the IPv6 address. The address,
however, contains the host’s MAC address, which can
be tracked easily. The exposition of MAC address is
especially serious for networks with strict requirements
such as military networks and Smart Grids.

Dunlup et al.[*! proposed a new strategy called
MT6D that utilizes MTD in IPv6-based networks to en-
hance the security and privacy between trusted hosts.
The architecture of any MT6D host consists of an en-
capsulator, decapsulator, and a Shared Routing Table
(SRT). The encapsulator is responsible for transmitting
all outbound packets, the decapsulator is responsible for
receiving all inbound packets, and SRT stores the ad-
dresses of a sender host and its trusted receiver hosts,
and the shared symmetric key for each sender/receiver
pair. Upon receiving an outbound packet, the encapsu-
lator will obscure the source and destination addresses
and other private information in the packet by using
the shared symmetric key, and then append it to a new
IPv6 header to create a new IPv6 packet which will

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

be transmitted to the receiver host. Upon receiving an
inbound packet, the decapsulator will fetch the shared
symmetric key and the original addresses in the SRT to
reconstruct the data packet, and then deliver it to the
host. If a packet is sent to an untrusted receiver, or is
received from an untrusted sender, then the encapsu-
lator or the decapsulator will immediately forward the
packet to the nearest gateway device for processing. A
proof of concept prototype software implementation of
the MT6D was provided in [49] and the results showed
that the MT6D concept is valid and feasible.

An enhanced implementation of MT6D was later
adopted by Groat et al.[51) to protect Smart Grid. The
existing current electric grid is a network of different
power equipment, such as transmission lines, transform-
ers and substations, which delivers electricity from a
power plant to the home or business consumers. The
first electric grid was built in 1890s and since then the
technology has been improved. The increasing comple-
xity and consumption of electricity today have imposed
challenges on various aspects of electric grids such as ef-
ficiency, reliability and security.

Smart Grid® is a new and innovative design of elec-
tric grids to address the challenges and to provide re-
liable and efficient electric energy. By incorporating
system controls, computers, and automation techno-
logy, Smart Grid enables a two-way interactive com-
munication mechanism between its provider and the
consumers. The communication provides its consumers
with more visibility and controls over their electric us-
age. In addition, it enables the electricity provider to
efficiently adapt to changes that occurred during the
electric demands and to respond quickly and strategi-
cally to an electricity disruption.

Groat et al.[’!] suggested using IPv6 for the Smart
Grid communications because by adopting the IP-based
communications, Smart Grid can take advantage of the
existing and mature Internet technologies and infras-
tructure. To address the aforementioned security con-
cerns in IPv6, Dunlop et al. also proposed to adopt
MT6DM) in Smart Grid to defend against targeted
network attack by providing anonymity to consumers’
identity. The simulation resultsl®!! show that MT6D is
a viable solution for the security defense in the Smart
Grid. The major drawback of using MT6D is its over-
head associated with latency and data encapsulation
and de-capsulation. Moreover, MT6D cannot operate

https://tools.ietf.org/html/rfc4291 .html, Nov. 2018.

@@https://standaurds.ieee.org/contemt/dam/ieee—standards/standards/web/docurnents/tutorials/eui.pdf7 Nov. 2018.
@https://www.smartgrid.gov/the_smart_grid/index.html, Nov. 2018.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 221

in a network that is managed by a DHCPv6 server.
These limitations may prevent the MT6D design from
being widely adopted.

[47] presented a research that combined

Zhuang et al.
virtualization and IP address randomization to estab-
lish an intelligent moving target defense system. In
this system, every mission-critical service, called “role”,
such as database and Web servers, is executed on a
unique virtual machine (VM). Each VM is a dedi-
cated resource component installed on a host, called
“resource”. The configuration of the network at a mo-
ment is called adaption in this design and each adap-
tion consists of attributes such as role, VM ID, host ID
and its IP address. A Configuration Manager stores all
adaptions to create a resource map and use it to con-
trol the packet flow from one resource to another. At
random intervals, an Adaption Engine produces a new
adaption and passes it to the Configuration Manager to
replace the old adaption by matching the role name. If
a role was compromised, then the attacker could use it
to compromise some other roles and eventually to reach
their target role. However, if a new random adaption
was generated in time during the attack path, then the
attack would be thwarted and the target role would
be protected. Therefore, the frequency of the adaption
generation can impact how well the defense works. The
effectiveness of this approach was confirmed by the sim-
ulation results: as the adaption interval decreased (high
frequency), the effect of the MTD defense increased 7.
An Analysis Engine was also introduced to analyze vul-
nerabilities and attack activities and the analysis data
can help the Adaption Engine to make more intelligent
decision on when to create a new adaption, instead of
at a random interval.

Jia et al.l*?l proposed a DDoS defense mechanism
called MOTAG by using IP address randomization. In
MOTAG, any protected server is behind a layer of proxy
server whose IP addresses are only known to authenti-
All traffic between the client and the
server is relayed by a proxy node. When a proxy node
is under attack, it will be replaced by a new proxy node
with a different IP address and its clients will be shuf-
fled among proxies to set up new associations. Their
simulation test in MATLAB shows that MOTAG can
effectively defend brute-force DDoS attacks.

In MOTAG, the IP address of a proxy server does
not change until it is under attack. This reactive na-
ture of MOTAG makes it vulnerable to proxy harvest-
ing attack, as Venkatesan et al. later argued!??.
harvesting attack is a reconnaissance attack in which

cated clients.

Proxy

a malicious insider client sends a large number of re-
quests to the authentication server and collects the IP
addresses of proxy servers returned from the authen-
tication server. The collected IP addresses can then
be used to launch DDoS attack. Venkatesan et al.2?]
proposed a proactive defense mechanism against proxy
harvesting attack by randomly and regularly reassign-
ing TP addresses to proxy servers to disrupt the recon-
naissance efforts. Their simulation results showed that
their proposed defense strategy is effective.

An Economic Denial of Sustainability (EDoS) at-
tack targets cloud consumers by exploiting the “pay-
as-you-go” charging scheme in the cloud computing. In
an EDoS attack, an attacker can send a large number of
fraudulent requests to consume the services of the tar-
geted cloud consumer, which eventually exhausts the
budget of the cloud consumer and causes the consumer
not to be able to host his/her services in the cloud.
To defend against EDoS attacks, Wang et al.l®* pro-
posed WebTrap, a moving target defense and trap strat-
egy that dynamically changes the resource addresses to
hide the actual URL of the resource from the attackers
while trapping malicious EDoS attack bots using dy-
namic trap injection technique. The authors/®# claimed
that WebTrap can effectively reduce the cost incurred
by EDoS attack and the overhead incurred by WebTrap
is negligible.

Challenges in IP Address Randomization. The most
challenging part in an IP address-based randomization
technique is the requirement of a large IP address space.
However, as the advancement of the Internet of Things
paradigm pushes the wider adoption of IPv6, the re-
quirement can be satisfied in near future.

Another limitation of IP address-based randomiza-
tion is the potential “connectivity disruption” when a
new IP address is assigned to a host. For instance, dur-
ing a file transfer session between two hosts, if a host
is forced to switch to a new IP address before the file
transfer is complete, then the connection will be lost
and the service will be disrupted. This is usually ad-
dressed in research by using a stand-alone component
that monitors the host’s connection status. If an active
connection is detected, then the IP address randomiza-
tion will be temporarily suppressed until the connection
becomes idle. This technique, however, may decrease
the effectiveness of MTD. Although SCIT and MAS
maintain the connectivity to the VM online via a con-
troller or dispatcher, neither covers the IP assignment
to the VM. MT6DM9 | however, is capable of preventing
any connection disruption, and it is tested and analyzed

222

by Yeung et al.l®® that MT6D can ensure that traffic is
not lost during address change period. Besides MT6D,
more research is needed to balance the minimal connec-
tivity disruption and the effectiveness of MTD.

5.3.2 Virtualization-Based MTD

Virtualization has been a major driving force be-
hind moving target defense techniques. It enables net-
work administrators to easily and quickly modify the
network configurations at low cost such as hosts’ ope-
rating systems, IP address, port numbers and running
services at a lot cost in a virtualized environment, which
can be very challenging and costly in a physical net-
work. The Self Cleaning Intrusion Tolerance (SCIT) is
a theory proposed by Bangalore and Sood™ to proac-
tively protect a server by reducing its exposure time on
the Internet from several months to less than a minute.
To accomplish this task, SCIT hosts an array of vir-
tual machines, each loaded with a copy of pristine and
malware-free server. The SCIT controller rotates the
server array and determines when to bring a virtual
machine (VM) online. In each rotation, a VM is online
and accessible for only a short period of time and then
it is taken offline and replaced by a new VM. The old
VM will be wiped clean and reset back to its pristine
state and will be ready to be brought up online by the
SCIT controller. The research results show that using
SCIT to reduce the exposure time of the VM’s can in-
crease the security of servers and thus minimizes any
losses caused by an intrusion!!?.

Moving Target Surfaces (MAS) is another rotation-
based moving target defense technique, proposed by
Huang and Ghosh®® to protect Web services from
malicious attacksl®®. The primary difference between
MAS and SCIT is that each VM in SCIT is loaded
with the same software. Whereas, in MAS each VM is
loaded with diversified software mix. The authors!®S]
used different operating systems and Web servers to
make over 1500 unique combinations (1554 to be exact)
where each combination represents an attack surface.
Therefore, each rotation will bring a diversified VM
online with different attack surfaces, which increases
uncertainty and diversity in the system. Another diffe-
rence between these two techniques is that SCIT uses a
fixed time interval for VM rotation, whereas MAS uses
detection engine to enable the clean VM to stay online
for longer cycle time, resulting in lower overhead cost
than SCIT.

Unlike MAS or SCIT where only specific software or
software mix is hosted in each virtual machine, MTD

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

CBITSP7 is a cloud-based approach in which each run-
ning component of an IT system is hosted in a virtual
machine instance or a cluster of instances, and every
component can be replaced with a pristine version of
the component. The replacement of virtual machine
instances is accomplished through a sequence of adap-
tions, and their experimental results show that MTD
CBITS can efficiently increase the difficulty of attacks
against an IT system.

By applying virtualization at the operating system
level, Okhravi et al.["8 proposed a design and imple-
mentation of TALENT (Trusted Dynamic Logical Het-
erogeneity) to protect critical infrastructure applica-
tions. The OS level virtualization works at the level
of filesystems, memory regions, sockets and kernel ob-
jects. It enables TALENT to change the platform on
the fly in order to achieve the platform heterogeneity.
TALENT also uses a portable checkpoint compiler to
compile the application for different architectures and
hence is able to migrate a running application across
different platforms while preserving the state of the ap-
plication, as shown in Fig.2. The live-migration of ap-
plications across heterogeneous platforms creates a cy-
ber moving target that increases the resilience of the
system against attacks.

Platform 1 Platform 2
[~~~ MR
| | Checkpoint |
| State ‘
| Application Migration | Application
‘ \
| | %
L_lg 1§ g |8

= B = S
=3 g R)
193] 193]
Operating Operating

System 1 EnMvilgr?;E%%nt System 2
Hardware Hardware

Fig.2. TALENT migration process.

Challenges in Virtualization-Based MTD. The time
to reload or restart a virtual machine can affect the per-
formance of the virtualization-based MTD, especially
when there are multiple services running on the same
VM. More research is needed on the optimization of the
virtualization process.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 223

5.3.3 Decoy-Based M'TD

Decoy systems, or deception systems, are phony sys-
tems set up to trap unauthorized users and track their
suspicious activities to better understand the intentions
and methodologies of the attack. The concept of decep-
tion systems can be traced back to the Stoll’s book!®®!,
in which the author described how a phony system can
be set up to lure and eventually entrap attackers.

Typically, decoy systems are deployed on a separate
network and on a demilitarized zone (DMZ). It con-
tains various known vulnerabilities with appealing but
fake data, such as seemingly sensitive decoy documents
and passwords to critical system, as well as vulnera-
ble accounts to lure attackers away from the protected
network. Not being aware of visiting a decoy system,
an attacker may try to exploit the decoy system with
the hope of gaining unauthorized access to the system.
Meanwhile, each unauthorized activity is being moni-
tored, logged, and analyzed by the system administra-
tor. The analysis not only helps the system administra-
tors to gain insights on the intrusion, but also helps un-
cover unknown vulnerabilities of the main operational
network. Hence, the longer the attacker is trapped in
the decoy system without knowing it, the more the data
can be collected.

Clark et al.®? conducted a study on the effective-
ness of IP address randomization in decoy-based MTD
system by deploying a myriad of decoy nodes (hosts) on
the same network. They used a virtualization techno-
logy to create a collection of virtual nodes representing
hosts on the network, in which there was only one decoy
node and the rest were real nodes. The only difference
between a real node and a decoy node was the response
time to request queries made to them (i.e., network
scans) and the difference could be observed by the ad-
versary to identify the decoy node. This interaction be-
tween the adversary and a virtual node was modeled in
the research and the optimal attack strategy for the ad-
versary to identify the decoy node was computed from
the model as well as the optimal defense strategy for the
defender to randomize the IP addresses. A simulation
experiment with 99 real nodes and one decoy node has
been reported by the authors!®? to visually characterize
the adversary’s strategy and the defender’s strategy.

Challenges in Decoy-Based MTD. The major chal-
lenge in decoy-based MTD systems is the cost associ-
ated with the deployment and maintenance of decoy
nodes. To provide effective defense, the decoy-based
MTD system requires a significantly large number of
decoy nodes to be deployed. As pointed out by Clark

et al.5% 99 decoy nodes are needed to deploy in order
to protect only one real operational node. As a matter
of fact, it is recommended to keep the ratio of real and
decoy targets on the order of 1:10000 to significantly
slow down and frustrate the attackers. As a result, the
expensive cost of deploying and managing decoy nodes
might surpass the security benefits of the decoy-based
MTD system.

Another challenge in employing decoy-based MTD
systems is the legal and ethical issues. For example, if
a legitimate user, who is accessing the network, ends
up at the decoy host, there could be legal consequences
or even a lawsuit. It is especially true when a user is
trying to use critical services, such as financial transac-
tions, controller applications, and emergency services.
Therefore, it is very critical and yet difficult to differen-
tiate legitimate users and ensure the quality of services
to them.

5.3.4 Software-Defined Networking Based MTD

The static nature of traditional network architec-
ture hurdles the effective implementation of MTD tech-
niques. An effective MTD implementation requires
a flexible, movable, and programmable environment
to operate. Software-Defined Networking (SDN) can
SDN is a new net-

work architecture in which the control logic and de-

provide such an environment.

cisions are separated from the network devices and
are moved to logically centralized controllers. This
separation of the control logic and the data flow of-
fers very flexible, programmable and scalable network
591 which is an appropriate platform for
implementing MTD strategies. Fig.3 shows a simpli-
fied view of the SDN-based network architecture.

The Control Plane is a virtual plane where the SDN
controller resides. The SDN controller makes decisions
on how the network data packets should be handled.
The Data Plane usually refers to the virtual plane that

architecture!

consists of all network devices such as switches that for-
ward data packets per the decisions (i.e., rules) made
by the controller. The Application Plane is a collection
of applications that can extend the functionalities of
the controller. When a data packet arrives at a switch
in the Data Plane, the switch will search its database
to see if a rule, i.e., a decision from the controller, ex-
ists. Once the switch finds the rule, it will handle the
data packet by the rule. Otherwise, the switch sends a
request to the controller for further assistance. Once a
decision is made by the controller, a rule is generated
and sent back to the switch to handle the data packet.

224

The rule itself is also stored on the switch for handling
similar upcoming packets. The third-party applications
on the Application Plane do not have direct accesses
to network devices in the Data Plane, but can com-
municate with the SDN controller to relay the needed
operations. The communications between planes are
carried through different APIs built on open standards.
The APIs between the application plane and the con-
trol plane are called the “northbound” APIs. Whereas,
the APIs between the control plane and the data plane
is called the “southbound” APIs.

Application Plane

— —
[a5
< <
el <
= =]
= =
o o
e} e}
<= =
+ +
= =
o o
Z 4

Control Plane

=

Main Backup
Controller Controller
AN ZEN
< <
o] s}
= =
g 2
= =
z 3
3 n

Data Plane

Fig.3. Simplified view of an SDN architecture.

Among all the supported open southbound
APT’s, OpenFlow from Open Networking Foundation
(ONF)@ is the most adopted API that enables the
communication between the control plane and the data
plane. ONF uses “layer” instead of “plane” to indicate
each of the three building blocks in the SDN architec-
ture as shown in Fig.4.

The SDN-based MTD techniques can be imple-
mented in two modes: 1) hybrid-SDN implementation,
and 2) pure-SDN implementation. In the hybrid-SDN
implementation, the MTD techniques are implemented

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

with the help of both SDN and non-SDN components,
such as NAT gateways, routers, and decision-making
agent installed on hosts. Whereas, in the pure-SDN
mode, the MTD techniques are implemented either as
a network application at the application layer, or as a
component integrated into the controller layer, as de-
picted in Fig.4.

A good example of the hybrid-SDN implementation
is OpenFlow Random Host Mutation (OF-RHM)(50
which is designed to thwart reconnaissance attacks.
With the help of an NAT gateway and an SDN con-
troller, each host’s real and unchanged IP address (rIP)
is mapped onto a virtual and short-lived IP address
(vIP). The vIPs are randomly generated and assigned
by the SDN controller and stored in the flow tables of all
OpenFlow switches to properly route the network traf-
fic. Since the mutation and assignment of the virtual IP
addresses, and also the data route management are all
performed in the background without the involvement
of the end hosts, OF-RHM can effectively conceal the
identities of the protected hosts.

Application Layer

i O O
Business
Application

Business
Application

Business
Application

Northbound API
Northbound API

Control Layer

=, =, =

Network Network Network
Service Service Service
OpenlSEOW

A/ DA

Infrastructure Layer

Fig.4. Layered view of OpenFlow-based SDN architecture.

@https://www.opennetworking.org/sdn—deﬁnition, Nov. 2018.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 225

MacFarland et al.l9 proposed a host-based MTD
solution by using DNS server, SDN controller and NAT
device. When a client application requests to resolve a
host name to an IP address, the request is sent to the
network’s DNS server. Before the DNS server sends
back a reply packet with the resolved IP address to the
requestor, it elevates the packet to the SDN controller
for consideration. The SDN controller, upon receiving
the DNS reply packet, randomly generates synthetic
IP and MAC addresses, and then creates NAT rules
to translate the synthetic IP address into the real TP
address and the synthetic MAC address into the real
MAC address. The NAT rules are then installed on the
NAT device and also on the client’s machine to estab-
lish a connection between the client and the requested
host. This design allows the SDN controller to create a
different and moving IP address and MAC address com-
bination for each DNS resolution, preventing attackers
from tracking traffic flows, offering both anonymity and
unlikability.

Wang et al.l1 argued that the host address muta-
tion technique is not effective if an attacker knows the
host’s domain name. They proposed to use SDN to
randomize domain’s name as well to protect hosts from
reconnaissance attacks. However, the domain name of
a company is an important aspect of the company’s
network when communicating with clients and is pur-
chased through an authorized domain name registrar.
The paper does not explain the feasibility of mutating a
host’s domain name or the potential impact of domain
name mutation on the enterprise company.

Packet Header Randomization (PHEAR) is a tech-

[62] {5 enhance the

nique proposed by Skowyra et al.
privacy and security for enterprise networks by using
OpenFlow-based SDN. PHEAR requires each host to
install a PHEAR proxy that is responsible for rewrit-
ing incoming and outgoing packets in order to remove
identifiers, and the modified packets will be routed via
OpenFlow switches. By hiding or obscuring the packet
header information, it not only protects the privacy of
the host, but also makes the system more unpredictable
to the attackers. A big advantage of PHEAR is that
if an SDN infrastructure already exists, PHEAR can
be implemented in it without any additional hardware.
The experimental results show that PHEAR has low
latency and high throughput, which are two important
requirements for many network applications.
Kampanakis et all%] integrated several defense
techniques, such as obfuscation of port numbers, service
version and OS hiding as well as random host mutation

into the SDN controller to provide common network
defense against network mapping and reconnaissance
attacks. This pure-SDN MTD scheme is implemented
in Cisco’s One Platform Kit (onePK) and the results
show that SDN-based MTD can significantly increase
the attacker’s overheads.

Cloud computing has been adopted rapidly by com-
panies around the world due to its advantages such
as flexibility, cost effectiveness, and mobility. Due to
its increasing popularity, cloud networks have attracted
attackers. In a typical cloud network, resources (e.g.,
data and applications) can be located at geographically
different locations. More specifically, cloud computing,
as a highly distributed architecture, requires innova-
tive technology for network management and security
defense. The amazing networking features offered by
SDN make it a perfect platform for cloud networks.
The logically centralized SDN controller can be used
to proactively perform attack analysis and thus apply
MTD countermeasures based on the analysis while en-
suring the countermeasures not to conflict the security
policy!64.

Challenges in SDN-Based MTD. SDN is under con-
tinuous and active development by major organizations
such as Open Network Foundation and Linux Founda-
tion. It is still considered a new architecture and has
not been prevalently adopted around the world. The
lack of adoption is a major challenge for implementing
MTD techniques in an SDN-based environment. How-
ever, we believe this challenge will soon be overcome
because major commercial companies, such as Cisco,
HP, Google, and Microsoft, have started recognizing
SDN as an innovative key technology in the cloud com-
puting.

The lack of enough research in some certain aspects
of SDN-based MTD is another important challenge that
might limit the adoption of SDN in MTD. Examples of
some area topics that require fundamental and emerg-
ing research attentions are as follows.

1) Security and Dependability. SDN can suffer from
single point of failure because if the controller in SDN
failed, then the communication between planes may fail
and the whole network system may not be operational.
The security and the dependability of SDN are ongoing
active research topics6?!,

2) Effectiveness of SDN-Based MTD. Among all the
research articles related to SDN-based MTD we sur-
veyed, none of the papers compared the effectiveness of
SDN-based MTD approaches with that of the existing
non SDN-based MTD approaches. There is a need to

226

compare the effectiveness and lists the pros and cons of
such techniques.

3) Performance Issues of SDN-Based MTD. Even
though all SDN-based MTD research work provided
performance evaluation results, no existing research fo-
cus on comparing the performance of SDN-based MTD
with that of non SDN-based MTD.

4) Compatibility of SDN-Based MTD. Since SDN is
not a replacement to the existing network infrastruc-
ture, it is crucial to ensure that any SDN technique
will be compatible with the current network infrastruc-
ture. The lack of compatibility of SDN-based MTD is
not only a challenge, but also a future research oppor-
tunity.

5.3.5 Lightweight M'TD

The increasing growth of the use of low-power and
low-resource embedded devices such as wireless sensors
and Internet of Things devices has introduced new secu-
rity challenges. The main reason is that many existing
MTD strategies cannot be directly applied to these de-
vices due to the limitations of power and computation
capacity on the devices.

Casola et al.[%] proposed an MTD approach for pro-
tecting resource-constrained distributed devices by re-
configuring the devices at the security layer and the
physical layer. The reconfiguration at the security layer
refers to the selection of a different cryptosystem reg-
ularly and the physical layer reconfiguration refers to
the full-image replacement of the firmware of the de-
vice. The approach is evaluated on a Wireless Sensor
Network (WSN) and the results show that it can effec-
tively reduce the attacker’s success probability.

Based on MT6D, Zeitz et al.7) introduced an ini-
tial design for a Micro-Moving Target IPv6 Defense,
uMT6D, to protect the Internet of Things by limiting
the exposure time of the device. The initial experiment
of the design is introduced later to evaluate the power
consumption of the implementation of uMT6D.

Challenges in Lightweight MTD. Wireless sensors,
ToT devices, and other embedded systems have limited
resources such as power supply, computing capability,
and available storage. Any existing MTD strategy that
requires heavy and frequent computation might not be
feasible for these resource-restrained devices. There are
lightweight cryptographic hash algorithms (PHOTON,
QUARK, etc.[58)), but research work is still needed to
study the feasibility of implementing MTD strategies
on these devices with the algorithms and the optimiza-
tion of the MTD implementations.

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

6 Overview of Existing MTD Analysis Work

Researchers use various approaches to analyze var-
ious forms of MTD strategies in order to gain insights
and valuable information and improve the effective-
ness and performance of the MTD strategies. Simu-
lation and testbed experimentations4?:69 are two ma-
jor means for quantitative analysis of the effective-
ness and performance of MTD strategies. The com-
monly used simulation tools include free off-the-shelf
OMNet++03 Mininet®®, NeSSi2l?! and commercial
tool onePKI[3]. Recently, Virtual Infrastructure for
Network Emulation (VINE) has been proposed as an
MTD experimentation environment!!¥! because of its
broad capabilities and wide selection of tools, such as
network topology generation agents, background traf-
fic and attack generation agents, packet capture agents,
and traffic monitoring agents. A case study is included
in the research to show that VINE is capable of provid-
ing researchers valuable tools to test MTD defense in a
number of configurations, and in a number of operation
environments.

The analysis approaches in the papers we surveyed
can be divided into three major categories.

1) Strategy-Specific Analysis. It aims at analyzing a
specific MTD strategy by using simulation, experiment,
or proof of concept to discover any issues in the target
MTD strategy.

2) Metric-Based Analysis. In the metric-based ana-
lysis, an analysis metric based on MTD requirements is
usually utilized to set up a testbed experiment, run the
experiment against various MTD techniques, and then
use the metric to analyze the result of each MTD strat-
egy tested. Some metric-based analysis may involve a
model where is usually a generalized threat model to
explain the details of problem addressed!®:69,

3) Model-Based Analysis. In the model-based ana-
lysis, a model to generalize the features and behaviors
of a specific type or general type of MTD strategy is em-
ployed to perform the statistical analysis of the model,
and then apply simulation or custom experiment to ver-
ify the analysis.

6.1 Strategy-Specific Analysis

Since ASLR has been implemented in major ope-
rating systems, many studies on the effectiveness of
ASLR have been conducted. There are several ways
to bypass ASLR[?5~27]. To enhance ASLR, some fine-
grained ALSR and code randomization strategies have
been proposed®10:28:29] - The fine-grained ALSR uses

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 227

techniques such as the permutation of the order of
functions and basic blocks and the randomization of
the data and code structure to improve ASLR against
code injection and memory corruption attacks under
the assumption that the disclosure of one single mem-
ory address does not allow attackers to deploy attack.
However, Snow et al.3% argued that the above as-
sumption can be easily violated. Therefore, the fine-
grained ASLR may not be more effective than tradi-
tional ASLR. By repeatedly exploiting the memory dis-
closure, it is possible to map an application’s memory
layout on-the-fly, search for API functions and gadgets,
and use Just-In-Time compilers that the target pro-
gram is using to finally launch attacks.

Hamlet and Lamb[™ proposed to use dependency
graph to outline the impacts on users, defenders and
attackers once an MTD strategy is adopted. This im-
pact analysis can be used to measure the possible effi-
cacy and cost of the given MTD and help defenders to
choose the best MTD strategy.

6.2 Metric-Based Analysis

Quite often, attackers launch multiple attacks
against a target system. Hence, it is more practical
to analyze the overall performance of an MTD system
under the broad definition described in Section 2. Hob-
son et al.l% grouped the challenges that relevant MTD
techniques have in common into three types.

1) Coverage. The exploitable elements of the attack
surface must be covered by the moving target defense
and no information should be leaked from the static
components of the surface.

2) Unpredictability. The current or future dynamic
changes in MTD should not be predictable by attackers.

3) Timeliness. The dynamic changes must be ap-
plied between the attacker observations and the subse-
quent attacker actions.

Three moving target defense techniques are evalu-
ated on how it reacts to each challenge, and a case
study of three low-level MTD techniques, ALSR, ISR,
and software diversification, is used to demonstrate how
the evaluation works*?l. From the analysis point of
view, Hobson et al.*% concluded that most of the MTD
techniques exhibit weaknesses across all of three crite-
ria. For instance, ALSR can meet the coverage require-
ment, but cannot guarantee unpredictability and time-
liness; whereas, ISR cannot meet the full coverage re-
quirement, but it can provide enough unpredictability

and timeliness. Furthermore, software diversification

can meet coverage requirement and provide good un-
predictability, but timeliness can be difficult to achieve.

Green et al.™ proposed to evaluate network-based
MTD techniques with a different set of properties: 1)
moving property, 2) access control property, and 3)
distinguishability property. The moving property de-
scribes how well an MTD technique can alter network
information. It has three aspects: unpredictability,
vastness, and periodicity. The unpredictability requires
that the new destination of any given moving target
state should be randomized enough so that no client
could guess the new destination. The vastness requires
that the destination space of the MTD must be suffi-
ciently large enough to prevent the destination space
from being searched exhaustively. Moreover, the peri-
odicity means that the MTD must change with enough
regularity to quickly invalidate the information col-
lected previously by the attacker.

The access control property requires that only au-
thorized client can access a moving target system via
a mapping system. It has three aspects: uniqueness,
availability, and revocability. The uniqueness means
the access to the moving target system by a client only
belongs to the client and cannot be shared with any
other clients. The availability means that a client’s ac-
cess to the moving target system should be guaranteed
so that MTD does not cause denial-of-service to the
authorized clients. The revocability means that the
mapping system should have the ability to terminate
or revoke a client’s authorization without causing dam-
age to the MTD system. The distinguishability means
a system’s ability to separate trustworthy clients from
the untrustworthy ones.

Green et al. further analyzed several MTD tech-
niques including OF-RHAMPY and MT6D™9. The ana-
lysis results show that at least one of these properties
was not covered by the evaluated MTD techniques. For
example, while both OF-RHM and MT6D cover the
moving property, neither of them covers the availability
aspect of the access control property.

Okhravi et al.[%! proposed a generalized model for
dynamic platform techniques which dynamically change
various properties of the computing platform, such as
instruction set architecture, stack direction, kernel ver-
sion, OS distribution and machine instance, to make
attacks more difficult. The authors/®® first identi-
fied four features as a metric to describe the protec-
tion by existing dynamic platform techniques, and then
used the metric to quantitatively analyze a specific
dynamic platform technique developed by them, call

228

TALENTS!, but the authors believed their analysis can
be generalized based on the features of all existing tech-
niques.

Another quantitative approach was proposed by
Zaffarano et al.[’? by using Cyber Quantification
Framework from Siege Technologies along with an
evaluation metric with four categories: 1) productiv-
ity, 2) success, 3) confidentiality, and 4) integrity. In
order to use the metrics to evaluate an MTD system,
the authors!™ proposed a mission and attack activity
model. The mission activity model represents the le-
gitimate network activities such as sending emails and
accessing an FTP server. On the other hand, the at-
tack activity model represents actions or attacks that
an attacker would perform. After applying the metrics
on the two models, eight individual evaluation metrics
will be generated, and the data can be evaluated to
describe the effectiveness of the MTD system.

[73] Jater applied this evaluation frame-

Taylor et al.
work and metrics to quantitatively evaluate two MTD
techniques provided by the Air Force Research Labora-
tory: ARCSYNE (Active Repositioning in Cyberspace
for SYNchronized Evasion) and SDNA (Self-shielding
Dynamic Network Architecture). ARCSYNE offers a
synchronized IP-hopping to the nodes on a network and
protects the network through system-wide encryption
and a continuous changing network topology. SDNA
is based on cryptographically secure network dynamics
on an IPv6 network. Based on the same CQF and met-
rics as in [72], the authors created different metrics to
evaluate the two MTD techniques quantitatively. The
metrics show that the attack success is high without
MTD, but it significantly decreases when MTD is de-
ployed.

6.3 Model-Based Analysis

Evans et al.[™ proposed a model with a defender
and an attacker entity for diversity defense strategy,
such as ASLR, ISR, and data randomization. In this
model, the defender’s goal is to provide a service with
reliability and performance; whereas the attacker’s goal
is to exploit the server. The authors!™ conducted an
analysis on the effectiveness of a moving target defense
through low-level (OS and software levels) diversifica-
tion technique against five different types of attacks: 1)
circumvention attacks, 2) deputy attacks, 3) brute force
and entropy reduction attacks, 4) probing attacks, and
5) instrumental attacks. They concluded that the di-
versification defense is effective against probing attacks,

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

but is either marginally effective or not effective against
the other four types of attacks.

Xu et al.l"™ proposed a three-layered state machine
model to evaluate and compare different MTD tech-
niques with the intention of bridging the gap among ex-
isting MTD evaluation methods. The authors!™! clas-
sified existing MTD methods into low- and high-level
methods depending on the application scopes. In the
first layer of the model, a state machine is created for
each low-level program to identify the required and crit-
ical contexts from the program, thus they can be eval-
uated. In the second layer, each Program State Ma-
chine (PSM) is interconnected to form a System State
Machine (SSM), thus the interaction between different
low-level programs can be modeled. There is also a
third layer, which is an evaluation state machine (ESM)
and is designed to work as a user interface.
given attack, changing the state machine in the lower
layer could form different MTD combinations. The
authors!™! included an example of file decryption and

For a

compression to demonstrate the feasibility of this model
and claim a more comprehensive evaluation needs to be
conducted.

Manadhatal™! proposed to use attack surface shift-
ing as an MTD strategy and used a stochastic game
model to define the interaction between a defender and
an attacker. The author claimed that the stochastic
game model could help the defender to determine an
optimal MTD strategy and optimally shift the system’s
attack surface.

Zhu and Bacarl"™ proposed a game theoretic frame-
work for multi-layer attack surface shifting under the
assumption that the attack is launched in multiple
stages and accordingly the defense strategy is developed
at each layer of the system. At each stage of the attack,
the system can respond adaptively based on the feed-
back information collected and thus can minimize the
overall risk.

Zheng and Nanrin!™ proposed to use Markov De-
cision Process to analyze the impact of various costs
on the selection of defense strategy in Moving Target
Defense and to help the defender to choose the optimal
defense strategy in a certain situation.

Carter et al.l™ defined the interaction between a
defender and an attacker in the threat model as a typi-
cal leader-follower game. By applying game theory and
statistical analysis, a dynamic platform technique can
be strategically selected. Their results show that the
strategic selection significantly outperforms a simple
random selection.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 229

Maleki et al.8% presented an MTD analysis frame-
work by using the game theory and a Markov model.
The framework can model concrete MTD strategies and
provide general theorem about how the probability of
a successful adversary defeating an MTD strategy is
related to the amount of time/cost spend by the adver-
sary. Two concrete MTD strategies were analyzed by
the framework to demonstrate its applicability beyond
theoretical analysis.

7 Future Research Directions

From the collection of papers that the authors re-
viewed, it is apparent that more and more research stu-
dies have been carried on the network level. The focus
has been shifted from studying a particular MTD tech-
nique to a practical MTD system. We list some of the
future research directions following the research shifts
and trends.

e It is necessary to use other forms of mathemat-
ical models for MTD representations and analysis to
gain more insights and provide theoretic foundation for
potential practical MTD framework.

e A rigorous and fundamental risk and cost ana-
lysis and comparison of MTD implementation are re-
quired. There are not too many studies related to risk
assessments and cost analysis of various forms of MTD
strategies.

e Software-Defined Networking offers highly flexible
and programmable network architecture. Therefore, it
is a candidate for developing and implement MTD sys-
tem. More research work needs to be carried out in this
area, for instance, the effectiveness and performance

study on SDN-based MTD strategies, compared with
the non SDN-based MTD strategies, the compatibility
study on SDN-based MTD in the current network in-
frastructure, etc.

e As more resource-restrained devices such as wire-
less sensors and IoT devices are emerging in both home
and enterprise networks, new security threats are also
introduced and need to be addressed. The existing re-
search work on the lightweight MTD strategies has laid
a good foundation in this direction, but more efforts
are still needed to deepen and widen the research in
this direction.

8 Conclusions

Moving Target Defense has emerged as one of the
game changing ideas in computer security defense. A
wide range of research work has been done on many
aspects of it, from simulation and implementation to
evaluation. In this paper, we conducted a comprehen-
sive survey on the current status of MTD research pre-
sented in around 80 published papers. By identifying
the advantages and challenges of the surveyed MTD
techniques, this paper can provide researchers with the
guidance for the future MTD research.

As we can observe from Table 2, the network-level
implementation of MTD has been gaining more re-
search attention and the research focus has been shifted
from studying one specific MTD technique to designing
a defense framework with multiple MTD techniques to
address various needs of the network security defense.
Since the network architecture has been under unprece-

Table 2. Summary

Approach MTD Implementation Attacks Addressed Challenges
OS level e ASLR e Buffer overflow e Only 64-bit architecture can provide enough ran-
approaches e ISR domization

e Software diversification
e Software diversification
through middle

Software level
approaches

e [P address randomization
e Virtualization-based MTD
e Decoy-based MTD

e SDN-based MTD

e Lightweight MTD

Network level
approaches

e Buffer overflow
e SQL injection attack

e Reconnaissance attack

e SQL injection

e Cross-site scripting (XSS)
e DDoS attack

e Computer worm attack

e May be bypassed by memory disclosure attack

e The cost of generating code variants

e The delivery of software variants

e How to handle updates and patches of variants
e Integrity and verification of software variants

e Special execution environment and platform

e Performance overhead

e Large amount of IP addresses needed for
randomization

e Connectivity disruption

e Cost associated with decoy deployment and
management

e Startup time of virtual machine instance

e Legal issue of decoy

e Lack of adoption of SDN

e Lack of research studies on resources-restrained
devices

230

dented attacks, we predict more research to be con-
ducted in MTD at the network layer will emerge.

Software-Defined Networking (SDN) has been gain-
ing attention in both the industry and the research
community due to its characteristics such as low mana-
gement cost, high flexibility and programmability, and
dynamic network architecture. By utilizing the advan-
tages of SDN, specialized network applications and ser-
vices can be easily deployed in an SDN environment
with the goal of creating a solid MTD system.

The rapid adoption of resource-constrained embed-
ded devices including IoT devices has introduced new
security threats. FExisting research efforts show that
MTD is a promising candidate for protecting these de-
vices, but more research in this field is needed.

References

[1] Manadhata P K, Wing J M. An attack surface metric. IEEE
Transactions on Software Engineering, 2011, 37(3): 371-
386.

[2] Zhuang R, Zhang S, DeLoach S A, Ou X M, Singhal A.
Simulation-based approaches to studying effectiveness of
moving-target network defense. In Proc. National Sympo-
stum on Moving Target Research, June 2012, pp.21-26.

[3] Peng W, Li F, Huang C, Zou X. A moving-target de-
fense strategy for cloud-based services with heterogeneous
and dynamic attack surfaces. In Proc. IEEE International
Conference on Communications, June 2014, pp.804-809.

[4] Okhravi H, Rabe M A, Mayberry T J, Leonard W G,
Hobson T R, Bigelow D, Streilein W W. Survey of cy-
ber moving target techniques. Technical Report, Mas-
sachusetts Institute of Technology, 2013. http://www.dt-
ic.mil/dtic/tr/fulltext/u2/a591804.pdf, Sept. 2018.

[6] Cai G |, Wang B S, Hu W, Wang T Z. Moving target
defense: State of the art and characteristics. Frontiers of
Information Technology & Electronic Engineering, 2016,
17(11): 1122-1153.

[6] Lei C, Zhang H Q, Tan J L, Zhang Y C, Liu X H. Moving
target defense techniques: A survey. Security and Commu-
nication Networks, 2018, Article No. 3759626.

[7] Okhravi H, Comella A, Robinson E, Yannalfo S, Michaleas
P, Haines J. Creating a cyber moving target for critical in-
frastructure applications. In Proc. the 5th IFIP WG 11.10
International Conference on Critical Infrastructure Protec-
tion, March 2011, pp.107-123.

[8] Okhravi H, Comella A, Robinson E, Haines J. Creating a
cyber moving target for critical infrastructure applications
using platform diversity. International Journal of Critical
Infrastructure Protection, 2012, 5(1): 30-39.

[9] Barrantes E G, Ackley D H, Forrest S, Palmer T S, Ste-
fanovic D, Zovi D D. Randomized instruction set emula-
tion to disrupt binary code injection attacks. In Proc. the
10th ACM Conference on Computer and Communications
Security, October 2003, pp.281-289.

[10]

[11]

[12]

[13

[14]

18]

[19]

21]

22]

23]

[24]

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

Kc G S, Keromytis A D, Prevelakis V. Countering code-
injection attacks with instruction-set randomization. In
Proc. the 10th ACM Conference on Computer and Com-
munications Security, October 2003, pp.272-280.

Just J E, Cornwell M. Review and analysis of synthetic di-
versity for breaking monocultures. In Proc. the 2004 ACM
Workshop on Rapid Malcode, October 2004, pp.23-32.

Stamp M. Risks of monoculture. Communications of the
ACM, March 2004, 47(3): 120.

Forrest S, Somayaji A, Ackley D H. Building diverse com-
puter systems. In Proc. the 6th Workshop on Hot Topics in
Operating Systems, May 1997, pp.67-72.

Cox B, Evans D, Filipi A, Rowanhill J, Hu W, Davidson J,
Knight J, Nguyen-Tuong A, Hiser J. N-variant systems: A
secretless framework for security through diversity. In Proc.
the 15th Conference on USENIX Security Symposium, July
2006, Article No. 16.

Gherbi A, Charpentier R. Diversity-based approaches to
software systems security. In Proc. International Confe-
rence on Security Technology, December 2011, pp.228-237.
Neti S, Somayaji A, Locasto M E. Software diversity: Se-
curity, entropy and game theory. In Proc. the 7th USENIX
Workshop on Hot Topics in Security, August 2012, Article
No. 5.

Jacob M, Jakubowski M H, Naldurg P, Saw C W, Venkate-
san R. The superdiversifier: Peephole individualization for
software protection. In Proc. the 3rd International Work-
shop on Security, November 2008, pp.100-120.

Antonatos S, Akritidis P, Markatos E P, Anagnostakis K
G. Defending against hitlist worms using network address
space randomization. In Proc. the 2005 ACM Workshop on
Rapid Malcode, November 2005, pp.30-40.

Bangalore A K, Sood A K. Securing web servers using self
cleansing intrusion tolerance (SCIT). In Proc. the 2nd In-
ternational Conference on Dependability, June 2009, pp.60-
65.

Boyd S W, Keromytis A D. SQLrand: Preventing SQL in-
jection attacks. In Proc. the 2nd International Conference
on Applied Cryptography and Network Security, June 2004,
pp-292-302.

Portner J, Kerr J, Chu B. Moving target defense against
cross-site scripting attacks (position paper). In Proc. the
7th International Symposium on Foundations and Practice
of Security, November 2015, pp.85-91.

Jia @, Sun K, Stavrou A. MOTAG: Moving target de-
fense against internet denial of service attacks. In Proc. the
22nd International Conference on Computer Communica-
tion and Networks, July 2013.

Venkatesan S, Albanese M, Amin K, Jajodia S, Wright M. A
moving target defense approach to mitigate DDoS attacks
against proxy-based architectures. In Proc. IEEE Confe-
rence on Communications and Network Security, October
2016, pp.198-206.

Shacham H, Page M, Pfaff B, Goh E J, Modadugu N, Boneh
D. On the effectiveness of address-space randomization. In
Proc. the 11th ACM Conference on Computer and Com-
munications Security, October 2004, pp.298-307.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective

[25]

[26]

[27]

[28]

[29]

[30]

31]

[34]

[35]

[36]

37]

[38]

Bittau A, Belay A, Mashtizadeh A, Mazieéres D, Boneh D.
Hacking blind. In Proc. IEEE Symposium on Security and
Privacy, May 2014, pp.227-242.

Hund R, Willems C, Holz T. Practical timing side channel
attacks against kernel space ASLR. In Proc. IEEE Sympo-
sium on Security and Privacy, May 2013, pp.191-205.
Seibert J, Okhravi H, Soéderstrom E. Information leaks
without memory disclosures: Remote side channel attacks
on diversified code. In Proc. the 2014 ACM SIGSAC Confe-
rence on Computer and Communications Security, Novem-
ber 2014, pp.54-65.

Pappas V, Polychronakis M, Keromytis A D. Smashing the
gadgets: Hindering return-oriented programming using in-
place code randomization. In Proc. IEEE Symposium on
Security and Privacy, May 2012, pp.601-615.

Wartell R, Mohan V, Hamlen K W, Lin Z Q. Binary stir-
ring: Self-randomizing instruction addresses of legacy x86
binary code. In Proc. the 2012 ACM Conference on Com-
puter and Communications Security, October 2012, pp.157-
168.

Snow K Z, Monrose F, Davi L, Dmitrienko A, Liebchen C,
Sadeghi A R. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In Proc.
the 2013 IEEE Symposium on Security and Privacy, May
2013, pp.574-588.

Hu W, Hiser J, Williams D, Filipi A, Davidson J W, Evans
D, Knight J C, Nguyen-Tuong A, Rowanhill J. Secure and
practical defense against code-injection attacks using soft-
ware dynamic translation. In Proc. the 2nd International
Conference on Virtual Execution Environments, June 2006,
pp-2-12.

Porras P. Inside risks: Reflections on Conficker. Communi-
cations of the ACM, 2009, 52(10): 23-24.

Portokalidis G, Keromytis A D. Global ISR: Toward a com-
prehensive defense against unauthorized code execution. In
Mowing Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats, Jajodia S, Ghosh A K, Swarup V, Wang
C, Wang X S (eds.), Springer, 2011, pp.49-76.

Chen L M, Avizienis A. N-version programming: A fault-
tolerance approach to reliability of software operation. In
Proc. the 25th International Symposium on Fault-Tolerant
Computing, June 1995, pp.113-119.

Massalin H. Superoptimizer: A look at the smallest pro-
gram. In Proc. the 2nd International Conference on Archi-
tectual Support for Programming Languages and Operating
Systems, October 1987, pp.122-126.

Jackson T, Salamat B, Homescu A, Manivannan K, Wagner
G, Gal A, Brunthaler S, Wimmer C, Franz M. Compiler-
generated software diversity. In Mowving Target Defense:
Creating Asymmetric Uncertainty for Cyber Threats, Ja-
jodia S, Ghosh A K, Swarup V, Wang C, Wang X S (eds.),
Springer, 2011, pp.77-98.

Cabutto A, Falcarin P, Abrath B, Coppens B, De Sutter
B. Software protection with code mobility. In Proc. the 2nd
ACM Workshop on Moving Target Defense, October 2015,
pp.95-103.

Franz M. E unibus pluram: Massive-scale software diversity
as a defense mechanism. In Proc. the 2010 New Security
Paradigms Workshop, September 2010, pp.7-16.

[39]

[40]

[43]

[44]

[45]

[46]

[49]

[51]

231

Jackson T, Homescu A, Crane S, Larsen P, Brunthaler S,
Franz M. Diversifying the software stack using randomized
NOP insertion. In Moving Target Defense II: Application of
Game Theory and Adversarial Modeling, Jajodia S, Ghosh
A K, Subrahmanian V S, Swarup V, Wang C, Wang X S
(eds.), Springer, 2013, pp.151-173.

Hobson T, Okhravi H, Bigelow D, Rudd R, Streilein W.
On the challenges of effective movement. In Proc. the 1st
ACM Workshop on Moving Target Defense, November
2014, pp.41-50.

Spinellis D. Reflection as a mechanism for software integrity
verification. ACM Transactions on Information and System
Security, 2000, 3(1): 51-62.

Msgna M, Markantonakis K, Naccache D, Mayes K. Verify-
ing software integrity in embedded systems: A side channel
approach. In Proc. the 5th International Workshop on Con-
structive Side-Channel Analysis and Secure Design, April
2014, pp.261-280.

Basili V R, Selby R W. Comparing the effectiveness of soft-
ware testing strategies. IEEE Transactions on Software En-
gineering, 1987, SE-13(12):1278-1296.

Shacham H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proc. the 14th ACM Conference on Computer and Com-
munications Security, October 2007, pp.552-561.

Pappas V, Polychronakis M, Keromytis A D. Practical soft-
ware diversification using in-place code randomization. In
Mowving Target Defense II: Application of Game Theory
and Adversarial Modeling, Jajodia S, Ghosh A K, Subrah-
manian V S, Swarup V, Wang C, Wang X S (eds.), Springer,
2013, pp.175-202.

Cui A, Stolfo S J. Symbiotes and defensive mutualism:
Moving target defense. In Moving Target Defense: Creat-
ing Asymmetric Uncertainty for Cyber Threats, Jajodia S,
Ghosh A K, Swarup V, Wang C, Wang X S (eds.), Springer,
2011, pp.99-108.

Zhuang R, Zhang S, Bardas A, DeL.oach S A, Ou X, Singhal
A. Investigating the application of moving target defenses to
network security. In Proc. the 6th International Symposium
on Resilient Control Systems, August 2013, pp.162-169.
Al-Shaer E. Toward network configuration randomization
for moving target defense. In Moving Target Defense: Cre-
ating Asymmetric Uncertainty for Cyber Threats, Jajodia
S, Ghosh A K, Swarup V, Wang C, Wang X S (eds.),
Springer, 2011, pp.153-159.

Dunlop M, Groat S, Urbanski W, Marchany R, Tront J.
MT6D: A moving target IPv6 defense. In Proc. Military
Communications Conference, November 2011, pp.1321-
1326.

Jafarian J H, Al-Shaer E, Duan Q. OpenFlow random host
mutation: Transparent moving target defense using soft-
ware defined networking. In Proc. the 1st Workshop on Hot
Topics in Software Defined Networks, August 2012, pp.127-
132.

Groat S, Dunlop M, Urbanksi W, Marchany R, Tront J.
Using an IPv6 moving target defense to protect the Smart
Grid. In Proc. IEEE PES Innovative Smart Grid Technolo-
gies, January 2012.

232

[52]

[53]

[55]

[57]

[61]

[62]

[63]

[64]

[65]

Clark A, Sun K, Poovendran R. Effectiveness of IP ad-
dress randomization in decoy-based moving target defense.
In Proc. the 52nd IEEE Conference on Decision and Con-
trol, December 2013, pp.678-685.

Zheng J, Namin A S. The impact of address changes and
host diversity on the effectiveness of moving target defense
strategy. In Proc. the 40th Annual Computer Software and
Applications Conference, June 2016, Volume 2, pp.553-558.

Wang H, Xi Z, Li F, Chen S. WebTrap: A dynamic defense
scheme against economic denial of sustainability attacks. In
Proc. IEEE Conference on Communications and Network
Security, October 2017.

Yeung F, Cho P, Morrell C, Marchany R, Tront J. Modeling
network based moving target defense impacts through sim-
ulation in Ns-3. In Proc. IEEE Military Communications
Conference, November 2016, pp.746-751.

Huang Y, Ghosh A K. Introducing diversity and uncertainty
to create moving attack surfaces for web services. In Mow-
ing Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats, Jajodia S, Ghosh A K, Swarup V, Wang C,
Wang X S (eds.), Springer, 2011, pp.131-151.

Bardas A G, Sundaramurthy S C, Ou X M, DeLoach S A.
MTD CBITS: Moving target defense for cloud-based IT sys-
tems. In Proc. the 22nd European Symposium on Research
in Computer Security, September 2017, pp.167-186.

Stoll C. The Cuckoo’s Egg: Tracking a Spy Through the
Maze of Computer Espionage (1st edition). The Bodley
Head Ltd, 1989.

Kreutz D, Ramos F M V, Verissimo P E, Rothenberg C
E, Azodolmolky S, Uhlig S. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 2015,
103(1): 14-76.

MacFarland D C, Shue C A. The SDN shuffle: Creating
a moving-target defense using host-based software-defined
networking. In Proc. the 2nd ACM Workshop on Moving
Target Defense, October 2015, pp.37-41.

Wang K, Chen X, Zhu Y F. Random domain name and ad-
dress mutation (RDAM) for thwarting reconnaissance at-
tacks. PLOS ONE, 2017, 12(5): Article No. e0177111.

Skowyra R, Bauer K, Dedhia V, Okhravi H. Have No
PHEAR: Networks without identifiers. In Proc. the 2016
ACM Workshop on Moving Target Defense, October 2016,
pp.3-14.

Kampanakis P, Perros H, Beyene T. SDN-based solutions
for moving target defense network protection. In Proc.
IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, June 2014.

Chowdhary A, Pisharody S, Huang D. SDN based scalable
MTD solution in cloud network. InProc. the 2016 ACM
Workshop on Moving Target Defense, October 2016, pp.27-
36.

Kil C, Jun J, Bookholt C, Xu J, Ning P. Address Space Lay-
out Permutation (ASLP): Towards fine-grained randomiza-
tion of commodity software. In Proc. the 22nd Annual Com-
puter Security Applications Conference, December 2006,
pp.339-348.

[66]

[68]

[69]

[72]

73]

[75]

[76]

[77]

78

J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

Casola V, de Benedictis A, Albanese M. A moving target
defense approach for protecting resource-constrained dis-
tributed devices. In Proc. the 14th International Conference
on Information Reuse and Integration, August 2013, pp.22-
29.

Zeitz K, Cantrell M, Marchany R, Tront J. Designing a
micro-moving target IPv6 defense for the Internet of things.
In Proc. the 2nd International Conference on Internet-of-
Things Design and Implementation, April 2017, pp.179-
184.

Kumar A, Aggarwal A. Lightweight cryptographic primi-
tives for mobile ad hoc networks. In Proc. International
Conference on Recent Trends in Computer Networks and
Distributed Systems Security, October 2012, pp.240-251.
Okhravi H, Riordan J, Carter K. Quantitative evaluation
of dynamic platform techniques as a defensive mechanism.
In Proc. the 17th International Symposium on Research in
Attacks, Intrusions and Defenses, September 2014, pp.405-
425.

Hamlet J R, Lamb C C. Dependency graph analysis
and moving target defense selection. In Proc. the 2016
ACM Workshop on Moving Target Defense, October 2016,
pp.105-116.

Green M, MacFarland D C, Smestad D R, Shue C A.
Characterizing network-based moving target defenses. In
Proc. the 2nd ACM Workshop on Moving Target Defense,
October 2015, pp.31-35.

Zaffarano K, Taylor J, Hamilton S. A quantitative frame-
work for moving target defense effectiveness evaluation. In
Proc. the 2nd ACM Workshop on Moving Target Defense,
October 2015, pp.3-10.

Taylor J, Zaffarano K, Koller B, Bancroft C, Syversen J.
Automated effectiveness evaluation of moving target de-
fenses: Metrics for missions and attacks. In Proc. the 2016
ACM Workshop on Moving Target Defense, October 2016,
pp.129-134.

Evans D, Nguyen-Tuong A, Knight J. Effectiveness of mov-
Creat-
ing Asymmetric Uncertainty for Cyber Threats, Jajodia S,
Ghosh A K, Swarup V, Wang C, Wang X S (eds.), Springer,
2011, pp.29-48.

Xu J, Guo P Y, Zhao M Y, Erbacher R F, Zhu M H, Liu P.
Comparing different moving target defense techniques. In
Proc. the 1st ACM Workshop on Moving Target Defense,
November 2014, pp.97-107.

Manadhata P K. Game theoretic approaches to attack sur-

ing target defenses. In Mowving Target Defense:

face shifting. In Moving Target Defense II: Application of
Game Theory and Adversarial Modeling, Jajodia S, Ghosh
A K, Subrahmanian V S, Swarup V, Wang C, Wang X S
(eds.), Springer, 2013, pp.1-13.

Zhu Q Y, Bagar T. Game-theoretic approach to feedback-
driven multi-stage moving target defense. In Proc. the 4th
International Conference on Decision and Game Theory
for Security, November 2013, pp.246-263.

Zheng J J, Namin A S. A Markov decision process to de-
termine optimal policies in moving target. In Proc. ACM
SIGSAC Conference on Computer and Communications
Security, October 2018, pp.2321-2323.

Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 233

[79] Carter K M, Riordan J F, Okhravi H. A game theoretic
approach to strategy determination for dynamic platform
defenses. In Proc. the 1st ACM Workshop on Moving Tar-
get Defense, November 2014, pp.21-30.

[80] Maleki H, Valizadeh S, Koch W, Bestavros A, van Dijk M.
Markov modeling of moving target defense games. In Proc.
the 2016 ACM Workshop on Moving Target Defense, Oc-
tober 2016, pp.81-92.

Akbar Siami Namin received his
Ph.D. degree in computer science from
University of Western Ontario, London,
Canada, in 2008. He is currently an
associate professor in the Department
of Computer Science at Texas Tech
University, Lubbock. His research inter-

ests include software engineering, cyber

Jianjun Zheng received his first and software security, analytical reasoning, and machine
Master’s degree in computer science and learning. He has published over 80 research papers in
his second Master’s degree in statistics premier software engineering and security venues. His

in 2004 and 2013, respectively, both research is funded by National Science Foundation of USA.
from Texas Tech University, Lubbock.
He is currently a Ph.D. candidate in
the Department of Computer Science,
Texas Tech University, Lubbock. His
research focuses on modeling moving target defense and

network defense strategy optimization.

