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Abstract As the complexity and the scale of networks continue to grow, the management of the network operations and

security defense has become a challenging task for network administrators, and many network devices may not be updated

timely, leaving the network vulnerable to potential attacks. Moreover, the static nature of our existing network infrastructure

allows attackers to have enough time to study the static configurations of the network and to launch well-crafted attacks at

their convenience while defenders have to work around the clock to defend the network. This asymmetry, in terms of time

and money invested, has given attackers greater advantage than defenders and has made the security defense even more

challenging. It calls for new and innovative ideas to fix the problem. Moving Target Defense (MTD) is one of the innovative

ideas which implements diverse and dynamic configurations of network systems with the goal of puzzling the exact attack

surfaces available to attackers. As a result, the system status with the MTD strategy is unpredictable to attackers, hard to

exploit, and is more resilient to various forms of attacks. There are existing survey papers on various MTD techniques, but

to the best of our knowledge, insufficient focus was given on the architectural perspective of MTD strategies or some new

technologies such as Internet of Things (IoT). This paper presents a comprehensive survey on MTD and implementation

strategies from the perspective of the architecture of the complete network system, covering the motivation for MTD, the

explanation of main MTD concepts, ongoing research efforts of MTD and its implementation at each level of the network

system, and the future research opportunities offered by new technologies such as Software-Defined Networking (SDN) and

Internet of Things (IoT).
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1 Introduction

1.1 Easy Targets: Static Nature of Networks

Computer system administrators have been strug-

gling with harmful attackers since the beginning of the

digital era. In the past, when not many computer sys-

tems were interconnected, attackers had very limited

capabilities to launch harmful attacks. The situation,

however, has quickly turned into a complex one, as

more and more computers are interconnected for the

purpose of sharing data and services. Nowadays, even

without having physical access to vulnerable targets,

attackers can utilize emailing services, craft malicious

network packets, or employ some other network services

to launch attacks remotely and anonymously. The secu-

rity status of one computer may have significant impact

on the security status of all connected computers and

thus on the entire network hosting these computers.

In a highly connected network, attackers can uti-

lize any exploited computer system as a platform

for launching further attacks against other connected

computers and eventually the entire network. More-

over, by utilizing powerful publicly available scripting

tools, these malicious entities are capable of automat-

ing their attack scenarios at their convenient time and

location and launch them with little cost. To defend

against malicious attackers, computer administrators

or security administrators must closely monitor their

systems around the clock, analyze network traffic care-

fully, patch up any discovered vulnerabilities, and keep

all computers and software systems up to date. As the

network size grows, the workload and the cost of main-
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tenance and more importantly security management

grow rapidly. Therefore, security administrators must

employ new tools and techniques to protect the un-

derlying operational infrastructure. For instance, the

use of network scanning and fingerprinting tools (e.g.,

Nmap 1○) is very popular nowadays. Ironically, profes-

sional attackers also utilize these types of tools to detect

vulnerabilities in the network with the intention of ex-

ploiting the discovered security loopholes in the system.

Besides scanning tools, other network defense ser-

vices are also implemented, such as firewalls, Intru-

sion Detection Systems (IDS), and Intrusion Prevention

Systems (IPS) with the aim of monitoring network traf-

fic and blocking unauthorized access to valuable data

and assets on networks.

Any vulnerable component in a system is associated

with a great risk that might be exploited by attackers.

The collection of such vulnerabilities is referred to as

the attack surface usually examined by malicious enti-

ties over the network[1]. In computer networking, at-

tack surface may refer to any system resources exposed

to attackers, such as software residing on the hosts,

communication ports between hosts[2] or active virtual

machine (VM) instances[3]. In order to strengthen the

system and enhance the security of the underlying in-

frastructure, network administrators must clearly tag

the attack surface and then employ security techniques

to minimize or eliminate it. For instance, to ensure

timely the installation of OS security patches, the secu-

rity administrators need to shut down unused services,

close unused open ports, delete obsolete user accounts,

and remove unnecessary software. It is a typical and

effective approach to defend against various attacks.

However, even with these sophisticated security de-

fense tools and other resources invested, cyber attack-

ers still are able to discover vulnerabilities in network

systems. According to the Symantec Internet Security

Report published in April 2016 2○, on average a new

zero-day vulnerability was found each week in 2015,

more than double compared with 2014. The report also

showed more than 75% of all legitimate websites had

unpatched vulnerabilities and 15% of legitimate web-

sites had critical vulnerabilities. Some possible reasons

for this situation are as follows. Firstly, it is a heavy

and expensive workload for administrators to maintain

and manage the efficiency and performance of the large

enterprise networks. As a result, security checkups and

updates are often delayed. Secondly, not all admin-

istrators have enough ongoing training on the latest

security measures that can be utilized and deployed

to enhance the network security. Thirdly, the exist-

ing architectures for typical networks are usually de-

signed to ensure the reliability of processes for mission

critical operations, but are less focused on the security

aspect. Therefore, the configurations and settings of

these networks usually remain unchanged for a consid-

erably long time. While the static nature of the existing

architectures for networks is beneficial to ensuring the

high performance of business operations, it could leave

networks a clean target for attacks and give attackers

big advantages over security administrators considering

the time and resources invested: it takes trivial efforts

for attackers to discover and exploit such static net-

works because they can do it anytime and anywhere

without being concerned about changes in the configu-

ration of the targeted infrastructure. In order to change

this situation and better defend networks, new defense

strategies are indeed needed.

1.2 Moving Target Defense: A Game Changer

Moving Target Defense (MTD) is one of the game

changing strategies proposed in the National Cyber

Leap Year Summit in 2009 3○. MTD is based on the idea

of security through diversification and its main focus is

to dynamically and randomly change the configurations

of a target, i.e., a host computer or a whole network.

Such random changes in the configuration of systems

increase uncertainty, complexity and unpredictability,

making it computationally harder for attackers to ex-

ploit such a constantly changing environment.

This paper presents a comprehensive literature sur-

vey on Moving Target Defense (MTD) to date with a

leveled approach based on howMTD is researched, eval-

uated, and implemented.

This survey paper is organized as follows. Sec-

tion 2 presents our survey methodology and contribu-

tions. Section 3 provides the background information

of MTD. Section 4 covers the cyber attacks that can be

addressed by MTD strategies. Section 5 presents the

classifications of MTD strategies. Section 6 provides

an overview of the existing MTD analysis work. Sec-

tion 7 sketches future research directions for MTD, and

Section 8 concludes this survey paper.

1○https://nmap.org, Nov. 2018.
2○https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf, Nov. 2018.
3○https://www.nitrd.gov/nitrdgroups/index.php?title=National Cyber Leap Year Summit 2009, Nov. 2018.
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2 Survey Methodology

The official website of Department of Homeland Se-

curity defines the MTD approach as follows 4○:

“Moving Target Defense (MTD) is the concept of

controlling change across multiple system dimensions

in order to increase uncertainty and apparent comple-

xity for attackers, reduce their window of opportunity,

and increase the costs of their probing and attack ef-

forts. MTD enables us to create, analyze, evaluate,

and deploy mechanisms and strategies that are diverse

and that continually shift and change over time to in-

crease complexity and cost for attackers, limit the expo-

sure of vulnerabilities and opportunities for attack, and

increase system resiliency.”

However, among all research articles related to mov-

ing target defense techniques we surveyed, none of the

reviewed papers have provided a formal definition of

moving target defense, including the three previous sur-

vey papers[4−6], but the characteristics of MTD are de-

scribed in almost every paper.

By compiling the information from different sources

such as [4], the National Cyber Leap Year Summit in

2009, and NITRD 5○ 6○, we provide a formal definition

of Moving Target Defense in this survey paper as fol-

lows.

A target refers to an entity or asset, such as an ap-

plication, a computer, or a system that is exploitable

by adversaries with malicious intentions. Moving Tar-

get Defense in this survey paper refers to the techniques

that can change a target’s properties or configurations

randomly and regularly or the techniques that can in-

crease a target’s uncertainty and unpredictability, with

the goal of enhancing the security defense of the tar-

get while maintaining the essential functionality of the

target intact.

With this definition in mind, the authors initially

collected around 100 published papers with relevant

keywords and subjects, in addition to many online ar-

ticles. Each paper was carefully reviewed and summa-

rized. Then we finalized around 80 papers in this survey

based on the publication date, relevance to MTD, and

the publication venues. Most of the chosen papers were

from the ACM and IEEE digital libraries ranging from

the late 90s, when the basic idea of MTD was first intro-

duced, to the time of the writing of this survey paper.

The selected papers then were grouped into three cat-

egories with respect to the implementation approaches

of the MTD techniques addressed in each paper: 1) the

OS level approach, 2) the software/application level ap-

proach, and 3) the network level approach.

• The OS level approach includes research studies

that aim to implement MTD at the operating system

and the machine code level.

• The software/application level approach covers re-

search efforts that aim to integrate MTD into software

or application natively or through third-party tools be-

fore the software or application is released.

• The network level approach focuses on research

findings that aim at introducing MTD into specific

hosts on a network and even the entire network.

These three categories are not mutually exclusive.

For instance, TALENT[7,8] uses a portable checkpoint

compiler to compile the application for different archi-

tectures. This compiler technique can be categorized as

the software/application level approach, but since mul-

tiple MTD techniques are integrated and orchestrated

in TALENT to protect mission critical applications on

a network, we can also consider TALENT as a network

level approach of MTD. The authors believe the paper

selection strategy resulted in a representative collection

of papers reflecting the state-of-the-art of this line of re-

search.

2.1 Architectural Perspective of MTD

Okhravi et al.[4] published a technical report for the

Department of Defense on various moving target de-

fense techniques. It provides a technical and qualitative

summary of different moving target techniques, threat

modeling, and their strengths along with their weak-

nesses. The work is very informative and useful, but it

is less focused on quantitative and analytical aspects of

the MTD line of research.

Published by Cai et al.[5], a collection of papers in

moving target defense field is reviewed. The papers are

categorized in three main topic areas: 1) MTD theory,

2) MTD strategy, and 3) MTD evaluation. The review

lays a good foundation of MTDs but missing some nece-

ssary information. More precisely, some detailed infor-

mation on the history of MTD, which explains the re-

cent shift of MTD research from application-oriented to

network-oriented, is missing from the research paper. It

is also less focused on discussing the weaknesses of the

4○https://www.dhs.gov/science-and-technology/csd-mtd, Nov. 2018.
5○https://www.nitrd.gov/cybersecurity/documents/NITRDHST2010.pdf, Nov. 2018.
6○https://www.nitrd.gov/cybersecurity/documents/NITRD IEEE SSP 2011.pdf, Nov. 2018.
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surveyed MTD strategies. Finally, Software-Defined

Networking (SDN) has become an important and in-

tegral part of MTDs, but it is only briefly mentioned in

the survey paper published by Cai et al.[5]

A recently published survey by Lei et al.[6] reviews

MTD research work from the perspectives of the theory

and design of MTD, the key techniques in MTD, and

the application of MTD. This review provides in-depth

information of MTD and future research opportunities,

but the application of MTD in their paper only focuses

on the network level and is less emphasized on the cov-

erage of the application of MTD on the lower level,

such as ASLR and software diversification. Our survey

paper, in addition to providing in-depth analysis and

reviews on the low-level approaches to MTD, also dis-

cusses the strength and weakness of the surveyed MTD

techniques and covers some new research work in the

Internet of Things and other small embedded systems.

This survey paper provides an alternative view and

comprehensive survey on MTD research that covers a

wide range of aspects of MTD such as the MTD his-

tory, implementation, strength and weakness compa-

rison, and an overview of existing MTD analysis. In

comparison to the survey papers published by Cai et

al.[5] and by Lei et al.[6], this work is more focused on

architectural aspects and classifications of MTD strate-

gies. This survey divides MTD strategies into three

broad categories based on the architectural view, where

a given MTD strategy aims to protect a system: 1)

the OS level, 2) the software/application level, and 3)

the network level. This type of structure of the survey

not only describes the practical and implementation in-

sights of the MTD research, but also shows a clear focus

shift in the MTD research: from the low level (the OS

level and the application level) to the high level (the

network level). The architectural view of MTD tech-

niques and the research focus shift revealed by our sur-

vey are major differences between ours and the previous

survey papers[4−6]. Table 1 shows a road map of the

survey.

3 Moving Target Defense: Background

Since the introduction of Moving Target Defense

at the National Cyber Leap Year Summit in 2009,

many researchers in many research articles have quickly

adopted the term. The fundamental concepts of MTD

can be traced in many other areas with a long history.

For example, the “shell game” is a good illustration of

the moving target concepts. In this game, an operator

places a target such as a pea under one of the three

identical face-down shells and shuffles them quickly for

many times. When stopped, the player, who can cor-

rectly identify which shell contains the pea, wins. Since

the target (the pea) is randomly moving, it is difficult

for the player to identify it. This dynamic defense strat-

Table 1. Roadmap of the Survey

Topic Classification Subsections & References

Introduction (Section 1) N/A [1–3]

Methodology & Contribution
(Section 2)

N/A [4–8]

Background of
MTD (Section 3)

N/A [9–19]

Cyber Attacks that MTD Can
Defend Against (Section 4)

N/A 4.1 Reconnaissance Attack
4.2 Code Injection Attacks

4.2.1 Buffer Overflow
4.2.2 SQL Injection[20]

4.2.3 Cross-Site Scripting (XSS)[21]

4.3 DDoS Attack[22,23]

4.4 Computer Worm Attack[18]

Key Strategies in MTD
(Section 5)

OS level
approaches

[24–31]

Software level approaches 5.2.1 Software Diversification[32−43]

5.2.2 Software Diversification Through Middleware[20,33,36,44−46]

Network level approaches 5.3.1 IP Address Randomization[47−55]

5.3.2 Virtualization-Based MTD[7,8,19,56,57]

5.3.3 Decoy-Based MTD[52,58]

5.3.4 Software-Defined Networking Based MTD[59−65]

5.3.5 Lightweight MTD[66−68]

Overview of Existing MTD
Analysis Studies (Section 6)

N/A [2, 8–10, 25–30, 40, 49, 50, 69–80]
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egy was gradually adapted into the computer security

as computer administrators start to recognize the fact

that perfect security is unattainable and start to shift

their focus on building alternative defensible systems

rather than perfectly securing systems. Randomness

and diversity are two essential components in the dy-

namic defense strategy and many defense research stu-

dies involve these two components.

In 2001, the PaX team introduced a technique called

Address Space Layout Randomization (ASLR) 7○ for

the Linux kernel to defend memory corruption attacks

by randomizing the memory address locations of key

data areas of a process. The implementation of ASLR

was effective and other major operating systems, such

as Windows, OS X and Solaris, later implemented

ASLR on their own platforms.

In 2003, the Instruction Set Randomization (ISR)

technique was proposed independently[9,10] with diffe-

rent designs and implementation and presented in the

10th ACM Conference on Computer and Communica-

tion Security. Unlike ASLR, ISR works at the machine

code level and aims to prevent code injection attacks

by randomizing the instruction set before sending it to

the processor for execution. The vulnerability of ap-

plication/software is a major security threat not only

to the computer where the application is installed but

also to the network to which the computer is connected.

In 2004, Just and Cornwell[11] and Stamp[12] pointed

out that monoculture enabled attackers to quickly at-

tack application vulnerabilities in a large scale and they

proposed to introduce diversity in software to mitigate

vulnerabilities. Many research studies confirm that di-

versity in software is effective[13−17].

As networking has become an essential part of ev-

ery company’s infrastructure, network security has at-

tracted researchers’ attention[18,19]. In 2009, the Na-

tional Cyber Leap Year Summit was held, and Moving

Target Defense idea was introduced by researchers as a

new defense strategy, and many research studies have

emerged ever since. For instance, Springer published

two books on Moving Target Defense and ACM started

the first Moving Target Defense Workshop in 2014.

MTDs are not meant to replace the current security

defense strategies, such as the reduction of attack sur-

faces, but to add another layer of security defense to

assist security administrators in employing a dynamic

approach for protecting the operational infrastructure.

The ultimate goal of MTD is to employ various tech-

niques and approaches to dynamically and randomly

change the configuration of the system in an unpre-

dictable manner. This will help in increasing the un-

certainty and unpredictability of the system behavior

and accordingly results in a constantly changing attack

surface leaving malicious entities puzzled with the tar-

geted system. MTD not only can confuse attackers and

increase their burden to launch attacks, but also can

thwart some common cyber attacks pertinent to this

type of dynamic security strategy.

4 Cyber Attacks Targeted with MTD

Strategies

The randomness, diversity, unpredictability, and

uncertainty introduced into a system by MTD tech-

niques can effectively defend against a certain range of

cyber attacks. This section gives an overview of four

types of popular cyber attacks and the MTD strategies

against them.

4.1 Reconnaissance Attacks

Rather than being a true attack, reconnaissance is

technically the initial phase of almost all attacks. Dur-

ing the reconnaissance phase, attackers utilize various

techniques and automated tools to probe and scan char-

acteristics of a certain target with the aim of gather-

ing important information about the target such as

OS types, running services and protocols, and open

ports, for potential vulnerability exploitation and at-

tacks. A system with an enabled MTD strategy is ef-

fective against a reconnaissance attack because the ran-

dom changes in the system orchestrated by the MTD

strategy will invalidate the information that the attack-

ers previously obtained.

4.2 Code Injection Attacks

A code injection attack happens when attackers take

advantage of vulnerabilities in a computer program or

the underlying system to inject and execute a piece

of malicious code. A carefully crafted code injection

attack can even grant the attacker with the adminis-

trative privilege to control the whole system. There

are different techniques that attackers use to achieve to

inject the malicious code, and some well-known tech-

niques are listed below.

7○https://pax.grsecurity.net/docs/aslr.txt, Nov. 2018.
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4.2.1 Buffer Overflow

Buffer overflow is a vulnerability in computer pro-

grams or the underlying languages that allows data

to be written into the buffer in the memory without

checking the boundary of the buffer. Attackers can

use carefully-crafted data to overrun the buffer boun-

dary to inject the malicious code past the end of the

buffer, resulting in a buffer overflow attack. Address

Space Layout Randomization (ASLR) is an effective

MTD technique against buffer overflow and some other

code injection attacks that rely on the address loca-

tion of the memory layout. Instruction Set Random-

ization (ISR)[9,10] is another MTD technique that has

been claimed to be effective against any code injection

attack including buffer overflow attacks. ASLR and ISR

will be discussed more in Subsection 5.1.

4.2.2 SQL Injection

The SQL injection is a type of code injection tar-

geting vulnerable data-driven applications. When an

application fails to filter or sanitize the user inputs be-

fore sending it to the database engine for execution,

the attacker can exploit this vulnerability to inject ma-

licious SQL queries into the user inputs to gain the

access to the protected data and even play the role of

the administrator of the database server.

SQLrand[20] is introduced as an MTD technique to

prevent the SQL injection attack at the language level

and will be discussed more in Subsection 5.2.2.

4.2.3 Cross-Site Scripting (XSS)

A cross-site scripting attack is another type of code

(client-side script) injection, in which malicious scripts

are injected into vulnerable websites viewed by other

users. When a user clicks a script-injected URL or visits

a web page infected by a malicious script, the malicious

script will be executed on the user’s computer with-

out the knowledge of the user. To protect users from

XSS attacks, all major web browsers include whitelist-

based protection feature. On the other hand, Portner

et al.[21] believed that utilization and maintenance of

such whitelisting was inflexible and therefore they pro-

posed a new approach to defend against XSS attacks

based on the principles of moving target defense. This

approach will be discussed more in Subsection 5.2.2.

4.3 DDoS Attack

A Distributed Denial of Service (DDoS) attack usu-

ally targets certain hosts on a typical network via two

steps to launch: 1) attackers compromise and take con-

trol of a myriad of computers on different networks;

2) attackers organize the compromised computers in

such a way that they simultaneously send large vol-

ume of traffic messages to flood the target host and

eventually force it to shut down or deny all service

requests from legitimate users. As proposed by sev-

eral researchers[22,23], MTD is an effective technique

for defending and mitigating DDoS attacks. More de-

scriptions will be presented and discussed in Subsec-

tion 5.3.1.

4.4 Computer Worm Attack

A computer worm is a stand-alone computer pro-

gram created with malicious purposes. These malicious

programs can cause various damages such as consuming

excessive network bandwidth, stealing information from

infected computers, and taking control of the infected

computers for launching some other attacks. Randomly

changing hosts’ IP addresses based on the MTD prin-

ciple can be an effective way to prevent the spread of

the computer worms, as stated in [18] which will be

discussed more in Section 5.3.1.

5 Key Strategies in Moving Target Defense

This survey divides MTD strategies into three broad

categories with respect to the architectural perspective:

1) the operating system level, 2) the software level, and

3) the network level.

5.1 Operating System Level Approaches

Some programming languages, e.g., C and C++, of-

fer low-level memory manipulation but do not provide

built-in libraries and packages specifically for protec-

tion against buffer boundaries violations. Hence, pro-

grams written in these languages are often vulnerable to

buffer overflow attacks if no explicit boundary checking

is implemented in the given program. Moreover, once

programs are loaded into the main memory, an attacker

can easily target and inject malicious code into those

memory locations.

In the past, the prevention of buffer overflow at-

tacks mainly relied on the implementation of buffer

bounds checking by programmers. Due to human er-

rors, however, buffer overflow problems continued to

exist in many released software applications. As a mat-

ter of fact, this type of vulnerability had been a com-

monly exploited vulnerability until the introduction of
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Address Space Layout Randomization (ASLR) in ma-

jor operating systems.

Address Space Layout Randomization (ASLR) is a

moving target defense strategy that prevents the ex-

ploitation of various memory corruption vulnerabilities,

such as buffer overflow attacks, by randomizing the

memory address locations of key data areas of a process.

As a result, it will be extremely difficult, if not impos-

sible, for attackers to predict the memory address lay-

out of the target’s loaded program for launching buffer

bounds attack through code injection. ASLR was first

implemented and released for the Linux PaX project

in July 2001 and was later implemented in other ma-

jor operating systems such as Windows, Mac OS, and

Solaris. The effectiveness of ASLR depends largely on

the performance of the randomization algorithm, which

is usually determined by the number of memory ad-

dresses available for randomization procedure. It has

been proven that ASLR is less effective when imple-

mented in computers whose architecture is 32-bit[24].

The number of possible settings of a randomized

memory layout can be computed by the following equa-

tion:

Nc = 2n,

where n is the number of address bits available for ran-

domization. For 32-bit computers, only 16 of 32 address

bits can be utilized for randomization, yielding up to

216 = 65 536 different settings for the randomized mem-

ory layout. This is a relatively small number and a sim-

ple brute force attack with 65 536 linear probes can find

out about all combinations within a short time. For 64-

bit architecture, however, there are at least 40 address

bits available for randomization which yields at least

240 = 1 099 511 627 776 combinations. Even though it

is possible to figure out all the combinations with a

brute force attack, the magnitude of the attack will be

large, and the attack will be quickly detected and ap-

propriate mitigation strategy can be adopted prior to

the attack being successful.

Besides being vulnerable to brute force attacks on

a 32-bit system, ASLR can also be bypassed by us-

ing memory disclosure technique 8○ 9○ on vulnerable ap-

plications on a system[25−27]. To prevent memory

disclosure issues, some schemes have been proposed

by randomizing the data and code segments of each

application[28,29]. However, Snow et al.[30] suggested

that these schemes may not be as promising as expected

and call for research on developing more comprehensive

defense techniques.

It is worth noting that to further protect the ope-

rating system from code injection attacks, a technique

called non-executable memory protection was proposed

and adopted by major OS vendors 10○ 11○. The non-

executable memory protection in an operating system

marks all writable regions of memory as non-executable

and it can prevent any injected code from being exe-

cuted. All current major operating systems have imple-

mented ASLR and non-executable memory protection

mechanism to provide protection against code injection

attacks.

In addition to buffer overflow attacks that target

the memory layouts, some other types of attacks inject

code to the low-level machine code, i.e., the instruc-

tion set. This type of code injection usually does not

necessarily cause programs or the underlying operating

system to crash. Therefore, these types of attacks are

harder to detect. To defend against this type of at-

tacks, a technique called “Instruction Set Randomiza-

tion (ISR)” was proposed independently by University

of New Mexico research group and Columbia University

research group, which uses a key-based XOR operation

to randomize the instruction set before it is passed to

the processor[9,10]. The processor will then use the same

key to reconstruct the instruction set for execution.

Without having knowledge about the key, any code

injected after the randomization will not be executed

by the processor because the processor will fail to re-

construct the instruction set. Since the ISR technique

works at the low level, it is transparent to applications,

languages, and compilers. The implementation of ISR

in practice, however, is limited mainly due to two ma-

jor drawbacks as noted by the Columbia group[10]: 1)

the performance overhead is high, and it needs hard-

ware support to be practical; 2) ISR requires applica-

tions to be statically linked to work efficiently. Later,

Hu et al.[31] proposed a new implementation of ISR

by utilizing the Software Dynamic Translation (SDT)

and Advanced Encryption Standard (AES). SDT pro-

vides a virtual execution environment that is responsi-

ble for loading, encrypting applications, decrypting ap-

8○https://media.blackhat.com/bh-us-12/Briefings/Serna/BH US 12 Serna Leak Era Slides.pdf, Nov. 2018.
9○https://www.blackhat.com/presentations/bh-usa-08/Sotirov Dowd/bh08-sotirov-dowd.pdf, Nov. 2018.
10○https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10, Nov. 2018.
11○http://pax.grsecurity.net/docs/noexec.txt, Nov. 2018.
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plication instructions, and verifying the decrypted in-

structions in preparation for execution. AES is used to

replace XOR operations in the previous ISR research

work to increase the security. Their experiment showed

that the performance results and the increased security

make their implementation a viable approach for pro-

tecting mission critical server applications, even with-

out special hardware support.

The Columbia University research group[10] stated

that the principle of ISR could be applied to protect

programming languages such as Perl and SQL[20,27].

5.2 Software/Application Level Approaches

Both ASLR and ISR can significantly prevent low-

level code injection attacks on computer systems. On

the other hand, attackers have found other ways to ex-

ecute their malicious code on the target system. The

computer worms Conficker[32] and Stuxnet 12○ are two

instances that demonstrate how attackers have taken

advantages of vulnerabilities at the application level,

where malicious programs are attached to certain run-

ning processes. This type of code “injection” is difficult

to detect because the code can stay dormant until a cer-

tain process executes or an event occurs. As a remedy,

[33] proposes to adopt the ISR technique across all soft-

ware layers and requires all programs be randomized

during the program installation process using various

keys. A special run-time environment is however re-

quired to translate the randomized programs into valid

executable ones before execution. As a result, any pro-

gram that fails the translation process will not be exe-

cuted.

The static code analysis tools, either open source

such as IntelliJ or Eclipse or proprietary such as Fortify

or AppScan 13○− 16○, are widely used to detect and fix pro-

gram bugs and potential vulnerabilities during the early

stages of the application development. These tools can

be launched to parse a given source code at any time

without executing the application. While these tools

can detect many potential vulnerabilities such as buffer

overflow and SQL injection, they cannot detect seman-

tic errors in the logic of the program. On the other

hand, the dynamic program analysis tools execute an

application at runtime by using specialized tools and

thus are capable of detecting semantic problems such

as logic errors, authentication problems, and authoriza-

tion issues. These dynamic analysis tools, however, re-

quire developing effective test cases, which may indicate

the high cost associated with this approach, especially

when the program under test is large and complex.

Ironically, malicious entities also utilize similar static

and dynamic analysis tools to discover potential vul-

nerabilities in an application, assuming having access

to the source code of the application, i.e., open source

software.

Software producer companies usually employ diffe-

rent secure programming techniques such as obfusca-

tion, wrapper, and encryption to protect their source

code from being reverse engineered. However, profes-

sional hackers always find a way to circumvent these

techniques and reverse engineer the source code. Once

vulnerabilities are discovered, they will be used to

launch attacks. This situation is attributed to soft-

ware “monoculture”[11,12], in which the binary code for

widely used software is identical and runs on a large

scale of computers, where the vulnerability found in one

copy of the software can be used to attack all the other

copies of the software. To address the monoculture is-

sue and its security consequence, researchers[13−17] pro-

posed to use software “diversification” techniques for

defense purposes.

5.2.1 Software Diversification

Software diversification was first introduced as

a means for increasing the reliability and fault-

tolerance of software through N -version programming

approaches[34]. Through N -version programming, the

software team generates N semantically equivalent pro-

grams from the same initial specifications. The ap-

proach greatly reduces the probability of identical soft-

ware faults occurring in two or more versions of the

program. In an analogous way, in security context,

software diversity works in such a way that multiple, se-

mantically equivalent versions of the software are gene-

rated. As a result, if attackers breach one of the ver-

sions, the knowledge gained from the damaged version

would not be applicable for the other versions of the

12○https://www.symantec.com/content/en/us/enterprise/media/security response/whitepapers/w32 stuxnet dossier.pdf, Nov.
2018.

13○https://www.jetbrains.com/idea, Nov. 2018.
14○https://www.eclipse.org, Nov. 2018.
15○https://software.microfocus.com/en-us/products/static-code-analysis-sast/overview, Nov. 2018.
16○https://www.ibm.com/security/application-security/appscan, Nov. 2018.



Jianjun Zheng, Akbar Siami Namin: Survey on Moving Target Defense Strategies: Architectural Perspective 215

software. Therefore, this approach reduces the success

rate of the attack.

There exist some other techniques for diversifying

software applications. For example, adding a nonfunc-

tional piece of code, called no-op or NOP, randomly

into the compiled code may disrupt code injection at-

tacks. The technique diversifies the memory layout of a

running application using techniques such as randomly

padding stack frames, randomizing the locations global

variables, and newly allocated stack frames[13].

Modern compilers are very intelligent and uti-

lize several optimization techniques to improve perfor-

mance. The optimization techniques employed are a

great source of variations for a given program. Su-

per optimization is a compiler technique introduced by

Massalin[35] to minimize the size of compiled code us-

ing a brute-force search. This type of optimization finds

the shortest instruction sequences for a desired function

implementation. Jacob et al.[17] extended the research

of super optimizer to create a super diversifier toolkit

to customize programs at the machine-code level. By

using a secret key, user-defined parameters, and empir-

ical data, the super diversifier guides the brute-force

search procedure to generate an individualized copy of

the compiled code. The research results indicate that

the user diversification is an effective way to defend

against signature-based attacks, in which malware or

viruses look for particular byte patterns in the exe-

cutable parts of the applications[17]. A direct benefit

of code individualization is the obfuscation of a given

binary code, which is typically used to prevent reverse

engineering. Reverse engineering in computer world

refers to the process of extracting design information

from a software product. It is beneficial and useful for

many occasions, but attackers may use this technique

to gain the insight knowledge of the targeted software

with the hope of finding vulnerabilities. With program

individualization, each copy of the program is unique,

and the launched reverse-engineering would only work

on the local copy of the program that the attacker owns.

Thus, the knowledge the malicious entities gain would

not be beneficial to attack other copies of the program.

However, recent research shows that a diversified pro-

gram can still be compromised by taking advantage of

memory corruptions[27] or stack vulnerability[25].

Based on the ideas of super diversifier, Jackson et

al.[36] proposed another compiler-based diversification

technique. Instead of substituting and pruning the ex-

isting instructions, the proposed technique randomly

inserts non-alignment NOP instructions to create di-

versity. A major advantage of this approach is its abi-

lity to generate a large number of software variants,

resulting in high unpredictability, which can greatly in-

crease the cost for malicious entities to launch attacks

against a system. Instead of diversifying the low-level

code, Cabutto et al.[37] presented a high-level technique

called “code mobility”. In code mobility, some parts

of the binary code blocks are removed from the soft-

ware before deployment and stored on a remote and

trusted server, and when the software is executed on

the client computer, the missing binary code blocks will

be fetched from the trusted server and injected into the

running process’ memory for execution. Code mobil-

ity aims to protect software from reverse engineering,

but Cabutto et al.[37] claimed that it can be combined

with any software diversification technique to improve

software protection.

Franz[38] argued that it is time to apply compiler-

generated diversity mechanism to a massive scale and

proposed a design idea for massive-scale software diver-

sity (MSSD) and delivery system based on the architec-

ture of online App Store. The core component in the de-

sign is a software diversification engine, which compiles

the software in a Just-In-Time (JIT) mode to generate

a unique version of the software each time when it is

downloaded by a client, resulting in a large number of

variants of the software. This scale of diversification

will make vulnerability exploitation difficult and will

increase the cost to the attacker dramatically. Jackson

et al.[39] extended Franz’s research[38] and introduced

another design idea called Multi-Variant Execution En-

vironment (MVEE) that can detect the exploitation of

vulnerabilities in a program at the runtime. To protect

a program, MVEE stores all variants of the program

and their normal behavior as a baseline, and then any

input to the program will be fed to all variants and be

monitored. A malicious input will cause a divergence

and MVEE will detect it and alert the user to take ac-

tions. MVEE can bring extra security to organizations,

but at a cost of computational overhead and perfor-

mance loss. Therefore, Jackson et al.[39] recommended

MVEE be implemented in organizations that can trade

off performance for extra security.

Challenges in Software Diversification. Despite all

the key advantages of various software diversification

techniques in security defense, there are three major

challenges that need to be addressed prior to the preva-

lently adapting of software diversification.

1) Cost of Generating Code Variants. In order to

be effective, a software diversification technique must
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generate a sufficient number of variants to ensure high

unpredictability, which can be measured by entropy

H(D)[40]. For a given moving target mechanism, D

stands for the dynamic portion of the attack surface

and H(D) is the entropy of D defined by:

H(X) = −
∑

i

p(xi) logb(p(xi)),

where p(xi) is the probability of the i-th instance of

the moving target. If H(D) ≫ 0, then the technique

meets the unpredictability requirement. However, it is

computationally expensive to generate all the variants,

even for an even small program. In practice, larger pro-

grams are more complex and would require a tremen-

dous number of variants. How to efficiently generate the

sufficient number of variants with low cost is a daunt-

ing challenge. The design of MSSD[38] can generate

variants in a massive scale to meet the unpredictabil-

ity requirement of MTD defense, but the cost can be

high. Franz[38] recommended MSSD be implemented in

a cloud computing environment for performance and af-

fordability, and argues that the cost associated with the

cloud computing can be absorbed either by the software

vendor or by the user who downloads the software.

2) Delivery of Software Variants. Another challenge

in performing software diversification at machine-code

level is the distribution of the large number of variants

to clients efficiently. For instance, it is a major chal-

lenge to deliver 21 000 versions of the software to clients.

The physical shipment of the large number of software

variants is impractical if not impossible. Moreover, dig-

ital downloading is less helpful because it would take up

huge amounts of space to store all the software variants

on the server.

MSSD[38] can address the challenge in the delivery

of software variants because each variant is generated

on demand whenever a client requests the software.

The software is downloaded to the client without the

needs for storing the variant on the server. However, as

mentioned above, the cost in MSSD can be high when a

large number of variants are generated and downloaded;

therefore, more research needs to be conducted on the

costs versus variants scale and delivery.

3) Software Updates and Patches. Software updates

and patches are usually applied for fixing discovered

vulnerabilities or bugs introduced through new features

in the software application or fixing existing or hidden

security problems. The common practice among soft-

ware companies, such as Microsoft, Google and Apple,

is to use a technique, called delta update, to achieve

fast delivery and installation of the software updates

and patches. A delta update file contains only the code

that has changed since the last update of the software,

avoiding the update of the entire application. Users

need only download and install a small patch file to up-

date the existing software. The delta approach to up-

dating applications turns out to be challenging as each

copy of the software running on the client’s computer is

diversified and unique. This is due to the fact that the

delta updating procedure is not aware of the exact loca-

tion in the code to start the software update process. A

straightforward solution to this challenge could be that

each client would be required to download a new diver-

sified version of the updated software. However, this

is apparently not efficient even for delivering a small

software update or patch. Another solution is to use a

random key to identify each version that is generated,

but it will require a complicated tracking process be-

sides the diversification and delivery process. This will

open many future research questions on performance,

cost, and security of the complex system.

4) Integrity and Verification of Software Variants.

When an application is distributed over the Internet,

the software company must ensure clients that the

downloaded software can be trusted, i.e., it contains no

flaws due to transmission failure, or is not being tam-

pered by malicious entities. This process is called Soft-

ware Integrity Verification[41,42]. For example, a soft-

ware company may apply a hash function, such as MD5

or SHA1, to generate a unique digital signature from its

software and distribute it along with the software over

the Internet. Then the client can use the same hash

function to generate a signature from the downloaded

software and compare it with the distributed signature.

If the two signatures match, then the downloaded soft-

ware can be trusted; otherwise, the integrity of the

downloaded software cannot be verified or trusted, and

the client should not use the software. When software is

diversified, however, each variant is unique and will re-

sult in a unique signature for integrity verification. For

software with a large number of variants, the integrity

verification process could become cumbersome. The ef-

ficiency and scalability of the integrity verification of

diversified software has not been fully investigated.

5) Validation of Software Variants. Software testing

is an important phase in the software lifecycle in which

software applications are tested as thoroughly as pos-

sible by using various rigorous methods, such as func-

tional testing and structural testing, before the software

products are released[43]. This important task could be
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very challenging when testing diversified software, due

to the randomness and unpredictability introduced by

software diversification on functional or structural level.

5.2.2 Software Diversification Through Middleware

Software diversification can be achieved by using a

middleware, which is a special program or an execution

environment, installed on the host computer, to pro-

vide the diversity for other applications running on the

same host. The idea of delegating the diversification

process to middleware applications is useful especially

when some vulnerabilities are discovered by malicious

entities, but the software developers have released no

security patches. The middleware program can diver-

sify the vulnerable software and prevent it from being

exploited by the attackers.

As discussed in Subsections 5.1, ALSR, non-

executable memory protection mechanism, and ISR

are efficient for defending against code injection at-

tacks. However, attackers have already developed

a new exploitation called “Return-Oriented Program-

ming” (ROP) to bypass those protections[44]. In ROP-

based exploitations, attackers do not inject any code

into the system memory, instead they carefully exploit

specific vulnerable programs. A successful exploit will

enable them to link together a number of machine in-

struction sequences in the memory, called “gadgets”,

for execution. Using the gadgets, attackers perform ar-

bitrary operations on a target computer even when the

computer has implemented the non-executable memory

protection.

Pappas et al.[45] proposed a technique called “in-

place code randomization”, which can be used directly

on executable versions of third-party software applica-

tions to defend against the ROP exploitation. In-place

code randomization is a code transformation technique

and uses a statistical model to determine which piece

of code can be safely extracted from the compiled bina-

ries, and the transformation is the key to defeat ROP

exploitation because the success of ROP exploitation

relies on the successful execution of all linked gadgets.

Any modified gadget can break the link causing the

exploitation to fail.

The experimental results[45] show that in-place code

randomization is a practical and effective way to thwart

ROP attacks directly on the third-party software, e.g.,

Adobe Flash Player. The major limitation of this tech-

nique, however, is that it cannot be used on software

with self-checksum feature because any code injection

can cause a checksum to fail.

Inspired by the ISR technique (see Subsection 5.1),

Boyd and Keromytis[20] implemented ISR on SQL to

defend against SQL injection attacks. The implemen-

tation is called SQLrand (SQL randomization). It re-

quires a middleware on the web server to randomize

standard operators such as keywords and commands

in SQL before accepting user input. On the database

end, it requires a proxy to de-randomize the query re-

turned from the web server, and then passes the query

to database engine for execution. Any user input con-

taining malicious code will not be derandomized and

thus will be dismissed from the execution.

In a book chapter, Portokalidis and Keromytis[33]

proposed that the ISR technique can be adopted glob-

ally across all layers of the software stack. The ba-

sic principle is to randomize keywords, operators and

function calls in the language before accepting user in-

put, and then de-randomize the instructions before exe-

cution. Two languages are used to demonstrate the

process: Perl and SQL, and their results show that ISR

is versatile and the implementation is successful with

low overhead.

Another approach to software diversification via

middleware is to use middleware software components

to monitor the target program and offer defense ser-

vices when needed. Although the target program might

not be able to be diversified natively for different rea-

sons, the middleware can be easily diversified in diffe-

rent ways. The combination of the target program and

the diversified middleware creates a diversified entity

with a better defense strategy. The aforementioned

MVEE[36] is an example of using middleware to monitor

and protect the target program.

Inspired by a common biological phenomenon,

called the symbiotic mutualistic relationship, in which

two organisms live together to provide mutual defense

against predators, Cui and Stolfo[46] proposed a host-

based defense mechanism called “Symbiotic Embedded

Machines” (SEM). SEM is a code structure injected

into the target program (host) to provide monitoring

and defense for the host program. Unlike anti-virus

or anti-spyware programs, SEMs are not installed on

the target computer, instead each SEM is infused into

the host software and yet each is self-contained, self-

fortified, and is executed along-side the host software.

The code of SEM can be randomized before injecting

into the host software and the combination of SEM and

the host software creates a unique executable, which

makes it much harder for attackers to exploit the sys-

tem with the knowledge gained from the executable.
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The principle of SEM can be used to develop applica-

tions, e.g., host-based IDS and rootkit detection. More

research and data are needed to evaluate its feasibility

and performance.

Challenges in Software Diversification via Middle-

ware. The use of middleware software in this type of

diversification techniques requires a special execution

platform and it might impose significant performance

overhead on the target program and even the entire

system. This could be very challenging to implement

the middleware at a large scale (i.e., enterprise level) or

in an environment where the program performance is

mission-critical and thus cannot be sacrificed.

5.3 Network Level Approaches

The network stability and performance are two ut-

most concerns for enterprises. The network stability

refers to the requirement that the network must be

able to continue to function even when some hosts

on the network become nonoperational for any reason.

For network performance, the network must be able to

transmit data efficiently and correctly between hosts.

These requirements have led to the current conventional

network architecture, which is distributed (for stability)

and static (for performance). For example, the Internet

Protocol (IP) 17○, a core protocol in the current Internet

architecture, is designed for efficient data transmission

between hosts on network that requires an IP address

to be assigned to each host. The IP addresses of the

source and the destination hosts are critical to the data

transmission between hosts. Unfortunately, attackers

can utilize this protocol to exploit the target hosts.

Once a network is configured and is operational, the

configurations of the network and even hosts usually

remain unchanged until further changes need to be im-

plemented. The static configuration of a network and

its hosts is important to stabilize the network in a dis-

tributed environment. However, it makes the imple-

mentation of MTD-based techniques very challenging.

There are many research studies that aim at em-

ploying MTD to protect specific hosts on a network, or

even the entire network system. This subsection will

cover these techniques in four subcategories.

• IP Address Randomization. The IP address ran-

domization includes MTD strategies via the randomiza-

tion of IP addresses, port numbers, and network proto-

cols.

• Virtualization-Based MTD. The virtualization-

based MTD includes research that utilizes the virtuali-

zation technology to create an MTD defense system.

• Decoy-Based MTD. The decoy-based MTD sec-

tion, as the name suggests, includes researches that in-

troduce decoys into a network system as an MTD de-

fense strategy.

• Software-Defined Networking Based MTD. The

Software-Defined Networking based MTD subsection

includes researches that take advantage of SDN techno-

logy to provide MTD defense.

• Lightweight MTD. This subsection includes the re-

search studies that focus on the use of MTDs on small

embedded systems (i.e., wireless sensor networks) and

Internet of Things devices.

These subcategories are not mutually exclusive, and

some research studies might be a part of multiple sub-

categories based on the technologies they use. In these

cases, we classify the research based on the overall goal

of the work and the technology used. For instance,

Zhuang et al.[47] combined virtualization and IP address

randomization in their research. However, we include

the research in the IP address randomization subsec-

tion because the paper’s main focus is to investigate

the MTD performance vs the adaption interval and the

adaption includes the IP address randomization.

5.3.1 IP Address Randomization

The IP address randomization, also called IP ad-

dress mutation, is a basic MTD technique that has

been discussed in several lines of research[18,47−53]. A

typical network attack usually starts off with a recon-

naissance phase during which the attacker uses vari-

ous scanning and probing tools (e.g., Nmap) combined

with carefully-crafted packets to exploit the target host.

The reconnaissance attack is usually an automated and

scripted exploitation on a list of predefined IP ad-

dresses. Therefore, an intuitive way to countermeasure

the attack is to change the host’s IP address frequently

in order to invalidate the information previously ex-

posed to the attacker. This is the deriving idea behind

the IP address randomization technique.

The IP address randomization technique randomly

picks a new IP address from a pool of available IP ad-

dresses and assigns it to the target host. If the IP ad-

dress change happens between the reconnaissance phase

and the actual attack phase, then it thwarts the attack.

Otherwise, the attack will be successful. Fig.1 demon-

strates the IP address randomization defense model[53].

17○https://tools.ietf.org/html/rfc791, Nov. 2018.
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Fig.1. IP address randomization defense model.

In this model, the period (ti, tj) is called the IP ad-

dress retention period, during which the host holds the

same IP address until it changes. The attack crafting

period (Km, Kn) refers to the period between the com-

pletion of a malicious scan and the launch of an attack.

Then the outcome of an attack can be expressed as in

(1):

O(i,j) =

{

1 (successful), if ti 6 Km < Kn 6 tj ,

0 (unsuccessful), otherwise.

(1)

The IP address randomization technique is effective

for defending against reconnaissance or scanning at-

tacks. Antonatos et al.[18] used IP address randomiza-

tion technique in their research. They called their tech-

nique the “Network Space Address Randomization”

(NSAR) to defend against the hit-list worm attack. The

hit-list worms are specialized computer worms that are

spread to target computers based on predetermined list

of IP addresses of vulnerable targets. The technique

uses a customized version of Internet Systems Consor-

tium (ISC) open source DHCP server 18○, which expires

the IP allocations of all clients and then reassigns each

client a new IP address. The network address change

can invalidate partial or even complete list of IP ad-

dresses in the hit-list worm, and hence can slow down

the spread of the worm. The preliminary simulation of

this research on 1 000000 vulnerable clients shows that

NASR can increase the time of infecting 90% of clients

from five minutes without NASR to between 24 and 32

minutes, and can effectively contain the worm infection

rate under 15% of the vulnerable clients.

An important feature in the current network archi-

tecture is the efficient communication among hosts on

the network. To ensure a reliable network, network

protocols require hosts to exchange important informa-

tion such as connectivity status, running services, open

ports, and OS types. The information enables the net-

work administrator to objectively monitor the network

activities, locate and patch vulnerable hosts, and man-

age some other aspects of the network. Ironically, at-

tackers also take advantages of this feature to launch

“fingerprinting” attack against a network. A finger-

printing attack is an exploitation in which an attacker

sends various well-crafted requests to a target host and

obtains important information of the network with re-

spect to the responses received from the target.

Al-Shaer[48] proposed an MTD-based architecture,

called Mutable Networks (MUTE), to defend against

network reconnaissance, i.e., scanning and fingerprint-

ing. The MUTE architecture can periodically create al-

ternative random configurations (called mutation con-

sisting of host’s location and other identity information)

and apply them to the network without disrupting the

normal network operations and services. The periodic

random mutation in the network invalidates and de-

ceives the adversary’s fingerprinting results. Two tech-

niques are proposed in the MUTE architecture’s imple-

mentation.

1) Random Host Hopping. This technique is the

same with the IP address randomization technique as

described earlier.

2) Random Finger Printing. Host responses are in-

tercepted and randomly modified to contain false fin-

gerprinting information to deceive adversaries.

The randomization of host responses can be

achieved through two mechanisms. One is to inter-

cept and modify the session control messages (TCP

3-way handshake) to include false information. The

other is to utilize the network firewall to generate posi-

tive responses for all denied packets to deceive scan-

ners. Al-Shaer[48] shed some lights on some research

challenges on the MUTE architecture, such as fast and

unpredictable creation of mutation, deployability, and

scalability.

18○http://www.isc.org/downloads/dhcp, Nov. 2018.
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An MTD technique based on IP address random-

ization requires a large number of unallocated IP ad-

dresses to ensure the newly assigned IP address is truly

random and unpredictable. This means that any IPv4

(Internet Protocol version 4) network cannot meet this

requirement to implement effective IP address random-

ization MTD defense. The problem is rooted in the fact

that the current worldwide use has already exhausted

the available IPv4 addresses. Because of this limita-

tion, Network Address Translation (NAT) is commonly

used to expand the IP address space. Some research

also uses the combination of IP address, port number

and running service[47] or uses virtual IP addresses[50]

to improve the randomization process. However, the

more feasible and efficient solution is to switch to the

new Internet Protocol version 6 (IPv6) which can pro-

duce over 3.4× 1038 possible IPv6 addresses.

The adoption of IPv6, however, introduces new

security challenges. For example, instead of relying

on a DHCP server to assign IP addresses to hosts,

IPv6 protocol allows an IPv6 host to self-configure its

unique IPv6 address automatically. This method is

called Stateless Address Auto-Configuration (SLAAC).

SLAAC can reduce network administrative cost because

there is no need to use any DHCP server or NAT (Net-

work Address Translation) service 19○. In SLAAC, the

IEEE Extended Unique Identifier (EUI-64) 20○ is com-

monly used to generate the IPv6 address. The address,

however, contains the host’s MAC address, which can

be tracked easily. The exposition of MAC address is

especially serious for networks with strict requirements

such as military networks and Smart Grids.

Dunlup et al.[49] proposed a new strategy called

MT6D that utilizes MTD in IPv6-based networks to en-

hance the security and privacy between trusted hosts.

The architecture of any MT6D host consists of an en-

capsulator, decapsulator, and a Shared Routing Table

(SRT). The encapsulator is responsible for transmitting

all outbound packets, the decapsulator is responsible for

receiving all inbound packets, and SRT stores the ad-

dresses of a sender host and its trusted receiver hosts,

and the shared symmetric key for each sender/receiver

pair. Upon receiving an outbound packet, the encapsu-

lator will obscure the source and destination addresses

and other private information in the packet by using

the shared symmetric key, and then append it to a new

IPv6 header to create a new IPv6 packet which will

be transmitted to the receiver host. Upon receiving an

inbound packet, the decapsulator will fetch the shared

symmetric key and the original addresses in the SRT to

reconstruct the data packet, and then deliver it to the

host. If a packet is sent to an untrusted receiver, or is

received from an untrusted sender, then the encapsu-

lator or the decapsulator will immediately forward the

packet to the nearest gateway device for processing. A

proof of concept prototype software implementation of

the MT6D was provided in [49] and the results showed

that the MT6D concept is valid and feasible.

An enhanced implementation of MT6D was later

adopted by Groat et al.[51] to protect Smart Grid. The

existing current electric grid is a network of different

power equipment, such as transmission lines, transform-

ers and substations, which delivers electricity from a

power plant to the home or business consumers. The

first electric grid was built in 1890s and since then the

technology has been improved. The increasing comple-

xity and consumption of electricity today have imposed

challenges on various aspects of electric grids such as ef-

ficiency, reliability and security.

Smart Grid 21○ is a new and innovative design of elec-

tric grids to address the challenges and to provide re-

liable and efficient electric energy. By incorporating

system controls, computers, and automation techno-

logy, Smart Grid enables a two-way interactive com-

munication mechanism between its provider and the

consumers. The communication provides its consumers

with more visibility and controls over their electric us-

age. In addition, it enables the electricity provider to

efficiently adapt to changes that occurred during the

electric demands and to respond quickly and strategi-

cally to an electricity disruption.

Groat et al.[51] suggested using IPv6 for the Smart

Grid communications because by adopting the IP-based

communications, Smart Grid can take advantage of the

existing and mature Internet technologies and infras-

tructure. To address the aforementioned security con-

cerns in IPv6, Dunlop et al. also proposed to adopt

MT6D[49] in Smart Grid to defend against targeted

network attack by providing anonymity to consumers’

identity. The simulation results[51] show that MT6D is

a viable solution for the security defense in the Smart

Grid. The major drawback of using MT6D is its over-

head associated with latency and data encapsulation

and de-capsulation. Moreover, MT6D cannot operate

19○https://tools.ietf.org/html/rfc4291.html, Nov. 2018.
20○https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf, Nov. 2018.
21○https://www.smartgrid.gov/the smart grid/index.html, Nov. 2018.
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in a network that is managed by a DHCPv6 server.

These limitations may prevent the MT6D design from

being widely adopted.

Zhuang et al.[47] presented a research that combined

virtualization and IP address randomization to estab-

lish an intelligent moving target defense system. In

this system, every mission-critical service, called “role”,

such as database and Web servers, is executed on a

unique virtual machine (VM). Each VM is a dedi-

cated resource component installed on a host, called

“resource”. The configuration of the network at a mo-

ment is called adaption in this design and each adap-

tion consists of attributes such as role, VM ID, host ID

and its IP address. A Configuration Manager stores all

adaptions to create a resource map and use it to con-

trol the packet flow from one resource to another. At

random intervals, an Adaption Engine produces a new

adaption and passes it to the Configuration Manager to

replace the old adaption by matching the role name. If

a role was compromised, then the attacker could use it

to compromise some other roles and eventually to reach

their target role. However, if a new random adaption

was generated in time during the attack path, then the

attack would be thwarted and the target role would

be protected. Therefore, the frequency of the adaption

generation can impact how well the defense works. The

effectiveness of this approach was confirmed by the sim-

ulation results: as the adaption interval decreased (high

frequency), the effect of the MTD defense increased[47].

An Analysis Engine was also introduced to analyze vul-

nerabilities and attack activities and the analysis data

can help the Adaption Engine to make more intelligent

decision on when to create a new adaption, instead of

at a random interval.

Jia et al.[22] proposed a DDoS defense mechanism

called MOTAG by using IP address randomization. In

MOTAG, any protected server is behind a layer of proxy

server whose IP addresses are only known to authenti-

cated clients. All traffic between the client and the

server is relayed by a proxy node. When a proxy node

is under attack, it will be replaced by a new proxy node

with a different IP address and its clients will be shuf-

fled among proxies to set up new associations. Their

simulation test in MATLAB shows that MOTAG can

effectively defend brute-force DDoS attacks.

In MOTAG, the IP address of a proxy server does

not change until it is under attack. This reactive na-

ture of MOTAG makes it vulnerable to proxy harvest-

ing attack, as Venkatesan et al. later argued[23]. Proxy

harvesting attack is a reconnaissance attack in which

a malicious insider client sends a large number of re-

quests to the authentication server and collects the IP

addresses of proxy servers returned from the authen-

tication server. The collected IP addresses can then

be used to launch DDoS attack. Venkatesan et al.[23]

proposed a proactive defense mechanism against proxy

harvesting attack by randomly and regularly reassign-

ing IP addresses to proxy servers to disrupt the recon-

naissance efforts. Their simulation results showed that

their proposed defense strategy is effective.

An Economic Denial of Sustainability (EDoS) at-

tack targets cloud consumers by exploiting the “pay-

as-you-go” charging scheme in the cloud computing. In

an EDoS attack, an attacker can send a large number of

fraudulent requests to consume the services of the tar-

geted cloud consumer, which eventually exhausts the

budget of the cloud consumer and causes the consumer

not to be able to host his/her services in the cloud.

To defend against EDoS attacks, Wang et al.[54] pro-

posedWebTrap, a moving target defense and trap strat-

egy that dynamically changes the resource addresses to

hide the actual URL of the resource from the attackers

while trapping malicious EDoS attack bots using dy-

namic trap injection technique. The authors[54] claimed

that WebTrap can effectively reduce the cost incurred

by EDoS attack and the overhead incurred by WebTrap

is negligible.

Challenges in IP Address Randomization. The most

challenging part in an IP address-based randomization

technique is the requirement of a large IP address space.

However, as the advancement of the Internet of Things

paradigm pushes the wider adoption of IPv6, the re-

quirement can be satisfied in near future.

Another limitation of IP address-based randomiza-

tion is the potential “connectivity disruption” when a

new IP address is assigned to a host. For instance, dur-

ing a file transfer session between two hosts, if a host

is forced to switch to a new IP address before the file

transfer is complete, then the connection will be lost

and the service will be disrupted. This is usually ad-

dressed in research by using a stand-alone component

that monitors the host’s connection status. If an active

connection is detected, then the IP address randomiza-

tion will be temporarily suppressed until the connection

becomes idle. This technique, however, may decrease

the effectiveness of MTD. Although SCIT and MAS

maintain the connectivity to the VM online via a con-

troller or dispatcher, neither covers the IP assignment

to the VM. MT6D[49], however, is capable of preventing

any connection disruption, and it is tested and analyzed
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by Yeung et al.[55] that MT6D can ensure that traffic is

not lost during address change period. Besides MT6D,

more research is needed to balance the minimal connec-

tivity disruption and the effectiveness of MTD.

5.3.2 Virtualization-Based MTD

Virtualization has been a major driving force be-

hind moving target defense techniques. It enables net-

work administrators to easily and quickly modify the

network configurations at low cost such as hosts’ ope-

rating systems, IP address, port numbers and running

services at a lot cost in a virtualized environment, which

can be very challenging and costly in a physical net-

work. The Self Cleaning Intrusion Tolerance (SCIT) is

a theory proposed by Bangalore and Sood[19] to proac-

tively protect a server by reducing its exposure time on

the Internet from several months to less than a minute.

To accomplish this task, SCIT hosts an array of vir-

tual machines, each loaded with a copy of pristine and

malware-free server. The SCIT controller rotates the

server array and determines when to bring a virtual

machine (VM) online. In each rotation, a VM is online

and accessible for only a short period of time and then

it is taken offline and replaced by a new VM. The old

VM will be wiped clean and reset back to its pristine

state and will be ready to be brought up online by the

SCIT controller. The research results show that using

SCIT to reduce the exposure time of the VM’s can in-

crease the security of servers and thus minimizes any

losses caused by an intrusion[19].

Moving Target Surfaces (MAS) is another rotation-

based moving target defense technique, proposed by

Huang and Ghosh[56] to protect Web services from

malicious attacks[56]. The primary difference between

MAS and SCIT is that each VM in SCIT is loaded

with the same software. Whereas, in MAS each VM is

loaded with diversified software mix. The authors[56]

used different operating systems and Web servers to

make over 1 500 unique combinations (1 554 to be exact)

where each combination represents an attack surface.

Therefore, each rotation will bring a diversified VM

online with different attack surfaces, which increases

uncertainty and diversity in the system. Another diffe-

rence between these two techniques is that SCIT uses a

fixed time interval for VM rotation, whereas MAS uses

detection engine to enable the clean VM to stay online

for longer cycle time, resulting in lower overhead cost

than SCIT.

Unlike MAS or SCIT where only specific software or

software mix is hosted in each virtual machine, MTD

CBITS[57] is a cloud-based approach in which each run-

ning component of an IT system is hosted in a virtual

machine instance or a cluster of instances, and every

component can be replaced with a pristine version of

the component. The replacement of virtual machine

instances is accomplished through a sequence of adap-

tions, and their experimental results show that MTD

CBITS can efficiently increase the difficulty of attacks

against an IT system.

By applying virtualization at the operating system

level, Okhravi et al.[7,8] proposed a design and imple-

mentation of TALENT (Trusted Dynamic Logical Het-

erogeneity) to protect critical infrastructure applica-

tions. The OS level virtualization works at the level

of filesystems, memory regions, sockets and kernel ob-

jects. It enables TALENT to change the platform on

the fly in order to achieve the platform heterogeneity.

TALENT also uses a portable checkpoint compiler to

compile the application for different architectures and

hence is able to migrate a running application across

different platforms while preserving the state of the ap-

plication, as shown in Fig.2. The live-migration of ap-

plications across heterogeneous platforms creates a cy-

ber moving target that increases the resilience of the

system against attacks.
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Fig.2. TALENT migration process.

Challenges in Virtualization-Based MTD. The time

to reload or restart a virtual machine can affect the per-

formance of the virtualization-based MTD, especially

when there are multiple services running on the same

VM. More research is needed on the optimization of the

virtualization process.
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5.3.3 Decoy-Based MTD

Decoy systems, or deception systems, are phony sys-

tems set up to trap unauthorized users and track their

suspicious activities to better understand the intentions

and methodologies of the attack. The concept of decep-

tion systems can be traced back to the Stoll’s book[58],

in which the author described how a phony system can

be set up to lure and eventually entrap attackers.

Typically, decoy systems are deployed on a separate

network and on a demilitarized zone (DMZ). It con-

tains various known vulnerabilities with appealing but

fake data, such as seemingly sensitive decoy documents

and passwords to critical system, as well as vulnera-

ble accounts to lure attackers away from the protected

network. Not being aware of visiting a decoy system,

an attacker may try to exploit the decoy system with

the hope of gaining unauthorized access to the system.

Meanwhile, each unauthorized activity is being moni-

tored, logged, and analyzed by the system administra-

tor. The analysis not only helps the system administra-

tors to gain insights on the intrusion, but also helps un-

cover unknown vulnerabilities of the main operational

network. Hence, the longer the attacker is trapped in

the decoy system without knowing it, the more the data

can be collected.

Clark et al.[52] conducted a study on the effective-

ness of IP address randomization in decoy-based MTD

system by deploying a myriad of decoy nodes (hosts) on

the same network. They used a virtualization techno-

logy to create a collection of virtual nodes representing

hosts on the network, in which there was only one decoy

node and the rest were real nodes. The only difference

between a real node and a decoy node was the response

time to request queries made to them (i.e., network

scans) and the difference could be observed by the ad-

versary to identify the decoy node. This interaction be-

tween the adversary and a virtual node was modeled in

the research and the optimal attack strategy for the ad-

versary to identify the decoy node was computed from

the model as well as the optimal defense strategy for the

defender to randomize the IP addresses. A simulation

experiment with 99 real nodes and one decoy node has

been reported by the authors[52] to visually characterize

the adversary’s strategy and the defender’s strategy.

Challenges in Decoy-Based MTD. The major chal-

lenge in decoy-based MTD systems is the cost associ-

ated with the deployment and maintenance of decoy

nodes. To provide effective defense, the decoy-based

MTD system requires a significantly large number of

decoy nodes to be deployed. As pointed out by Clark

et al.[52], 99 decoy nodes are needed to deploy in order

to protect only one real operational node. As a matter

of fact, it is recommended to keep the ratio of real and

decoy targets on the order of 1:10 000 to significantly

slow down and frustrate the attackers. As a result, the

expensive cost of deploying and managing decoy nodes

might surpass the security benefits of the decoy-based

MTD system.

Another challenge in employing decoy-based MTD

systems is the legal and ethical issues. For example, if

a legitimate user, who is accessing the network, ends

up at the decoy host, there could be legal consequences

or even a lawsuit. It is especially true when a user is

trying to use critical services, such as financial transac-

tions, controller applications, and emergency services.

Therefore, it is very critical and yet difficult to differen-

tiate legitimate users and ensure the quality of services

to them.

5.3.4 Software-Defined Networking Based MTD

The static nature of traditional network architec-

ture hurdles the effective implementation of MTD tech-

niques. An effective MTD implementation requires

a flexible, movable, and programmable environment

to operate. Software-Defined Networking (SDN) can

provide such an environment. SDN is a new net-

work architecture in which the control logic and de-

cisions are separated from the network devices and

are moved to logically centralized controllers. This

separation of the control logic and the data flow of-

fers very flexible, programmable and scalable network

architecture[59], which is an appropriate platform for

implementing MTD strategies. Fig.3 shows a simpli-

fied view of the SDN-based network architecture.

The Control Plane is a virtual plane where the SDN

controller resides. The SDN controller makes decisions

on how the network data packets should be handled.

The Data Plane usually refers to the virtual plane that

consists of all network devices such as switches that for-

ward data packets per the decisions (i.e., rules) made

by the controller. The Application Plane is a collection

of applications that can extend the functionalities of

the controller. When a data packet arrives at a switch

in the Data Plane, the switch will search its database

to see if a rule, i.e., a decision from the controller, ex-

ists. Once the switch finds the rule, it will handle the

data packet by the rule. Otherwise, the switch sends a

request to the controller for further assistance. Once a

decision is made by the controller, a rule is generated

and sent back to the switch to handle the data packet.
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The rule itself is also stored on the switch for handling

similar upcoming packets. The third-party applications

on the Application Plane do not have direct accesses

to network devices in the Data Plane, but can com-

municate with the SDN controller to relay the needed

operations. The communications between planes are

carried through different APIs built on open standards.

The APIs between the application plane and the con-

trol plane are called the “northbound” APIs. Whereas,

the APIs between the control plane and the data plane

is called the “southbound” APIs.
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Fig.3. Simplified view of an SDN architecture.

Among all the supported open southbound

API’s, OpenFlow from Open Networking Foundation

(ONF) 22○ is the most adopted API that enables the

communication between the control plane and the data

plane. ONF uses “layer” instead of “plane” to indicate

each of the three building blocks in the SDN architec-

ture as shown in Fig.4.

The SDN-based MTD techniques can be imple-

mented in two modes: 1) hybrid-SDN implementation,

and 2) pure-SDN implementation. In the hybrid-SDN

implementation, the MTD techniques are implemented

with the help of both SDN and non-SDN components,

such as NAT gateways, routers, and decision-making

agent installed on hosts. Whereas, in the pure-SDN

mode, the MTD techniques are implemented either as

a network application at the application layer, or as a

component integrated into the controller layer, as de-

picted in Fig.4.

A good example of the hybrid-SDN implementation

is OpenFlow Random Host Mutation (OF-RHM)[50],

which is designed to thwart reconnaissance attacks.

With the help of an NAT gateway and an SDN con-

troller, each host’s real and unchanged IP address (rIP)

is mapped onto a virtual and short-lived IP address

(vIP). The vIPs are randomly generated and assigned

by the SDN controller and stored in the flow tables of all

OpenFlow switches to properly route the network traf-

fic. Since the mutation and assignment of the virtual IP

addresses, and also the data route management are all

performed in the background without the involvement

of the end hosts, OF-RHM can effectively conceal the

identities of the protected hosts.
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Fig.4. Layered view of OpenFlow-based SDN architecture.

22○https://www.opennetworking.org/sdn-definition, Nov. 2018.
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MacFarland et al.[60] proposed a host-based MTD

solution by using DNS server, SDN controller and NAT

device. When a client application requests to resolve a

host name to an IP address, the request is sent to the

network’s DNS server. Before the DNS server sends

back a reply packet with the resolved IP address to the

requestor, it elevates the packet to the SDN controller

for consideration. The SDN controller, upon receiving

the DNS reply packet, randomly generates synthetic

IP and MAC addresses, and then creates NAT rules

to translate the synthetic IP address into the real IP

address and the synthetic MAC address into the real

MAC address. The NAT rules are then installed on the

NAT device and also on the client’s machine to estab-

lish a connection between the client and the requested

host. This design allows the SDN controller to create a

different and moving IP address and MAC address com-

bination for each DNS resolution, preventing attackers

from tracking traffic flows, offering both anonymity and

unlikability.

Wang et al.[61] argued that the host address muta-

tion technique is not effective if an attacker knows the

host’s domain name. They proposed to use SDN to

randomize domain’s name as well to protect hosts from

reconnaissance attacks. However, the domain name of

a company is an important aspect of the company’s

network when communicating with clients and is pur-

chased through an authorized domain name registrar.

The paper does not explain the feasibility of mutating a

host’s domain name or the potential impact of domain

name mutation on the enterprise company.

Packet Header Randomization (PHEAR) is a tech-

nique proposed by Skowyra et al.[62] to enhance the

privacy and security for enterprise networks by using

OpenFlow-based SDN. PHEAR requires each host to

install a PHEAR proxy that is responsible for rewrit-

ing incoming and outgoing packets in order to remove

identifiers, and the modified packets will be routed via

OpenFlow switches. By hiding or obscuring the packet

header information, it not only protects the privacy of

the host, but also makes the system more unpredictable

to the attackers. A big advantage of PHEAR is that

if an SDN infrastructure already exists, PHEAR can

be implemented in it without any additional hardware.

The experimental results show that PHEAR has low

latency and high throughput, which are two important

requirements for many network applications.

Kampanakis et al.[63] integrated several defense

techniques, such as obfuscation of port numbers, service

version and OS hiding as well as random host mutation

into the SDN controller to provide common network

defense against network mapping and reconnaissance

attacks. This pure-SDN MTD scheme is implemented

in Cisco’s One Platform Kit (onePK) and the results

show that SDN-based MTD can significantly increase

the attacker’s overheads.

Cloud computing has been adopted rapidly by com-

panies around the world due to its advantages such

as flexibility, cost effectiveness, and mobility. Due to

its increasing popularity, cloud networks have attracted

attackers. In a typical cloud network, resources (e.g.,

data and applications) can be located at geographically

different locations. More specifically, cloud computing,

as a highly distributed architecture, requires innova-

tive technology for network management and security

defense. The amazing networking features offered by

SDN make it a perfect platform for cloud networks.

The logically centralized SDN controller can be used

to proactively perform attack analysis and thus apply

MTD countermeasures based on the analysis while en-

suring the countermeasures not to conflict the security

policy[64].

Challenges in SDN-Based MTD. SDN is under con-

tinuous and active development by major organizations

such as Open Network Foundation and Linux Founda-

tion. It is still considered a new architecture and has

not been prevalently adopted around the world. The

lack of adoption is a major challenge for implementing

MTD techniques in an SDN-based environment. How-

ever, we believe this challenge will soon be overcome

because major commercial companies, such as Cisco,

HP, Google, and Microsoft, have started recognizing

SDN as an innovative key technology in the cloud com-

puting.

The lack of enough research in some certain aspects

of SDN-based MTD is another important challenge that

might limit the adoption of SDN in MTD. Examples of

some area topics that require fundamental and emerg-

ing research attentions are as follows.

1) Security and Dependability. SDN can suffer from

single point of failure because if the controller in SDN

failed, then the communication between planes may fail

and the whole network system may not be operational.

The security and the dependability of SDN are ongoing

active research topics[65].

2) Effectiveness of SDN-Based MTD. Among all the

research articles related to SDN-based MTD we sur-

veyed, none of the papers compared the effectiveness of

SDN-based MTD approaches with that of the existing

non SDN-based MTD approaches. There is a need to
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compare the effectiveness and lists the pros and cons of

such techniques.

3) Performance Issues of SDN-Based MTD. Even

though all SDN-based MTD research work provided

performance evaluation results, no existing research fo-

cus on comparing the performance of SDN-based MTD

with that of non SDN-based MTD.

4) Compatibility of SDN-Based MTD. Since SDN is

not a replacement to the existing network infrastruc-

ture, it is crucial to ensure that any SDN technique

will be compatible with the current network infrastruc-

ture. The lack of compatibility of SDN-based MTD is

not only a challenge, but also a future research oppor-

tunity.

5.3.5 Lightweight MTD

The increasing growth of the use of low-power and

low-resource embedded devices such as wireless sensors

and Internet of Things devices has introduced new secu-

rity challenges. The main reason is that many existing

MTD strategies cannot be directly applied to these de-

vices due to the limitations of power and computation

capacity on the devices.

Casola et al.[66] proposed an MTD approach for pro-

tecting resource-constrained distributed devices by re-

configuring the devices at the security layer and the

physical layer. The reconfiguration at the security layer

refers to the selection of a different cryptosystem reg-

ularly and the physical layer reconfiguration refers to

the full-image replacement of the firmware of the de-

vice. The approach is evaluated on a Wireless Sensor

Network (WSN) and the results show that it can effec-

tively reduce the attacker’s success probability.

Based on MT6D, Zeitz et al.[67] introduced an ini-

tial design for a Micro-Moving Target IPv6 Defense,

µMT6D, to protect the Internet of Things by limiting

the exposure time of the device. The initial experiment

of the design is introduced later to evaluate the power

consumption of the implementation of µMT6D.

Challenges in Lightweight MTD. Wireless sensors,

IoT devices, and other embedded systems have limited

resources such as power supply, computing capability,

and available storage. Any existing MTD strategy that

requires heavy and frequent computation might not be

feasible for these resource-restrained devices. There are

lightweight cryptographic hash algorithms (PHOTON,

QUARK, etc.[68]), but research work is still needed to

study the feasibility of implementing MTD strategies

on these devices with the algorithms and the optimiza-

tion of the MTD implementations.

6 Overview of Existing MTD Analysis Work

Researchers use various approaches to analyze var-

ious forms of MTD strategies in order to gain insights

and valuable information and improve the effective-

ness and performance of the MTD strategies. Simu-

lation and testbed experimentations[49,69] are two ma-

jor means for quantitative analysis of the effective-

ness and performance of MTD strategies. The com-

monly used simulation tools include free off-the-shelf

OMNet++[53], Mininet[50], NeSSi2[2] and commercial

tool onePK[63]. Recently, Virtual Infrastructure for

Network Emulation (VINE) has been proposed as an

MTD experimentation environment[19] because of its

broad capabilities and wide selection of tools, such as

network topology generation agents, background traf-

fic and attack generation agents, packet capture agents,

and traffic monitoring agents. A case study is included

in the research to show that VINE is capable of provid-

ing researchers valuable tools to test MTD defense in a

number of configurations, and in a number of operation

environments.

The analysis approaches in the papers we surveyed

can be divided into three major categories.

1) Strategy-Specific Analysis. It aims at analyzing a

specific MTD strategy by using simulation, experiment,

or proof of concept to discover any issues in the target

MTD strategy.

2) Metric-Based Analysis. In the metric-based ana-

lysis, an analysis metric based on MTD requirements is

usually utilized to set up a testbed experiment, run the

experiment against various MTD techniques, and then

use the metric to analyze the result of each MTD strat-

egy tested. Some metric-based analysis may involve a

model where is usually a generalized threat model to

explain the details of problem addressed[8,69].

3) Model-Based Analysis. In the model-based ana-

lysis, a model to generalize the features and behaviors

of a specific type or general type of MTD strategy is em-

ployed to perform the statistical analysis of the model,

and then apply simulation or custom experiment to ver-

ify the analysis.

6.1 Strategy-Specific Analysis

Since ASLR has been implemented in major ope-

rating systems, many studies on the effectiveness of

ASLR have been conducted. There are several ways

to bypass ASLR[25−27]. To enhance ASLR, some fine-

grained ALSR and code randomization strategies have

been proposed[9,10,28,29]. The fine-grained ALSR uses
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techniques such as the permutation of the order of

functions and basic blocks and the randomization of

the data and code structure to improve ASLR against

code injection and memory corruption attacks under

the assumption that the disclosure of one single mem-

ory address does not allow attackers to deploy attack.

However, Snow et al.[30] argued that the above as-

sumption can be easily violated. Therefore, the fine-

grained ASLR may not be more effective than tradi-

tional ASLR. By repeatedly exploiting the memory dis-

closure, it is possible to map an application’s memory

layout on-the-fly, search for API functions and gadgets,

and use Just-In-Time compilers that the target pro-

gram is using to finally launch attacks.

Hamlet and Lamb[70] proposed to use dependency

graph to outline the impacts on users, defenders and

attackers once an MTD strategy is adopted. This im-

pact analysis can be used to measure the possible effi-

cacy and cost of the given MTD and help defenders to

choose the best MTD strategy.

6.2 Metric-Based Analysis

Quite often, attackers launch multiple attacks

against a target system. Hence, it is more practical

to analyze the overall performance of an MTD system

under the broad definition described in Section 2. Hob-

son et al.[40] grouped the challenges that relevant MTD

techniques have in common into three types.

1) Coverage. The exploitable elements of the attack

surface must be covered by the moving target defense

and no information should be leaked from the static

components of the surface.

2) Unpredictability. The current or future dynamic

changes in MTD should not be predictable by attackers.

3) Timeliness. The dynamic changes must be ap-

plied between the attacker observations and the subse-

quent attacker actions.

Three moving target defense techniques are evalu-

ated on how it reacts to each challenge, and a case

study of three low-level MTD techniques, ALSR, ISR,

and software diversification, is used to demonstrate how

the evaluation works[40]. From the analysis point of

view, Hobson et al.[40] concluded that most of the MTD

techniques exhibit weaknesses across all of three crite-

ria. For instance, ALSR can meet the coverage require-

ment, but cannot guarantee unpredictability and time-

liness; whereas, ISR cannot meet the full coverage re-

quirement, but it can provide enough unpredictability

and timeliness. Furthermore, software diversification

can meet coverage requirement and provide good un-

predictability, but timeliness can be difficult to achieve.

Green et al.[71] proposed to evaluate network-based

MTD techniques with a different set of properties: 1)

moving property, 2) access control property, and 3)

distinguishability property. The moving property de-

scribes how well an MTD technique can alter network

information. It has three aspects: unpredictability,

vastness, and periodicity. The unpredictability requires

that the new destination of any given moving target

state should be randomized enough so that no client

could guess the new destination. The vastness requires

that the destination space of the MTD must be suffi-

ciently large enough to prevent the destination space

from being searched exhaustively. Moreover, the peri-

odicity means that the MTD must change with enough

regularity to quickly invalidate the information col-

lected previously by the attacker.

The access control property requires that only au-

thorized client can access a moving target system via

a mapping system. It has three aspects: uniqueness,

availability, and revocability. The uniqueness means

the access to the moving target system by a client only

belongs to the client and cannot be shared with any

other clients. The availability means that a client’s ac-

cess to the moving target system should be guaranteed

so that MTD does not cause denial-of-service to the

authorized clients. The revocability means that the

mapping system should have the ability to terminate

or revoke a client’s authorization without causing dam-

age to the MTD system. The distinguishability means

a system’s ability to separate trustworthy clients from

the untrustworthy ones.

Green et al. further analyzed several MTD tech-

niques including OF-RHM[50] and MT6D[49]. The ana-

lysis results show that at least one of these properties

was not covered by the evaluated MTD techniques. For

example, while both OF-RHM and MT6D cover the

moving property, neither of them covers the availability

aspect of the access control property.

Okhravi et al.[69] proposed a generalized model for

dynamic platform techniques which dynamically change

various properties of the computing platform, such as

instruction set architecture, stack direction, kernel ver-

sion, OS distribution and machine instance, to make

attacks more difficult. The authors[69] first identi-

fied four features as a metric to describe the protec-

tion by existing dynamic platform techniques, and then

used the metric to quantitatively analyze a specific

dynamic platform technique developed by them, call
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TALENT[8], but the authors believed their analysis can

be generalized based on the features of all existing tech-

niques.

Another quantitative approach was proposed by

Zaffarano et al.[72] by using Cyber Quantification

Framework from Siege Technologies along with an

evaluation metric with four categories: 1) productiv-

ity, 2) success, 3) confidentiality, and 4) integrity. In

order to use the metrics to evaluate an MTD system,

the authors[72] proposed a mission and attack activity

model. The mission activity model represents the le-

gitimate network activities such as sending emails and

accessing an FTP server. On the other hand, the at-

tack activity model represents actions or attacks that

an attacker would perform. After applying the metrics

on the two models, eight individual evaluation metrics

will be generated, and the data can be evaluated to

describe the effectiveness of the MTD system.

Taylor et al.[73] later applied this evaluation frame-

work and metrics to quantitatively evaluate two MTD

techniques provided by the Air Force Research Labora-

tory: ARCSYNE (Active Repositioning in Cyberspace

for SYNchronized Evasion) and SDNA (Self-shielding

Dynamic Network Architecture). ARCSYNE offers a

synchronized IP-hopping to the nodes on a network and

protects the network through system-wide encryption

and a continuous changing network topology. SDNA

is based on cryptographically secure network dynamics

on an IPv6 network. Based on the same CQF and met-

rics as in [72], the authors created different metrics to

evaluate the two MTD techniques quantitatively. The

metrics show that the attack success is high without

MTD, but it significantly decreases when MTD is de-

ployed.

6.3 Model-Based Analysis

Evans et al.[74] proposed a model with a defender

and an attacker entity for diversity defense strategy,

such as ASLR, ISR, and data randomization. In this

model, the defender’s goal is to provide a service with

reliability and performance; whereas the attacker’s goal

is to exploit the server. The authors[74] conducted an

analysis on the effectiveness of a moving target defense

through low-level (OS and software levels) diversifica-

tion technique against five different types of attacks: 1)

circumvention attacks, 2) deputy attacks, 3) brute force

and entropy reduction attacks, 4) probing attacks, and

5) instrumental attacks. They concluded that the di-

versification defense is effective against probing attacks,

but is either marginally effective or not effective against

the other four types of attacks.

Xu et al.[75] proposed a three-layered state machine

model to evaluate and compare different MTD tech-

niques with the intention of bridging the gap among ex-

isting MTD evaluation methods. The authors[75] clas-

sified existing MTD methods into low- and high-level

methods depending on the application scopes. In the

first layer of the model, a state machine is created for

each low-level program to identify the required and crit-

ical contexts from the program, thus they can be eval-

uated. In the second layer, each Program State Ma-

chine (PSM) is interconnected to form a System State

Machine (SSM), thus the interaction between different

low-level programs can be modeled. There is also a

third layer, which is an evaluation state machine (ESM)

and is designed to work as a user interface. For a

given attack, changing the state machine in the lower

layer could form different MTD combinations. The

authors[75] included an example of file decryption and

compression to demonstrate the feasibility of this model

and claim a more comprehensive evaluation needs to be

conducted.

Manadhata[76] proposed to use attack surface shift-

ing as an MTD strategy and used a stochastic game

model to define the interaction between a defender and

an attacker. The author claimed that the stochastic

game model could help the defender to determine an

optimal MTD strategy and optimally shift the system’s

attack surface.

Zhu and Baçar[77] proposed a game theoretic frame-

work for multi-layer attack surface shifting under the

assumption that the attack is launched in multiple

stages and accordingly the defense strategy is developed

at each layer of the system. At each stage of the attack,

the system can respond adaptively based on the feed-

back information collected and thus can minimize the

overall risk.

Zheng and Nanrin[78] proposed to use Markov De-

cision Process to analyze the impact of various costs

on the selection of defense strategy in Moving Target

Defense and to help the defender to choose the optimal

defense strategy in a certain situation.

Carter et al.[79] defined the interaction between a

defender and an attacker in the threat model as a typi-

cal leader-follower game. By applying game theory and

statistical analysis, a dynamic platform technique can

be strategically selected. Their results show that the

strategic selection significantly outperforms a simple

random selection.
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Maleki et al.[80] presented an MTD analysis frame-

work by using the game theory and a Markov model.

The framework can model concrete MTD strategies and

provide general theorem about how the probability of

a successful adversary defeating an MTD strategy is

related to the amount of time/cost spend by the adver-

sary. Two concrete MTD strategies were analyzed by

the framework to demonstrate its applicability beyond

theoretical analysis.

7 Future Research Directions

From the collection of papers that the authors re-

viewed, it is apparent that more and more research stu-

dies have been carried on the network level. The focus

has been shifted from studying a particular MTD tech-

nique to a practical MTD system. We list some of the

future research directions following the research shifts

and trends.

• It is necessary to use other forms of mathemat-

ical models for MTD representations and analysis to

gain more insights and provide theoretic foundation for

potential practical MTD framework.

• A rigorous and fundamental risk and cost ana-

lysis and comparison of MTD implementation are re-

quired. There are not too many studies related to risk

assessments and cost analysis of various forms of MTD

strategies.

• Software-Defined Networking offers highly flexible

and programmable network architecture. Therefore, it

is a candidate for developing and implement MTD sys-

tem. More research work needs to be carried out in this

area, for instance, the effectiveness and performance

study on SDN-based MTD strategies, compared with

the non SDN-based MTD strategies, the compatibility

study on SDN-based MTD in the current network in-

frastructure, etc.

• As more resource-restrained devices such as wire-

less sensors and IoT devices are emerging in both home

and enterprise networks, new security threats are also

introduced and need to be addressed. The existing re-

search work on the lightweight MTD strategies has laid

a good foundation in this direction, but more efforts

are still needed to deepen and widen the research in

this direction.

8 Conclusions

Moving Target Defense has emerged as one of the

game changing ideas in computer security defense. A

wide range of research work has been done on many

aspects of it, from simulation and implementation to

evaluation. In this paper, we conducted a comprehen-

sive survey on the current status of MTD research pre-

sented in around 80 published papers. By identifying

the advantages and challenges of the surveyed MTD

techniques, this paper can provide researchers with the

guidance for the future MTD research.

As we can observe from Table 2, the network-level

implementation of MTD has been gaining more re-

search attention and the research focus has been shifted

from studying one specific MTD technique to designing

a defense framework with multiple MTD techniques to

address various needs of the network security defense.

Since the network architecture has been under unprece-

Table 2. Summary

Approach MTD Implementation Attacks Addressed Challenges

OS level
approaches

• ASLR
• ISR

• Buffer overflow • Only 64-bit architecture can provide enough ran-
domization
• May be bypassed by memory disclosure attack

Software level
approaches

• Software diversification
• Software diversification
through middle

• Buffer overflow
• SQL injection attack

• The cost of generating code variants
• The delivery of software variants
• How to handle updates and patches of variants
• Integrity and verification of software variants
• Special execution environment and platform
• Performance overhead

Network level
approaches

• IP address randomization
• Virtualization-based MTD
• Decoy-based MTD
• SDN-based MTD
• Lightweight MTD

• Reconnaissance attack
• SQL injection
• Cross-site scripting (XSS)
• DDoS attack
• Computer worm attack

• Large amount of IP addresses needed for
randomization

• Connectivity disruption
• Cost associated with decoy deployment and
management

• Startup time of virtual machine instance
• Legal issue of decoy
• Lack of adoption of SDN
• Lack of research studies on resources-restrained
devices
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dented attacks, we predict more research to be con-

ducted in MTD at the network layer will emerge.

Software-Defined Networking (SDN) has been gain-

ing attention in both the industry and the research

community due to its characteristics such as low mana-

gement cost, high flexibility and programmability, and

dynamic network architecture. By utilizing the advan-

tages of SDN, specialized network applications and ser-

vices can be easily deployed in an SDN environment

with the goal of creating a solid MTD system.

The rapid adoption of resource-constrained embed-

ded devices including IoT devices has introduced new

security threats. Existing research efforts show that

MTD is a promising candidate for protecting these de-

vices, but more research in this field is needed.
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