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Abstract— Forecasting time series data is an important sub-
ject in economics, business, and finance. Traditionally, there are
several techniques to effectively forecast the next lag of time
series data such as univariate Autoregressive (AR), univariate
Moving Average (MA), Simple Exponential Smoothing (SES),
and more notably Autoregressive Integrated Moving Average
(ARIMA) with its many variations. In particular, ARIMA
model has demonstrated its outperformance in precision and
accuracy of predicting the next lags of time series. With the
recent advancement in computational power of computers and
more importantly development of more advanced machine
learning algorithms and approaches such as deep learning,
new algorithms are developed to analyze and forecast time
series data. The research question investigated in this article
is that whether and how the newly developed deep learning-
based algorithms for forecasting time series data, such as “Long
Short-Term Memory (LSTM)”, are superior to the traditional
algorithms. The empirical studies conducted and reported in
this article show that deep learning-based algorithms such
as LSTM outperform traditional-based algorithms such as
ARIMA model. More specifically, the average reduction in
error rates obtained by LSTM was between 84 - 87 percent
when compared to ARIMA indicating the superiority of LSTM
to ARIMA. Furthermore, it was noticed that the number of
training times, known as “epoch” in deep learning, had no
effect on the performance of the trained forecast model and it
exhibited a truly random behavior.

Index Terms— Deep Learning, Long Short-Term Memory
(LSTM), Autoregressive Integrated Moving Average (ARIMA),
Forecasting, Time Series Data.

I. INTRODUCTION

Prediction of time series data is a challenging task mainly

due to the unprecedented changes in economic trends and

conditions in one hand and incomplete information on the

other hand. Market volatility in recent years has introduced

serious concerns for economic and financial time series

forecasting. Therefore, assessing the accuracy of forecasts

is necessary when employing various forms of forecasting

methods, and more specifically forecasting using regression

analysis as they have several limitations in applications.

The main objective of this article is to investigate which

forecasting methods offer best predictions with respect to

lower forecast errors and higher accuracy of forecasts. In

this regard, there are varieties of stochastic models in time

series forecasting. The most well known method is uni-

variate “Auto-Regressive Moving Average (ARMA)” for a

single time series data in which Auto-Regressive (AR) and

Moving Average (MA) models are combined. Univariate

“Auto-Regressive Integrated Moving Average (ARIMA)” is

a special type of ARIMA where differencing is taken into ac-

count in the model. Multivariate ARIMA models and Vector

Auto-Regression (VAR) models are the other most popular

forecasting models, which in turn, generalize the univariate

ARIMA models and univariate autoregressive (AR) model

by allowing for more than one evolving variable.
Machine learning techniques and more importantly deep

learning algorithms have introduced new approaches to pre-

diction problems where the relationships between variables

are modeled in a deep and layered hierarchy. Machine

learning-based techniques such as Support Vector Machines

(SVM) and Random Forests (RF) and deep learning-based

algorithms such as Recurrent Neural Network (RNN), and

Long Short-Term Memory (LSTM) have gained lots of

attentions in recent years with their applications in many

disciplines including finance. Deep learning methods are

capable of identifying structure and pattern of data such as

non-linearity and complexity in time series forecasting. In

particular, LSTM has been used in time-series prediction

[4], [8], [9], [18] and in economics and finance data such

as predicting the volatility of the S&P 500 [10].Many other

Computer Science-based problems can also be formulated

and analyzed using time series, such scheduling I/O in a

client-server architecture [22].
An interesting and important research question is then

the accuracy and precision of traditional forecasting tech-

niques when compared to deep learning-based forecasting

algorithms. To the best of our knowledge, there is no specific

empirical evidence for using LSTM method in forecast-

ing economic and financial timer series data to assess its

performance and compare it with traditional econometric

forecasting methods such as ARIMA.
This paper compares ARIMA and LSTM models with

respect to their performance in reducing error rates. As

a representative of traditional forecast modeling, ARIMA

is chosen due to the non-stationary property of the data

collected and modeled. In an analogous way and as a repre-

sentative of deep learning-based algorithms, LSTM method

is used due to its use in preserving and training the features of

given data for a longer period of time. The paper provides an

in-depth guidance on data processing and training of LSTM

models for a set of economic and financial time series data.

The key contributions of this paper are:

– Conduct an empirical study and analysis with the goal

of investigating the performance of traditional forecast-

ing techniques and deep learning-based algorithms.
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– Compare the performance of LSTM and ARIMA with

respect to minimization achieved in the error rates in

prediction. The study shows that LSTM outperforms

ARIMA. The average reduction in error rates obtained

by LSTM is between 84 - 87 percent when compared

to ARIMA indicating the superiority of LSTM.

– Investigate the influence of the number of training times.

The study shows that the number of training performed

on data, known as “epoch” in deep learning, has no

effect on the performance of the trained forecast model

and it exhibits a truly random behavior.

The article is organized as follows. Section II outlines the

state of the art of time series forecasting. Section III discusses

the mathematical background of ARIMA and LSTM. Section

IV describes an experimental study for ARIMA versus

LSTM model. The ARIMA and LSTM algorithms developed

and compared are presented in Section V. The results of data

analysis and empirical results are presented in Section VI.

Section VII discusses the impact of the number of iterations

on fitting model. Finally, Section VIII concludes the paper.

II. TIME SERIES FORECASTING: STATE-OF-THE-ART

Time series analysis and dynamic modeling is an inter-

esting research area with a great number of applications in

business, economics, finance and computer science. The aim

of time series analysis is to study the path observations of

time series and build a model to describe the structure of

data and then predict the future values of time series. Due to

the importance of time series forecasting in many branches

of applied sciences, it is essential to build an effective model

with the aim of improving the forecasting accuracy. A variety

of the time series forecasting models have been evolved in

the literature.

Time series forecasting is traditionally performed in

econometric using ARIMA models, which is generalized by

Box and Jenkins [5]. ARIMA has been a standard method

for time series forecasting for a long time. Even though

ARIMA models are very prevalent in modeling economical

and financial time series [1], [2], [14], they have some

major limitations [6]. For instance, in a simple ARIMA

model, it is hard to model the nonlinear relationships between

variables. Furthermore, it is assumed that there is a constant

standard deviation in errors in ARIMA model, which in

practice it may not be satisfied. When an ARIMA model

is integrated with a Generalized Auto-regressive Conditional

Heteroskedasticity (GARCH) model, this assumption can be

relaxed. On the other hand, the optimization of an GARCH

model and its parameters might be challenging and problem-

atic [13]. There are several other applications of ARIMA for

modeling short and long run Effects of economics parameters

[?], [19]–[21].

Recently, new techniques in deep learning have been

developed to address the challenges related to the forecasting

models. LSTM (Long Short-Term Memory) is a special

case of Recurrent Neural Network (RNN) method that was

initially introduced by Hochreiter and Schmidhuber [9].

Even though it is a relatively new approach to address

prediction problems, deep learning-based approaches have

gained popularity among researchers. For instance, Krauss

et al. [15] use various forms of forecasting models such

as deep learning, gradient-boosted trees, and random forests

to model S&P 500 constitutes. Surprisingly, they reported

that deep learning-based modeling under-performed gradient-

boosted trees and random forests. Additionally, Krauss et al.

report that training neural networks and consequently deep

learning-based algorithms is very difficult. Lee and Yoo [16]

introduced an RNN-based approach to predict stock returns.

The idea was to build portfolios by adjusting the threshold

levels of return by internal layers of the RNN built. Similar

work is performed by Fischera et al. [7] for financial market

prediction. In this article, we compare the performance of an

ARIMA model with the LSTM model in the prediction of

economics and financial time series to determine the optimal

qualities of involved variables in a typical prediction model.

III. BACKGROUND

This section reviews the mathematical background of

the compared time series techniques used and studied in

this article. More specifically, the background knowledge of

Autoregressive Integrated Moving Average (ARIMA) and the

deep learning-based technique, Long Short-Term Memory

(LSTM) is presented.

A. ARIMA

Autoregressive Integrated Moving Average Model

(ARIMA) is a generalized model of Autoregressive Moving

Average (ARMA) that combines Autoregressive (AR)

process and Moving Average (MA) processes and builds a

composite model of the time series. As acronym indicates,

ARIMA(p, d, q) captures the key elements of the model:

– AR: Autoregression. A regression model that uses the

dependencies between an observation and a number of

lagged observations (p).
– I: Integrated. To make the time series stationary by

measuring the differences of observations at different

time (d).
– MA: Moving Average. An approach that takes into

accounts the dependency between observations and the

residual error terms when a moving average model is

used to the lagged observations (q).

A simple form of an AR model of order p, i.e., AR(p),
can be written as a linear process given by:

xt = c+

p∑
i=1

φixt−i + εt (1)

Where xt is the stationary variable, c is constant, the terms

in φi are autocorrelation coefficients at lags 1, 2, , p and εt ,

the residuals, are the Gaussian white noise series with mean

zero and variance σ2
ε . An MA model of order q, i.e., MA(q),

can be written in the form:

xt = μ+

q∑
i=0

θiεt−i (2)

Where μ is the expectation of xt (usually assumed equal

to zero), the θi terms are the weights applied to the current
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and prior values of a stochastic term in the time series, and

θ0 = 1. We assume that εt is a Gaussian white noise series

with mean zero and variance σ2
ε . We can combine these two

models by adding them together and form an ARIMA model

of order (p, q):

xt = c+

p∑
i=1

φixt−i + εt +

q∑
i=0

θiεt−i (3)

Where φi �= 0, θi �= 0, and σ2
ε > 0. The parameters

p and q are called the AR and MA orders, respectively.

ARIMA forecasting, also known as Box and Jenkins fore-

casting, is capable of dealing with non-stationary time series

data because of its “integrate” step. In fact, the “integrate”

component involves differencing the time series to convert a

non-stationary time series into a stationary. The general form

of a ARIMA model is denoted as ARIMA(p, d, q).
With seasonal time series data, it is likely that short run

non-seasonal components contribute to the model. There-

fore, we need to estimate seasonal ARIMA model, which

incorporates both non-seasonal and seasonal factors in a

multiplicative model. The general form of a seasonal ARIMA

model is denoted as ARIMA(p, d, q)× (P,D,Q)S, where

p is the non-seasonal AR order, d is the non-seasonal

differencing, q is the non-seasonal MA order, P is the

seasonal AR order, D is the seasonal differencing, Q is the

seasonal MA order, and S is the time span of repeating

seasonal pattern, respectively.

The most important step in estimating seasonal ARIMA

model is to identify the values of (p, d, q) and (P,D,Q).
Based on the time plot of the data, if for instance, the

variance grows with time, we should use variance-stabilizing

transformations and differencing. Then, using autocorrelation

function (ACF) to measure the amount of linear dependence

between observations in a time series that are separated by

a lag p, and the partial autocorrelation function (PACF) to

determine how many autoregressive terms q are necessary

and inverse autocorrelation function (IACF) for detecting

over differencing, we can identify the preliminary values

of autoregressive order p, the order of differencing d, the

moving average order q and their corresponding seasonal

parameters P , D and Q. The parameter d is the order

of difference frequency changing from non-stationary time

series to stationary time series.

B. LSTM

Long Short-Term Memory (LSTM) [17] is a kind of

Recurrent Neural Network (RNN) with the capability of

remembering the values from earlier stages for the purpose

of future use. Before delving into LSTM, it is necessary to

have a glimpse of what a neural network looks like.

1) Artificial Neural Network (ANN): A neural network

consists of at least three layers namely: 1) an input layer, 2)

hidden layers, and 3) an output layer. The number of features

of the data set determines the dimensionality or the number

of nodes in the input layer. These nodes are connected

through links called “synapses” to the nodes created in the

hidden layer(s). The synapses links carry some weights for

every node in the input layer. The weights basically play the

role of a decision maker to decide which signal, or input,

may pass through and which may not. The weights also show

the strength or extent to the hidden layer. A neural network

basically learns by adjusting the weight for each synopsis.

In the hidden layers, the nodes apply an activation function

(e.g., sigmoid or tangent hyperbolic (tanh)) on the weighted

sum of inputs to transform the inputs to the outputs, or

predicted values. The output layer generates a vector of

probabilities for the various outputs and selects the one with

minimum error rate or cost, i.e., minimizing the differences

between expected and predicted values, also known as the

cost, using a function called SoftMax.

The assignments to the weights vector and thus the errors

obtained through the network training for the first time might

not be the best. To find the most optimal values for errors,

the errors are “back propagated” into the network from the

output layer towards the hidden layers and as a result the

weights are adjusted. The procedure is repeated, i.e., epochs,

several times with the same observations and the weights are

re-adjusted until there is an improvement in the predicted

values and subsequently in the cost. When the cost function

is minimized, the model is trained.

2) Recurrent Neural Network (RNN): A recurrent neural

network (RNN) is a special case of neural network where

the objective is to predict the next step in the sequence of

observations with respect to the previous steps observed in

the sequence. In fact, the idea behind RNNs is to make use

of sequential observations and learn from the earlier stages

to forecast future trends. As a result, the earlier stages data

need to be remembered when guessing the next steps. In

RNNs, the hidden layers act as internal storage for storing the

information captured in earlier stages of reading sequential

data. RNNs are called “recurrent” because they perform the

same task for every element of the sequence, with the char-

acteristic of utilizing information captured earlier to predict

future unseen sequential data. The major challenge with a

typical generic RNN is that these networks remember only

a few earlier steps in the sequence and thus are not suitable

to remembering longer sequences of data. This challenging

problem is solved using the “memory line” introduced in the

Long Short-Term Memory (LSTM) recurrent network.

3) Long Short-Term Memory (LSTM): LSTM is a special

kind of RNNs with additional features to memorize the

sequence of data. The memorization of the earlier trend of

the data is possible through some gates along with a memory

line incorporated in a typical LSTM.

LSTM is a special kind of RNNs with additional features

to memorize the sequence of data. Each LSTM is a set of

cells, or system modules, where the data streams are captured

and stored. The cells resemble a transport line (the upper

line in each cell) that connects out of one module to another

one conveying data from past and gathering them for the

present one. Due to the use of some gates in each cell, data

in each cell can be disposed, filtered, or added for the next

cells. Hence, the gates, which are based on sigmoidal neural

network layer, enable the cells to optionally let data pass
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through or disposed.

Each sigmoid layer yields numbers in the range of zero

and one, depicting the amount of every segment of data ought

to be let through in each cell. More precisely, an estimation of

zero value implies that “let nothing pass through”; whereas;

an estimation of one indicates that “let everything pass

through.” Three types of gates are involved in each LSTM

with the goal of controlling the state of each cell:

– Forget Gate outputs a number between 0 and 1, where

1 shows “completely keep this”; whereas, 0 implies

“completely ignore this.”

– Memory Gate chooses which new data need to be stored

in the cell. First, a sigmoid layer, called the “input door

layer” chooses which values will be modified. Next, a

tanh layer makes a vector of new candidate values that

could be added to the state.

– Output Gate decides what will be yield out of each cell.

The yielded value will be based on the cell state along

with the filtered and newly added data.

IV. ARIMA VS. LSTM: AN EXPERIMENTAL STUDY

With the goal of comparing the performance of ARIMA

and LSTM, the authors conducted a series of experiments on

some selected economic and financial time series data. The

main research questions investigated through this work are

as follows:

1) RQ1. Which algorithm, ARIMA or LSTM, performs

more accurate prediction of time series data?

2) RQ2. Does the number of training times in deep

learning-based algorithms influence the accuracy of the

trained model?

A. Data Set

The authors extracted historical monthly financial time

series from Jan 1985 to Aug 2018 from the Yahoo finance

Website1. The monthly data included Nikkei 225 index

(N225), NASDAQ composite index (IXIC), Hang Seng Index

(HIS), S&P 500 commodity price index (GSPC), and Dow

Jones industrial average index (DJ). Moreover, the authors

also collected monthly economics time series for different

time periods from the Federal Reserve Bank of St. Louis2,

and the International Monetary Fund (IMF) Website3. The

data included Medical care commodities for all urban con-

sumers, Index 1982-1984=100 for the period of Jan 1967 to

July 2017 (MC), Housing for all urban consumers, Index

1982-1984=100 for the period of Jan 1967 to July 2017

(HO), the trade-weighted U.S. dollar index in terms of major

currencies, Index Mar 1973=100 for the period of Aug

1967 to July 2017 (EX), Food and Beverages for all urban

consumers, Index 1982-1984=100 for the period of Jan 1967

to July 2017 (FB), M1 Money Stock, billions of dollars for

the period of Jan 1959 to July 2017 (MS), and Transportation

for all urban consumers, Index 1982-1984=100 for the period

of Jan 1947 to July 2017 (TR).

1https://finance.yahoo.com
2https://fred.stlouisfed.org/
3http://www.imf.org/external/index.htm

TABLE I: The number of time series observations.

Stock Observations Total
Train 70% Test 30%

N225 283 120 403
IXIC 391 167 558
HSI 258 110 368
GSPC 568 243 811
DJI-Monthly 274 117 391
DJI-Weekly 1,189 509 1,698
MC 593 254 847
HO 425 181 606
ER 375 160 535
FB 425 181 606
MS 492 210 702
TR 593 254 847

B. Data Preparation

Each financial time series data set features a number

of variables: Open, High, Low, Close, Adjusted Close and

Volume. The authors chose the “Adjusted Close” variable as

the only feature of financial time series to be fed into the

ARIMA and LSTM models. Each economic and financial

time series data set was split into two subsets: training and

test datasets where 70% of each dataset was used for training

and the remaining 30% of each dataset was used for testing

the accuracy of models. Table I lists the number of time

series observations for each dataset.

C. Assessment Metric

The Root-Mean-Square Error (RMSE) is a measure fre-

quently used for assessing the accuracy of prediction ob-

tained by a model. It measures the differences or residuals

between actual and predicated values. The metric compares

prediction errors of different models for a particular data and

not between datasets. The formula for computing RMSE is

as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 (4)

Where N is the total number of observations, xi is the

actual value; whereas, x̂i is the predicated value. The main

benefit of using RMSE is that it penalizes large errors. It also

scales the scores in the same units as the forecast values (i.e.,

per month for this study).

V. THE ALGORITHMS

The ARIMA and LSTM algorithms that were developed

for forecasting the time series are based on “Rolling Fore-

casting Origin” [11]. The rolling forecasting origin focuses

on a single forecast, i.e., the next data point to predict,

for each data set. This approach uses training sets, each

one containing one more observation than the previous one,

one-month look-ahead view of the data. There are several

variations of rolling forecast [12]:

– One-step forecasts without re-estimation. The model

estimates a single set of training data and then one-step

forecasts are computed on the remaining data sets.

– Multi-step forecasts without re-estimation. Similar to

one-step forecasts when performed for the next multiple

steps.
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– Multi-step forecasts with re-estimation. An alternative

approach where the model is re-fitted at each iteration

before each forecast is performed.

With respect to our data sets, in which there is a depen-

dency in prior time steps, a rolling forecast is required. An

intuitive and basic way to perform the rolling forecast is

to re-build the model when each time a new observation is

added. A rolling forecast is sometimes called “walk-forward

model validation.” Python was used for implementing the

algorithms along with Keras, an open source neural network

library, and Theano, a numerical computation library, both

for Python. The experiments were executed on a cluster of

high performance computing facilities.

A. The ARIMA Algorithm

ARIMA is a class of models that captures temporal

structures in time series data. ARIMA is a linear regression-

based forecasting approach. Therefore it is best for fore-

casting one-step out-of-sample forecast. Here, the algorithm

developed performs multi-step out-of-sample forecast with

re-estimation, i.e., each time the model is re-fitted to build the

best estimation model [3]. The algorithm, listed in Listing 1,

takes as input “time series” data set, builds a forecast model

and reports the root mean-square error of the prediction. The

algorithm first splits the given data set into train and test sets,

70% and 30%, respectively (Lines 1-3). It then builds two

data structures to hold the accumulatively added training data

set at each iteration, “history,” and the continuously predicted

values for the test data sets, “prediction.”

As mentioned earlier, a well-known notation typically used

in building an ARIMA model is ARIMA(p, d, q), where:

– p is the number of lag observations utilized in training

the model (i.e., lag order).

– d is the number of times differencing is applied (i.e.,

degree of differencing).

– q is known as the size of the moving average window

(i.e., order of moving average).

Through Lines 6-12, first the algorithm fits an

ARIMA(5, 1, 0) model to the test data (Lines 7-8). A value

of 0 indicates that the element is not used when fitting the

model. More specifically, an ARIMA(5, 1, 0) indicates that

the lag value is set to 5 for autoregression. It uses a difference

order of 1 to make the time series stationary, and finally does

not consider any moving average window (i.e., a window

with zero size). An ARIMA(5, 1, 0) forecast model is used

as the baseline to model the forecast. This may not be the

optimal model, but it is generally a good baseline to build a

model, as our explanatory experiments indicated.

The algorithm then forecasts the expected value (hat) (Line

9), adds the hat to the prediction data structure (Line 10),

and then adds the actual value to the test set for refining

and re-fitting the model (Line 12). Finally, having built

the prediction and history data structures, the algorithm

calculates the RMSE values, the performance metric to assess

the accuracy of the prediction and evaluate the forecasts

(Lines 14-15).

Listing 1: The developed rolling ARIMA algorithm.

# Rolling ARIMA
Inputs: series
Outputs: RMSE of the forecasted data
# Split data into:
# 70% training and 30% testing data
1. size ← length(series) * 0.70
2. train ← series[0...size]
3. test ← series[size...length(size)]
# Data structure preparation
4. history ← train
5. predictions ← empty
# Forecast
6. for each t in range(length(test)) do
7. model ← ARIMA(history, order=(5, 1, 0))
8. model fit ← model.fit()
9. hat ← model_fit.forecast()
10. predictions.append(hat)
11. observed ← test[t]
12. history.append(observed)
13. end for
14. MSE = mean_squared_error(test, predictions)
15. RMSE = sqrt(MSE)
16. Return RMSE

B. The LSTM Algorithm

Unlike modeling using regressions, in time series datasets

there is a sequence of dependence among the input variables.

Recurrent Neural Networks are very powerful in handling

the dependency among the input variables. LSTM is a type

of Recurrent Neural Network (RNN) that can hold and

learn from long sequence of observations. The algorithm

developed is a multi-step univariate forecast algorithm [4].

To implement the algorithm, Keras library along with

Theano were installed on a cluster of high performance

computing center. The LSTM algorithm developed is listed

in Listing 2.

To be consistent with the ARIMA algorithm and in order

to have a fair comparison, the algorithm starts with splitting

the dataset into 70% training and 30% testing, respectively

(Lines 1-3). To ensure the reproduction of the results and

replications, it is advised to fix the random number seed. In

Line 4, the seed number is fixed to 7.

The algorithm defines a function called “fit lstm” that

trains and builds the LSTM model. The function takes the

training dataset, the number of epochs, i.e., the number

of time a given dataset is fitted to the model, and the

number of neurons, i.e., the number of memory units or

blocks. Line 8 creates an LSTM hidden later. As soon as the

network is built, it must be compiled and parsed to comply

with the mathematical notations and conventions used in

Theano. When compiling a model, a loss function along

with an optimization algorithm must be specified (Line 9).

The “mean squared error” and “ADAM” are used as the loss

function and the optimization algorithm, respectively.

After compilation, it is time to fit the model to the training

dataset. Since the network model is stateful, the resetting

stage of the network must be controlled specially when there

is more than one epoch (Lines 10 - 13). Also, since the

objective is to train an optimized model using earlier stages,
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it is necessary to set the shuffling parameter to false in order

to improve the learning mechanism. In Line 12, the algorithm

resets the internal state of the training and makes it ready for

the next iteration, i.e., epoch.

Listing 2: The developed rolling LSTM algorithm.

# Rolling LSTM
Inputs: Time series
Outputs: RMSE of the forecasted data
# Split data into:
# 70\% training and 30\% testing data
1. size ← length(series) * 0.70
2. train ← series[0...size]
3. test ← series[size...length(size)]
# Set the random seed to a fixed value
4. set random.seed(7)

# Fit an LSTM model to training data
Procedure fit_lstm(train, epoch, neurons)
5. X ← train
6. y ← train - X
7. model = Sequential()
8. model.add(LSTM(neurons), stateful=True))
9. model.compile(loss=’mean_squared_error’,

optimizer=’adam’)
10.for each i in range(epoch) do
11. model.fit(X, y, epochs=1, shuffle=False)
12. model.reset_states()
13.end for
return model

# Make a one-step forecast
Procedure forecast_lstm(model, X)
14. yhat ← model.predict(X)
return yhat

15. epoch ← 1
16. neurons ← 4
17. predictions ← empty
# Fit the lstm model
18. lstm_model = fit_lstm(train,epoch,neurons)
# Forecast the training dataset
19. lstm_model.predict(train)

# Walk-forward validation on the test data
20. for each i in range(length(test)) do
21. # make one-step forecast
22. X ← test[i]
23. yhat ← forecast_lstm(lstm_model, X)
24. # record forecast
25. predictions.append(yhat)
26. expected ← test[i]
27. end for

28. MSE ← mean_squared_error(expected,
predictions)

29. Return (RMSE ← sqrt(MSE))

A small function is created in Line 14 to call the LSTM

model and predict the next step (one single look-ahead

estimation) in the dataset. The number of epochs and the

number of neurons are set in Lines 15-16 to 1 and 4,

respectively. The operational part of the algorithm starts from

Line 18 where an LSTM model is built with given training

dataset, number of epoch and neurons. Furthermore, in Line

19 the forecast is taking place for the training data. Lines 20

TABLE II: The RMSEs of ARIMA and LSTM models.

Stock RMSE % Reduction
ARIMA LSTM in RMSE

N225 766.45 105.315 -86.259
IXIC 135.607 22.211 -83.621
HSI 1,306.954 141.686 -89.159
GSPC 55.3 7.814 -85.869
DJI-Monthly 516.979 77.643 84.981
DJI-Weekly 287.6 30.61 -89.356
Average 511.481 64.213 -87.445
MC 0.81 0.801 -1.111
HO 0.522 0.43 -17.624
ER 1.286 0.251 -80.482
FB 0.478 0.397 -16.945
MS 30.231 3.17 -89.514
TR 2.672 0.569 -78.705
Average 5.999 0.936 -84.394

- 27 use the built LSTM model to forecast the test dataset,

and Lines 28 - 29 report the obtained RMSE values. It is

important to note that, for reducing the complexity of the

algorithm, some parts of the algorithms are not shown in Box

2 such as dense, batch size, transformation, etc. However,

these parts are integral parts of the developed algorithm.

VI. RESULTS

The results are reported in Table II. The data related to the

financial time series or stock market show that the average

Rooted Mean Squared Error (RMSE) using Rolling ARIMA

and Rolling LSTM models are 511.481 and 64.213, respec-

tively, yielding an average of 87.445 reductions in error rates

achieved by LSTM. On the other hand, the economic related

data show a reduction of 84.394 in RMSE where the average

RMSE values for Rolling ARIMA and Rolling LSTM are

computed as 5.999 and 0.936, respectively. The RMSE

values clearly indicate that LSTM-based models outperform

ARIMA-based models with a high margin (i.e., between 84%

- 87% reduction in error rates).

VII. DISCUSSION

The remarkable performance observed through deep

learning-based approaches to the prediction problem is due

to the “iterative” optimization algorithm used in these ap-

proaches with the goal of finding the best results. By iterative

we mean obtain the results several times and then select the

most optimal one, i.e., the iteration that minimizes the errors.

As a result, the iterations help in an under-fitted model to be

transformed to a model optimally fitted to the data.

The iterative optimization algorithms in deep learning

often works around tuning model parameters with respect

to the “gradient descent” where i) gradient means the rate of

inclination of a slope, and ii) descent means the instance

of descending. The gradient descent is associated with a

parameter called “learning rate” that represents how fast or

slow the components of the neural network are trained. There

are several reasons that might explain why training a network

would need more iterations than training other networks. The

more compelling reason is the case when the data size is

too big and thus it is practically infeasible to pass all the

data to the training model at once. An intuitive solution to

overcome this problem is to divide the data into smaller sizes
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and then train the model with smaller chunks one by one

(i.e., batch size and iteration). Accordingly, the weights of

the parameters of the neural networks are updated at the end

of each step to account for the variance of the newly added

training data. It is also possible that we train a network with

the same training dataset more than once in order to optimize

the parameters (i.e., epoch).

A. Batch Size and Iterations

If data is too big to be given to a neural network for

training purposes at once, we may need to divide it into

several smaller batches and train the network in multiple

stages. The batch size refers to the total number of training

data used. In other words, when a big dataset is divided into

smaller number of chunks, each chunk is called a batch. On

the other hand, iteration is the number of batches needed

to complete training a model using the entire dataset. In

fact, the number of batches is equal to number of iterations

for one round of training using the entire set of data. For

instance, assume that we have 1000 training examples. We

can divide 1000 examples into batches of 250, which means

four iterations would be needed to use the entire dataset for

one round of training.

B. Epoch

Epoch represents the total number of times a given dataset

is used for training purposes. More specifically, one epoch

indicates that an entire dataset is given to a model only once,

i.e., the dataset is passed forward and then backward through

the network only once. Since deep learning algorithms use

gradient descent to optimize their models, it makes sense

to pass the entire dataset through a single network multiple

times with the goal of updating the weights and thus obtain-

ing a better and more accurate prediction model. However, it

is not clear how many rounds, i.e., epoch, would be required

to train a model with the same dataset in order to obtain the

optimal weights. Different datasets exhibit different behavior

and thus different epoch might be needed to optimally train

their networks.

C. The Impact of Epoch

The study of the influence of the number of training rounds

(epochs) on the same data is the focus of this section. The

authors performed a series of experiments and sensitivity

analysis in which they controlled the values of epoch and

captured the error rates. The epoch values varied between

1 − 100 for each dataset. The reason for choosing 100 as

the upper level value for epochs was practical and feasibility

of the experiments. Computing error rates for epoch values

between 1-100 took almost eight hours CPU time on a high

performance-computing cluster with Linux operating system.

A pilot study on the data set with Epoch = 500 ran for one

week on the cluster without any outputs. The results of the

sensitivity analysis and experiments are depicted in Figures

1 and 2 for economic and financial time series, respectively.

As demonstrated in Figures 1 and 2, there is no evidence

that training the network with same dataset more than once

would improve the accuracy of the prediction. In some

cases, the performance even gets worsen indicating that the

trained models are being over-fitted. However, as a take away

lesson, it is apparent that setting epoch = 1 does generate

a reasonable prediction model and thus there is no need for

further training on the same data. Another explanation might

be due to rolling aspect of the trained model. Since in a

rolling setting, a model is refined in each round and thus

a whole new LSTM model is being trained and thus the

weights are updated each time for a new model.

VIII. CONCLUSION

With the recent advancement on developing sophisticated

machine learning-based techniques and in particular deep

learning algorithms, these techniques are gaining popular-

ity among researchers across divers disciplines. The major

question is then how accurate and powerful these newly

introduced approaches are when compared with traditional

methods. This paper compares the accuracy of ARIMA and

LSTM, as representative techniques when forecasting time

series data. These two techniques were implemented and

applied on a set of financial data and the results indicated

that LSTM was superior to ARIMA. More specifically, the

LSTM-based algorithm improved the prediction by 85% on

average compared to ARIMA. Furthermore, the paper reports

no improvement when the number of epochs is changed.

The work described in this paper advocates the benefits

of applying deep learning-based algorithms and techniques

to the economics and financial data. There are several other

prediction problems in finance and economics that can be for-

mulated using deep learning. The authors plan to investigate

the improvement achieved through deep learning by applying

these techniques to some other problems and datasets with

various numbers of features.
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