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ABSTRACT 16 

Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular 17 

communication, environmentally responsive gene expression, and secretion of extracellular polymeric 18 

substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the 19 

physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to 20 

accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial 21 

promise for controlling biofilms by improving and expanding existing biological tools, introducing novel 22 

functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic 23 

biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, 24 

utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology 25 

also enables beneficial applications of biofilms through the production of biomaterials and patterning 26 

biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel 27 

biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.  28 

 29 

Keywords: biofilm control, synthetic biology, genetic circuit, protein engineering, quorum sensing, 30 

quorum quenching 31 
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Graphical Abstract 33 

 34 

 35 

Synthetic biology can enable the eradication of harmful biofilms and the development of beneficial 36 

biofilms.   37 
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1. Introduction  38 

    Biofilms are sessile microbial aggregates resulted from cooperation and competition between 39 

microbes (Dang and Lovell, 2005; Elias and Banin, 2012; Nadell et al., 2016) within a self-produced 40 

matrix of extracellular polymeric substances (EPS) composed of polysaccharides, proteins, lipids and 41 

nucleic acids that enhance surface adherence and microbial aggregation (Costa et al., 2018; Flemming and 42 

Wingender, 2010). Typically, biofilm formation causes detrimental effects in various areas including 43 

industrial manufacturing (Xu et al., 2017), the environment (Beech and Sunner, 2004; Scheerer et al., 44 

2009), food safety (Zhao et al., 2017), and health (Miquel et al., 2016). Many chronic infections are 45 

closely related to the biofilm state (Costerton et al., 1999; Lebeaux et al., 2014), and bacterial 46 

colonization of medical devices and implants such as catheters, contact lenses, mechanical cardiac valves, 47 

and dental implants can lead to device-related infections (Costerton et al., 2005; Stoodley et al., 2013). 48 

Biofilms formed on industrial production lines, heat exchangers, and working surfaces lead to corrosion 49 

and damage to machinery, as well as contamination of raw materials and products (Jia et al., 2019; Y. Li 50 

et al., 2018). In addition, biofilms formed in food processing facilities can contaminate food products 51 

(Brooks and Flint, 2008; Galié et al., 2018), contributing to foodborne outbreaks (Srey et al., 2013).  52 

 Biofilms serve to protect bacteria from antimicrobial agents by forming physical barriers composed of 53 

EPS that reduce the diffusion of toxic compounds and by slowing bacterial growth inside the biofilms, 54 

which mitigates the efficacy of antimicrobial agents (Mah and O’Toole, 2001). Although mechanical 55 

brushing and cleaning can effectively remove biofilms from accessible surfaces (Berger et al., 2018; 56 

González-Rivas et al., 2018), it is difficult or impossible to access biofilm-colonized surfaces in many 57 

cases. For example, biofilms on indwelling medical devices (Khatoon et al., 2018), industrial pipes (Liu et 58 

al., 2014), and food processing equipment (González-Rivas et al., 2018) are not easily accessible and 59 

require advanced physical, chemical, and biological methods for eradication. Advanced physical methods, 60 

such as pulsed electric (del Pozo et al., 2009; Khan et al., 2016), pulsed light (Garvey et al., 2015), 61 

magnetic (Geilich et al., 2017; H. Park et al., 2011), sonication (Baumann et al., 2009; Bjerkan et al., 62 

2009), and cold plasma (Abramzon et al., 2006; Gilmore et al., 2018) approaches, have been used to 63 

remove or destroy surface biofilms. Chemical treatments, including the use of surfactants (Percival et al., 64 

2017; Simões et al., 2005; Splendiani et al., 2006), disinfectants [e.g., chlorine (Kim et al., 2008; Lee et 65 

al., 2011) and hydrogen peroxide (Lin et al., 2011; Lineback et al., 2018)], and antibiotics (Ciofu et al., 66 

2017), have also been applied to control biofilms. Biological approaches for biofilm control (Roy et al., 67 

2018) include interfering with signaling pathways via quorum sensing (QS) (e.g., autoinducers) (Boles 68 

and Horswill, 2008; Brackman and Coenye, 2014; Hammer and Bassler, 2003; Herzberg et al., 2006; 69 

McNab et al., 2003) or secondary messenger molecules [e.g., cyclic di-guanosine monophosphate (c-di-70 

GMP)] (Arora et al., 2015; Barraud et al., 2015; Valentini and Filloux, 2016), inhibiting stringent 71 
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responses [e.g., alarmone (p)ppGpp] (Chávez de Paz et al., 2012; de la Fuente-Núñez et al., 2014), 72 

dispersing extracellular polymeric components by enzymatic disruption (Powell et al., 2018; Xavier et al., 73 

2005), cleaving peptidoglycan [e.g., transglycosylase (Stapleton et al., 2007) and endolysin (Shen et al., 74 

2013)], and altering the membrane potential or permeabilization [e.g., lantibiotics (Mathur et al., 2018) 75 

and polymyxins (Lima et al., 2019; S. C. Park et al., 2011)]. Furthermore, surface materials with anti-76 

biofilm coatings (Cattò and Cappitelli, 2019) and smart antibacterial surfaces (X. Li et al., 2018) have 77 

been developed for anti-biofilm strategies. Various anti-biofilm compounds, including natural products 78 

[essential oils (Jafri et al., 2019) or fatty acids (Marques et al., 2015; Thibane et al., 2010)] and 79 

synthesized nanoparticles (Allaker, 2010; Mi et al., 2018), have been investigated for the inhibition or 80 

dispersion of biofilms.  81 

 Synthetic biology is the intersection of biology and engineering and has been harnessed to engineer 82 

commensal and probiotic bacteria as genetically programmable sensors and drug delivery devices 83 

(Bradley et al., 2016; Duan et al., 2015; Maxmen, 2017) and incorporate synthetic metabolic pathways to 84 

produce useful chemicals ranging from biofuels, foods, and pharmaceuticals in the form of microbial 85 

consortia (Carocho and Ferreira, 2013; Jia et al., 2016; Volke and Nikel, 2018). Tools employing 86 

synthetic biology approaches are also used to investigate the organization of biofilms, uncover the 87 

mechanisms of actions of anti-biofilm agents and design strategies to combat biofilms (Brenner and 88 

Arnold, 2011; Hong et al., 2012; Hwang et al., 2017). By understanding the formation of microbial 89 

consortia, we can design and engineer microbial ecosystems for biomedical, industrial and 90 

biotechnological purposes. Recent seminal reviews have summarized the synthetic biology tools used to 91 

engineer microbial communities (Bittihn et al., 2018; Jia et al., 2016; Kong et al., 2018). Here, we 92 

specifically focus on reviewing synthetic biology tools and strategies to eradicate and engineer biofilms. 93 

 94 

2. Biofilms and Signaling Molecules 95 

2.1 Biofilm development and persistence 96 

 Biofilms develop through the cellular processes of initial reversible and irreversible attachment, 97 

microcolony formation, and maturation. When biofilms become sufficiently mature, single planktonic 98 

cells are dispersed from the biofilms (Costerton et al., 1999) (Fig. 1A). Biofilm development involves the 99 

regulation of hundreds of biofilm-specific genes including those related to stress responses, QS, motility, 100 

cell-surface appendages, metabolism, and transport (Domka et al., 2007). Biofilm communities release 101 

diverse inter- and intra-cellular signaling molecules that directly affect the population and dynamic 102 

structure of biofilms (Giaouris et al., 2015; Karatan and Watnick, 2009). These bioactive compounds 103 

range from small signaling molecules known as autoinducers, D-amino acids, and metabolites, to higher-104 

order proteins that mediate bacterial interactions (Karatan and Watnick, 2009; Kostakioti et al., 2013). As 105 
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a result, biofilms are quite robust and frequently require costly, repetitive physical and chemical treatment 106 

applications for removal. Biofilms are typically treated through the external addition of disinfectants or 107 

antimicrobials, unless physical debridement, such as mechanical brushing, is used (Berger et al., 2018; 108 

González-Rivas et al., 2018). However, external biocide addition shows very limited efficacy, mainly 109 

because of the mass transfer limitation in complex biofilms mixed with EPS, as well as the non-110 

metabolizing nature of the cells inside biofilms (Anderson and O’Toole, 2008), which survive under high 111 

concentrations of antibiotics. Compared with planktonic counterparts, biofilms are 10- to 1,000-fold more 112 

resistant to various antimicrobials (Davies, 2003). Therefore, novel approaches are required to eradicate 113 

biofilm bacteria. 114 

 115 

2.2 Regulation of biofilm formation via signaling molecules 116 

 Diverse signaling molecules are involved during bacterial biofilm formation (Fig. 1B). QS is a cell-117 

cell communication process in bacteria mediated by the production and detection of extracellular 118 

chemicals known as autoinducers (Popat et al., 2015; Waters and Bassler, 2005). QS allows bacteria to 119 

coordinate their gene expression in a population-driven manner. Acyl-homoserine lactones (AHLs) are a 120 

major autoinducer signal mediating QS in Gram-negative bacteria (Papenfort and Bassler, 2016). The 121 

LuxI/LuxR system of Vibrio fischeri is known as a classical AHL QS system (Fuqua et al., 1994) (Fig. 122 

1C). LuxI synthesizes the autoinducer N-(3-oxo-hexanoyl)-L-homoserine lactone (3oC6HSL), and LuxR 123 

forms a complex with 3oC6HSL, resulting in broad gene expression activation (Fuqua et al., 2001; 124 

Kumar and Rajput, 2018). In contrast, Gram-positive bacteria use modified oligopeptides as autoinducers, 125 

which are detected by membrane-bound two-component signaling proteins that transduce information via 126 

a series of phosphorylation events (Kleerebezem et al., 1997). The agr (accessory gene regulator) system 127 

of Staphylcoccus aureus is an example of a QS system in Gram-positive bacteria (Queck et al., 2008) (Fig. 128 

1D). agrD encodes a propeptide possessing the autoinducing peptide (AIP) signal sequence (Zhang et al., 129 

2002). The propeptide is processed by cleavage of the N-terminal signal peptide by S. aureus signal 130 

peptidase B (SpsB) and C-terminal tail by AgrB, and the mature AIP is then secreted into the extracellular 131 

environment (Kavanaugh et al., 2007). Sensor transmembrane histidine kinase AgrC and its cognate 132 

response regulator AgrA constitute a classical bacterial two-component signal transduction system. Once 133 

AIP binds to AgrC, AgrA is phosphorylated and subsequently binds to P2 and P3 promoter regions. This 134 

enables RNAII production that further triggers AIP synthesis, along with induction of RNAIII that 135 

regulates genes related to virulence, biofilm formation, and other processes (Koenig et al., 2004; Queck et 136 

al., 2008). Such QS signaling plays an important role in biofilm formation (Boles and Horswill, 2008). In 137 

V. cholerae and S. aureus, increased cell density inhibits biofilm formation (Boles and Horswill, 2008; 138 

Hammer and Bassler, 2003), while activation of QS circuits (two LuxI/R-type QS circuits, LasI/R and 139 
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RhlI/R) in Pseudomonas aeruginosa stimulates biofilm formation (Duan and Surette, 2007). Autoinducer-140 

2 (AI-2) is a species-nonspecific autoinducer produced by both Gram-negative and Gram-positive 141 

bacteria (Schauder and Bassler, 2001). It is synthesized by S-ribosylhomocysteine lyase (LuxS), which 142 

converts S-ribosylhomocysteine to homocysteine and (S)-4,5-dihydroxy-2,3-pentanedione (DPD). DPD is 143 

then processed into AI-2 molecules (Xavier et al., 2007). AI-2 was studied in regulations of intra- and 144 

inter- species biofilms. In the environment of dental plaque, hundreds of bacterial species constitute 145 

mixed-species biofilms, and Streptococcus gordonii is a main colonizer among them as AI-2 production 146 

from S. gordonii on teeth induces the consecutive colonization by other bacteria such as Porphyromonas 147 

gingivalis (McNab et al., 2003). The addition of AI-2 leads to an increase in biofilm formation in E. coli 148 

(Herzberg et al., 2006). In addition, AI-2 from Klebsiella pneumoniae could promote its early biofilm 149 

formation (Balestrino et al., 2005).  150 

Another common signaling molecule is c-di-GMP, a ubiquitous second messenger present in almost 151 

all bacteria. c-di-GMP is the central regulator of biofilm formation, as it mediates the switch between the 152 

motile and sessile forms of bacteria (Valentini and Filloux, 2016). c-di-GMP is synthesized from two 153 

guanosine-5’-triphosphate molecules by diguanylate cyclases (DGCs), and is degraded into 5’-154 

phosphoguanylyl-(3’-5’)-guanosine and guanosine monophosphate by phosphodiesterases (PDEs). 155 

Various microorganisms are reported to express multiple DGC and PDE enzymes (Hengge, 2009; 156 

Römling et al., 2013; Sondermann et al., 2012). This enzymatic redundancy might be beneficial to 157 

bacteria through each enzyme’s specific activation and inactivation in response to different environmental 158 

conditions.   159 

 Indole is an intercellular signaling molecule produced from tryptophan by the enzyme tryptophanase 160 

TnaA (Lee and Lee, 2010). Indole has diverse roles including in spore formation, plasmid stability, drug 161 

resistance, biofilm formation, and virulence in indole-producing bacteria. The effect of indole on biofilm 162 

formation is controversial. Indole was initially reported to enhance biofilm formation in E. coli S17-1. 163 

However, indole inhibits biofilm formation in nine nonpathogenic E. coli as well as the pathogenic E. coli 164 

O157: H7 strain. Indole was recently reported to repress persister cells, which are metabolically dormant 165 

cell populations (J. H. Lee et al., 2016).  166 

 167 

2.3 Regulation of biofilm dispersal via signaling molecules 168 

 Nitric oxide (NO) is a simple gas and a biological signaling molecule found to induce biofilm 169 

dispersal across a wide range of bacterial species (Arora et al., 2015; Barraud et al., 2015). Because of the 170 

broad-spectrum anti-biofilm effects of NO, NO-releasing materials and prodrugs have also been explored 171 

(Barraud et al., 2012; Hetrick et al., 2009). Increased understanding of the role of NO in biofilm 172 

formation through its regulation of intracellular c-di-GMP concentrations, QS, and cellular nitrogen 173 
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metabolism has helped reveal the action mechanism of known drugs and identify novel targets for drug 174 

development (Rinaldo et al., 2018). NO sensors such as H-NOX (heme-nitric oxide/oxygen binding) or 175 

NosP (nitric oxide sensing protein) affect biofilm formation by regulating c-di-GMP concentrations and 176 

QS (Hossain and Boon, 2017; Rinaldo et al., 2018). Understanding H-NOX and NosP mechanisms in 177 

bacteria could lead to better control of bacterial biofilms and biofilm-related infections (Williams et al., 178 

2018).  179 

 Natural amino acids predominantly participating in protein synthesis are in the L-form, while D-180 

amino acids are found in the cell walls of bacteria. Recently, D-amino acids have been demonstrated to 181 

act as regulatory signals for cell wall remodeling and biofilm disassembly (Cava et al., 2011; Kolodkin-182 

Gal et al., 2010). In living organisms, D-amino acids are synthesized by the action of racemases that 183 

convert amino acids from L-form to D-form (Tanner, 2002). D-amino acids disperse biofilms by 184 

interfering with the anchoring of amyloid fibers that link biofilm cells together (Kolodkin-Gal et al., 2010; 185 

Oppenheimer-Shaanan et al., 2013) and prevent biofilm formation by altering the cell wall composition 186 

(Bucher et al., 2015). Furthermore, mixtures of D-amino acids have been shown to promote biocide 187 

treatments against biofilm communities in a water-cooling tower (Jia et al., 2017) and to reduce biofilms 188 

in dental unit waterlines (Ampornaramveth et al., 2018). Due to the distinctive mechanisms and biological 189 

roles of D-amino acids (Aliashkevich et al., 2018), the application of D-amino acids is an appealing anti-190 

biofilm approach, either alone or in combination with established antimicrobials.  191 

    It should be noted that during biofilm formation, the synthesis and degradation of inter- and intra-192 

cellular signaling molecules are regulated in response to key environmental factors such as temperature 193 

(Lee et al., 2008; Lee and Lee, 2010; Townsley and Yildiz, 2015), pH (Chopp et al., 2003; Lee and Lee, 194 

2010), osmotic pressure (Hengge, 2008; Valverde and Haas, 2008), and nutrient conditions (Stanley and 195 

Lazazzera, 2004). Hence, signaling molecules are excellent candidates for controlling biofilm formation 196 

and eradication.  197 

  198 

3. Synthetic Biology Approaches 199 

 With an enhanced understanding of biofilms (Flemming et al., 2016) and a growing synthetic biology 200 

toolkit (Bittihn et al., 2018; Brenner et al., 2008; Jia et al., 2016), the ability to control biofilms (Wood et 201 

al., 2011) continues to expand. An important strategy in controlling biofilms is based on the ability of 202 

molecules produced inside biofilms to bypass the mass transport barriers created by extracellular 203 

polymeric substances, thereby reaching concentrations sufficiently high to regulate target biofilms. This 204 

approach may address numerous biofilm-associated challenges in environmental, agricultural, industrial, 205 

and medical areas. The biofilm eradication strategies using protein engineering and synthetic biology are 206 

summarized below. 207 
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  208 

3.1 Protein engineering of biofilm-controlling enzymes  209 

 Protein engineering is a potential strategy to enhance the activity of global regulator proteins related 210 

to biofilm formation (Fig. 2A). H-NS (histone-like nucleoid structuring protein) represses transcription by 211 

recognizing curved DNA sequences and was the first engineered regulator used to control biofilm 212 

formation without signaling molecules (Hong et al., 2010b). The variant H-NS K57N was found to reduce 213 

biofilm formation, showing an opposite function compared to the biofilm-promoting activity of wild-type 214 

H-NS (Hong et al., 2010b). Another global regulator Hha (high hemolysin activity) was engineered to 215 

promote biofilm dispersal, resulting in nearly complete biofilm dispersal (Hong et al., 2010a). Proteins 216 

with the ability to bind signaling molecules have been engineered for controlled biofilm formation and 217 

enhanced dispersal. E. coli does not produce AHLs because it lacks an AHL synthase, but it senses AHL 218 

signals through the AHL receptor SdiA, a homologue of LuxR (Dyszel et al., 2010). SdiA was engineered 219 

via random and site-directed mutagenesis to regulate biofilm formation in the presence of AHLs or indole 220 

(Lee et al., 2009). Like E. coli, the foodborne pathogen Salmonella enterica does not produce AHL 221 

signals but does contain the receptor SdiA for AHL, which regulates S. enterica adhesion as well as 222 

resistance to host immune responses (Bai and Rai, 2016). BdcA was identified as a c-di-GMP-binding 223 

protein and engineered to increase biofilm dispersal through a single amino acid replacement at E50Q 224 

(Ma et al., 2011a). In addition, BdcA of E. coli was found to control biofilm dispersal in P. 225 

aeruginosa and Rhizobium meliloti (Ma et al., 2011b). Therefore, protein engineering of global regulators 226 

or signaling molecule-binding proteins enables enhanced biofilm eradication or can be used to modulate 227 

the microbial activity of biofilm formation. 228 

 229 

3.2 Synthetic biology for eradicating biofilms 230 

3.2.1 Quorum sensing genetic circuits   231 

 Bacterial QS systems have been important components of a wide variety of engineered biological 232 

devices. Autoinducers are useful as input signals because they diffuse freely in liquid media and penetrate 233 

cells easily (Choudhary and Schmidt-Dannert, 2010). Because the engineered cells synthesize their own 234 

QS signals, they are able to self-monitor cell density and modulate their activities without oversight 235 

(Hong et al., 2012; Ryan and Dow, 2008). Synthetic QS circuit systems have great potential in that 236 

population-driven QS switches may be utilized to develop synthetic genetic networks  for a variety of 237 

applications such as to engineer bidirectional communication, construct a predator-prey ecosystem, and 238 

create a synthetic symbiotic ecosystem (Wood et al., 2011). The LasI/R and RhlI/R pairs, the two best-239 

characterized QS systems of P. aeruginosa, have been widely used for synthetic genetic circuits. LasI 240 

produces the autoinducer molecule, N-(3-oxo-dodecanoyl)-L-homoserine lactone (3oC12HSL), which is 241 
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sensed by LasR. Likewise, RhlI produces N-butyryl-L-homoserine lactone (C4HSL) that is sensed by 242 

RhlR (Pesci et al., 1997). For biofilm formation, the RhlI/R QS system was utilized to demonstrate 243 

important roles for self-organization and aggregation in a synthetic biofilm consortium. The LasI/R 244 

system in combination with the engineered biofilm-dispersal enzymes Hha and BdcA showed excellent 245 

biofilm displacement upon sensing QS signals (Hong et al., 2012). In this system, the second biofilm 246 

(disperser) is grown in the existing biofilm (colonizer), and QS signaling molecules are produced by LasI 247 

and accumulate inside the dual-species biofilm. The QS molecules form a complex with LasR, which 248 

triggers dispersal of the colonizer biofilm through increased c-di-GMP levels mediated by the BdcA 249 

variant (Fig. 2B). Then, the disperser biofilm can be disrupted by inducing the Hha variant with a 250 

chemical switch, resulting in cell death in the biofilm. The synthetic QS circuit was applied to prevent 251 

membrane biofouling and/or to degrade environmental pollutants (Wood et al., 2016). This beneficial 252 

biofilm was able to limit its own thickness on wastewater treatment membrane by secreting and sensing 253 

the signaling molecule controlling c-di-GMP levels mediated by the BdcA variant. In addition, the 254 

engineered biofilm also prevented biofilm formation by deleterious bacteria through NO generation and 255 

was able to degrade the environmental pollutant epichlorohydrin via epoxide hydrolase. Thus, the use of 256 

this beneficial biofilm enabled the development of a living biofouling-resistant membrane system. The 257 

QS circuit systems for controlling biofilms can provide insights into how beneficial biofilms can be 258 

developed to prevent or eradicate deleterious biofilms for various applications. 259 

 260 

3.2.2 Quorum quenching enzymes 261 

 Finding ways to subvert microbes by interfering with their communication signals is important 262 

for combating antibiotic resistance and other biofilm-related situations (Marx, 2014). Quorum quenching 263 

(QQ) is the mechanism by which QS is inhibited or interrupted. One strategy here is to process, modify or 264 

degrade the signaling molecules that are required for cellular communication, thereby preventing the 265 

buildup of biofilms (Grandclément et al., 2016). The majority of QQ studies have focused on hydrolysis 266 

of N-acyl homoserine lactones using lactonases that break down lactone rings in AHLs along with 267 

acylases that cleave acyl groups (Oh and Lee, 2018) (Fig. 2C). Bacterial or enzymatic QQ has been 268 

applied for antifouling strategies in membrane bioreactors (MBRs) for wastewater treatment (Oh and Lee, 269 

2018). For example, AHL-producing bacteria on the surface of membrane were decreased by recombinant 270 

E. coli producing lactonase AiiA from Bacillus thuringiensis (Oh et al., 2012) and AiiO from 271 

Agrobacterium tumefaciens (Oh et al., 2017). Production of EPS and expression of genes related to 272 

microbial attachment and agglomeration were found to be reduced with enzymatic QQ treatment (Kim et 273 

al., 2013). Rhodococcus erythropolis W2 was used to degrade AHLs via both its oxido-reductase and 274 

AHL-acylase activities (Uroz et al., 2005). Because AI-2 signaling molecules are secreted by both Gram-275 
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negative and Gram-positive bacteria, targeting AI-2 for QQ is another useful strategy. LsrK (luxS-276 

regulated kinase) that phosphorylates AI-2 is considered to be a QQ enzyme, as purified LsrK with added 277 

ATP significantly decreased the AI-2 signaling of S. typhimurium, E. coli, and V. harveyi (Roy et al., 278 

2010). Farnesol, a chemical compound secreted from Candida albicans, is effective in repressing AI-2 279 

synthesis and mitigating biofouling in MBRs (K. Lee et al., 2016). Metagenomic approaches have been 280 

applied to find a system for modifying AI-2 (Weiland-Bräuer et al., 2016). An indigenous bacterium 281 

Acinetobacter sp. DKY-1 was found to inactivate AI-2 by secreting a hydrophilic AI-2 QQ compound 282 

with a molecular weight of less than 400 Da, but the mechanistic details remain to be determined (Lee et 283 

al., 2018). QQ enzymes or chemical compound production systems integrated into synthetic genetic 284 

circuits would enable elaborate control of biofilm prevention and eradication.  285 

 286 

3.2.3 Bacteriophages 287 

 Bacteriophages can penetrate the inner layers of biofilms because phage depolymerases can degrade 288 

EPS components (Azeredo and Sutherland, 2008). Single-type phages (Curtin and Donlan, 2006; Pires et 289 

al., 2011) as well as multi-phage cocktails (Fu et al., 2010; Sillankorva et al., 2010) have been applied for 290 

biofilm destruction or inhibition. Bacteriophages have great potential for engineering as antimicrobial 291 

agents, vehicles for drug delivery and vaccines, and the assembly of new materials (Pires et al., 2016). 292 

Synthetic biology has been used to develop reinforced bacteriophages that can efficiently kill deleterious 293 

biofilm cells by introducing biofilm-degrading or -inhibiting enzymes or enhancing antibiotic penetration. 294 

For example, a T7 phage was engineered to produce the biofilm-degrading enzyme dispersin B (DspB) 295 

during phage infection (Lu and Collins, 2007). dspB from Actinobacillus actinomycetemcomitans was 296 

integrated into the phage genome under the T7 10 promoter, leading to dspB transcription by the T7 297 

RNA polymerase upon phage infection of E. coli TG1 biofilms. Along with cell killing by the phages, 298 

DspB simultaneously attacked the biofilm matrix by hydrolyzing the biofilm-promoting adhesin -1,6-N-299 

acetyl-D-glucosamine of E. coli. The engineered enzymatic phage reduced the E. coli biofilm by 2 orders 300 

of magnitude compared to the wild-type non-enzymatic phage treatment. A bacteriophage was also 301 

designed to increase the antibiotic susceptibility of biofilm cells (Lu and Collins, 2009). The M13mp18 302 

phage, a modified non-lytic filamentous M13 phage, was engineered to contain csrA that encodes a 303 

biofilm repressor CsrA with or without ompF that encodes a porin for quinolone penetration (Fig. 2D). 304 

Infection with the engineered phage enhanced the antibiotic ofloxacin’s bactericidal effect, resulting in 305 

more effective killing of the biofilm as well as planktonic cells compared to unmodified phage treatment 306 

(Lu and Collins, 2009). In order to overcome the narrow substrate specificity of biofilm-degrading 307 

enzymes (e.g., DspB), a QQ enzyme was integrated into bacteriophage that was more effective in 308 
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inhibiting mixed species biofilms by disrupting AHL signals (Pei and Lamas-Samanamud, 2014). 309 

Lactonase AiiA from Bacillus sp. cleaves the lactone rings of diverse AHLs (Wang et al., 2004). A T7 310 

bacteriophage was engineered to express aiiA controlled by the T7 10 promoter, and this QQ phage 311 

treatment was effective in inhibiting P. aeruginosa and E. coli dual-species biofilm formation via both 312 

cell lysis and AHL degradation (Pei and Lamas-Samanamud, 2014). Genetically engineered phages will 313 

be further developed by integrating novel biofilm inhibitory functions.  314 

     315 

3.2.4 Probiotics 316 

 Probiotics are beneficial microbes that enhance host immunity (Hill et al., 2014) and inhibit 317 

pathogens (Ohland and MacNaughton, 2010). Probiotic bacteria also have the ability to inhibit biofilm 318 

formation (Fang et al., 2018; Shao et al., 2019; Woo and Ahn, 2013). Due to their beneficial health effects, 319 

probiotics have been considered as an engineering host for human therapeutic application. E. coli Nissle 320 

1917 strain (EcN) is one of the best characterized probiotics and has been used for the clinical treatment 321 

of intestinal disorders (Heselmans et al., 2005; Schultz, 2008; Sonnenborn and Schulze, 2009) and 322 

engineered for enhancing live biotherapeutics such as tumor detection (Ozdemir et al., 2018), 323 

hyperammonemia treatment (Kurtz et al., 2019), and as a drug delivery vehicle (Mckay et al., 2018). For 324 

biofilms, wild-type EcN has the ability to inhibit biofilm formation of pathogenic and non-pathogenic E. 325 

coli (Fang et al., 2018; Hancock et al., 2010) as well as the Gram-positive pathogens Staphylococcus 326 

aureus and S. epidermidis in co-cultures (Fang et al., 2018). EcN was engineered to sense, kill, and inhibit 327 

pathogenic biofilms for preventing P. aeruginosa gut infection in Caenorhabditis elegans and mouse 328 

models (Hwang et al., 2017) (Fig. 2E). The alr and dadX genes in the EcN genome were knocked out to 329 

enable the mutant EcN strain to become a D-alanine auxotroph, which stabilized retention of the plasmid 330 

expressing alr. The engineered EcN contained a synthetic genetic circuit. In response to the QS molecule 331 

3oC12HSL from P. aeruginosa, the engineered EcN produced E7 lysis protein to open the host cell, S5 332 

pyocin to kill P. aeruginosa, and DspB to degrade the biofilm matrix. The engineered EcN with anti-333 

microbial and anti-biofilm enzymes disrupted the existing biofilm and prevented biofilm formation of P. 334 

aeruginosa (Hwang et al., 2017). Taken together, synthetic genetic circuits can enhance the prophylactic 335 

and therapeutic activities of probiotics against biofilm-forming pathogens.  336 

 337 

3.3 Synthetic biology for engineering biofilms 338 

 Although the elimination of deleterious biofilm cells is crucial, biofilms may have beneficial potential 339 

if their pattern, thickness, composition, and metabolism can be controlled in a tunable, spatial, and 340 

temporal manner. Engineered biofilms can be applied for bioremediation (Brune and Bayer, 2012; 341 

Mangwani et al., 2016), wastewater treatment (Karadag et al., 2015; Lewandowski and Boltz, 2011), 342 
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biocorrosion control (Jia et al., 2019; Morikawa, 2006; Narenkumar et al., 2016; Zuo, 2007), biofuel 343 

production (Heimann, 2016; Hoh et al., 2016), specialty and bulk chemical biorefinery (Rosche et al., 344 

2009; Wang et al., 2017), biomedical microelectromechanical systems (bioMEMS) devices (Fernandes et 345 

al., 2010), and pharmaceutical testing (Stewart, 2015). Synthetic genetic circuits and signaling can 346 

facilitate the design and development of such biofilm control systems. 347 

 348 

3.3.1 Biofilm patterning 349 

 Biofilm formation requires complex gene regulation processes (Domka et al., 2007) that are difficult 350 

to manipulate when attempting to generate a desired structure or pattern. An optogenetic module was 351 

developed for microprinting biofilms (Huang et al., 2018; Ryu et al., 2017). Light-activated diguanylate 352 

(BphS) that synthesizes c-di-GMP under near-infrared light (Ryu and Gomelsky, 2014) and 353 

phosphodiesterase (BlrP1) that hydrolyzes c-di-GMP under blue light (Barends et al., 2009) were used to 354 

bidirectionally regulate c-di-GMP levels. Near-infrared light (632 nm) illumination increased the level of 355 

c-di-GMP, resulting in attachment of the cells to a cover glass surface, while blue light (434 nm) 356 

decreased the level of c-di-GMP to allow detachment. Dual-color illumination enabled biofilm patterning 357 

with a high spatial resolution (Huang et al., 2018) (Fig. 3A). Another biofilm patterning utilized the 358 

expression of membrane adhesion proteins in response to blue light (Jin and Riedel-Kruse, 2018). E. coli 359 

was engineered to contain a light-activated transcriptional promoter (pDawn) that optically controls the 360 

expression of an adhesin gene (Ag43). Upon blue light illumination, biofilm formation was increased and 361 

optically patterned with a 25 μm spatial resolution. Furthermore, a photoswitchable interaction between 362 

nMag and pMag proteins (Kawano et al., 2015) was also developed to control bacterial adhesion (Chen 363 

and Wegner, 2017) (Fig. 3B). pMag protein was produced on the surface of E. coli in the presence of blue 364 

light to allow the engineered strain to adhere to the immobilized nMag protein on the material surface. 365 

This adhesion was reversible. The binding was released in the dark, allowing tunable and biorthogonal 366 

control (Chen and Wegner, 2017). The ability to maintain biofilm levels at a desired thickness is 367 

important for bioremediation and bioproduction (Zhang and Poh, 2018). The CRISPRi/dCas9 system was 368 

applied to control the expression of the wcaF gene involved in the synthesis of colanic acid, a key EPS 369 

component in E. coli biofilm formation. Depending on the level of the guide RNA (gRNA) controlled by 370 

a chemical inducer, wcaF gene expression was regulated by gRNA-dCas9 binding to the chromosomal 371 

wcaF locus. Temporal induction resulted in different levels of biofilm thickness. When the circuit was 372 

combined with the blue light-mediated expression system, biofilm thickness could be controlled by 373 

switching the light. Furthermore, production of the antimicrobial peptide nisin was utilized to achieve 374 

robust and tunable spatial structures (Kong et al., 2017). The external nisin gradient resulted in no 375 

fluorescence or cell death at a low nisin concentration, fluorescence induction without killing the cells at 376 
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medium nisin level, and cell death without fluorescence at a high level of nisin, which created band-pass 377 

patterns. Mixed nisin producer and responder species generated dynamic spatial structures consistent with 378 

the computational model (Kong et al., 2017).  379 

 380 

3.3.2 Biomaterial production 381 

Biofilms can be developed as a biological platform for producing self-assembling functional materials 382 

(Nguyen et al., 2014) (Fig. 3C). Biofilm-Integrated Nanofiber Display (BIND) was developed to produce 383 

engineered amyloid protein CsgA, a major component of the curli fibrils of E. coli biofilms. The 384 

engineered CsgA containing functional peptide domains was self-assembled upon secretion and 385 

facilitated nanoparticle biotemplating, substrate adhesion, and site-specific protein immobilization on the 386 

BIND system (Botyanszki et al., 2015; Nguyen et al., 2014). The same amyloid protein was applied to 387 

create environmentally switchable conductive biofilms by using an inducible synthetic riboregulator 388 

circuit and interfacing the self-assembled curli fibrils with inorganic materials such as gold nanoparticles 389 

to introduce an electro-conductive property (Chen et al., 2014). 3D printing of bacteria was used to create 390 

biofilm-based functional materials for bioremediation and biomedical applications (Schaffner et al., 2017). 391 

Patterned biofilms were demonstrated by engineered curli production on the 3D-printed E. coli 392 

(Schmieden et al., 2018). Synthetic biology will guide the engineering of self-assembled polymer 393 

production and direct the assembly of patterned biofilms (Majerle et al., 2019).  394 

 395 

4. Perspective 396 

 Intra- or inter-species phenomena occur in mixed-species biofilms, which exhibit dynamic 397 

interactions among bacteria (Giaouris et al., 2015). The cooperative interactions between biofilm bacterial 398 

species are achieved through cell-cell communication, metabolic cooperation, or spatial organization 399 

(Elias and Banin, 2012). However, there are also competitive interactions regarding nutrient uptake, 400 

occupation of spatial resources, or with the production of anti-biofilm agents (Giaouris et al., 2015). 401 

Synthetic biology approaches can help understand and engineer such cooperative and competitive 402 

behaviors among different bacterial species in biofilms. Studies on the beneficial characteristics of 403 

probiotic bacteria in inhibiting deleterious biofilms are growing (Fang et al., 2018; Hager et al., 2019; 404 

Wasfi et al., 2018). Ribosomally-synthesized antimicrobial proteins such as pyocins (Oluyombo et al., 405 

2019; Smith et al., 2011) or colicins (Brown et al., 2012; Jin et al., 2019, 2018; Rendueles et al., 2014) 406 

that exhibit target-specific bacterial killing could be used with probiotics to eradicate harmful biofilms 407 

without affecting the overall beneficial or commensal microbial consortia.   408 

 Biofilms with higher productivity and tolerance to toxic inhibitors can serve as microbial cell 409 

factories (Berlanga and Guerrero, 2016) for producing chemicals such as ethanol (Todhanakasem et al., 410 
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2014), acetone, butanol (Förberg and Häggström, 1985), and succinyl acid (Urbance et al., 2004). 411 

Coordinating synthetic biofilm communities is becoming more important in industrial biochemical 412 

production (Berlanga and Guerrero, 2016). The morphology and spatial organization of catalytic biofilms 413 

must be programmed along with engineering of their metabolic pathways for biochemical production 414 

(Volke and Nikel, 2018). A 3D printing approach combined with synthetic genetic controls will enhance 415 

the design and assembly of synthetic biofilm catalysts. 416 

 In addition to bacterial biofilms, fungal biofilms on implanted devices and on epithelial and 417 

endothelial surfaces can cause recurrent infections with increased drug resistance (Desai et al., 2014; 418 

Kernien et al., 2018). Candida, Aspergillus, and Cryptococcus are the most prominent clinically relevant 419 

fungi involved in the resilience of fungal biofilms to host immunity (Kernien et al., 2018). Antimicrobial 420 

peptides naturally found in living organisms can effectively treat fungal biofilms without eliciting an 421 

immune response. For example, histatin-5 (Hst-5) from human saliva is an antifungal peptide that can 422 

inhibit the growth of Candida albicans (Baev et al., 2002) but has limited antifungal activity due to its 423 

rapid degradation at the site of action (Moffa et al., 2015a). Recently, liposome encapsulation has enabled 424 

the prolonged delivery of Hst-5 (Zambom et al., 2019), and the design of proteolysis-resistant peptides 425 

has been shown to stabilize Hst-5, resulting in enhanced antifungal activity (Ikonomova et al., 2019, 426 

2018), which may be applied for the control of fungal biofilms (Moffa et al., 2015b). In contrast to 427 

harmful fungal biofilms, some fungal biofilms are beneficial. For example, the formation of fungal–428 

bacterial biofilms on the plant root promotes plant growth by supplying essential nutrients and providing 429 

plant growth-promoting substances (Gentili and Jumpponen, 2006; Herath et al., 2015). Such symbiotic 430 

relationships between plants and microbes, including fungi and bacteria (Goh et al., 2013; Hassani et al., 431 

2018), have resulted the development of biofilmed biofertilizers, presenting a viable alternative for 432 

chemical fertilizers in agriculture (Zakeel and Safeena, 2019). Despite the need to control fungal biofilms 433 

in medical, industrial, and agricultural applications, synthetic biology techniques for fungal cells are still 434 

in the early developmental stages (Hennig et al., 2015). Fungal QS (Albuquerque and Casadevall, 2012) 435 

and pheromone communication (Hennig et al., 2015) may be attractive targets for modulating fungal 436 

biofilms. 437 

 Signaling molecules exhibit some drawbacks in the control of biofilms and thus require further 438 

improvement. As mentioned above, QS molecules have been widely utilized in synthetic biology 439 

(Choudhary and Schmidt-Dannert, 2010; Hong et al., 2012; Ryan and Dow, 2008), as signals produced in 440 

the host cell can bind to receptors of the target cell, resulting in population-driven responses (Popat et al., 441 

2015; Waters and Bassler, 2005). However, QS signal production and detection are strain-specific 442 

(Hawver et al., 2016); therefore, it is difficult to apply QS circuits to target non-model strains or species 443 

that have different QS systems or that lack QS signal recognition, which commonly arise in real-world 444 
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situations. In contrast, c-di-GMP is a nearly ubiquitous bacterial signal (Hengge, 2009; Römling et al., 445 

2013; Sondermann et al., 2012) that regulates biofilm formation, but it acts intracellularly (Valentini and 446 

Filloux, 2016). This lack of signal diffusion to other cells limits the development of a c-di-GMP genetic 447 

circuit and the corresponding control strategy to the host cells. Nitric oxide (NO) signaling in nitrogen 448 

metabolism is involved in c-di-GMP metabolism (Rinaldo et al., 2018), and NO production can be 449 

triggered by the external addition of chemicals (Barraud et al., 2012; Hetrick et al., 2009) to modulate c-450 

di-GMP production in a broad range of bacteria. Therefore, combining ubiquitous c-di-GMP regulation 451 

and strain-specific QS systems will enable the development of a broad spectrum of synthetic genetic 452 

circuits for the control of complex biofilms. Additionally, bioactive phytochemicals found in natural 453 

products, such as green tea leaves (Qais et al., 2019) and medicinal plant extracts (Shukla and Bhathena, 454 

2016), that exhibit broad-spectrum QS and biofilm inhibition may be integrated in the development of 455 

biofilm-controlling genetic circuits. Furthermore, models of the effects of signaling molecules in biofilm 456 

communities (Abisado et al., 2018; Emerenini et al., 2015; Frederick et al., 2011) can aid in the design 457 

and validation of synthetic biological circuits for effective biofilm control.   458 

 459 

5. Conclusion 460 

 Control of biofilms, including their eradication and utilization, has been hampered due to insufficient 461 

knowledge of biofilm development and the limitations of biological toolkits. Recent investigations of 462 

biofilm physiology and synthetic biology advancements can facilitate fine control of biofilms, resulting in 463 

the efficient eradication of deleterious biofilms without the use of antibiotics and beneficial utilization of 464 

engineered biofilms. However, such synthetic biology approaches for controlling biofilms remain in the 465 

early stages. Rather than a single gene or signaling molecule, multiple factors contribute simultaneously 466 

or in series at the different stages of biofilm development. Hence, multi-stage and multi-target strategies 467 

may be required to achieve the desired level of biofilm control, which will be enabled by mimicking 468 

native biofilm formation and dispersal processes. Growing sets of synthetic biology tools as well as 469 

continued investigations into biofilm regulation will provide insights for biofilm-controlling strategies 470 

and their application in medical, food-processing, agricultural, industrial, and environmental fields. 471 
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FIGURE LEGENDS 1121 
 1122 

Figure 1. Biofilm formation and signaling. A) Biofilm developmental stages: 1) attachment, 2) cell-to-1123 

cell adhesion, 3) proliferation, 4) maturation, and 5) dispersal. B) Signaling molecules involved in 1124 

biofilm formation: acylhomoserine lactone (AHL), autoinducing peptide (AIP), autoinducer-2 (AI-1125 

2), cyclic di-guanosine monophosphate (c-di-GMP), indole, and nitric oxide (NO). C) Gram-1126 

negative quorum sensing (QS). In V. fischeri, LuxI synthesizes 3oC6HSL (AHL). LuxR forms a 1127 

complex with AHL, and the complex activates target gene expression. D) Gram-positive QS. In S. 1128 

aureus, AgrD is processed to form AIP. Upon sensing AIP, AgrC phosphorylates AgrA, which in 1129 

turn induces RNAIII production. RNAIII activates or inhibits target gene expression.    1130 

Figure 2. Biofilm cell killing and eradication. A) Protein engineering via random or site-directed 1131 

mutagenesis to induce biofilm dispersal. B) Synthetic QS genetic circuit to enable biofilm 1132 

displacement. LasI in the green cell produces AHL, and the LasR/AHL complex in the red cell 1133 

induces biofilm dispersal [biofilm images from (Hong et al., 2012)]. C) Quorum quenching to 1134 

disrupt AHL. Lactonase hydrolyzes lactone rings, and acylase cleaves acyl groups, which inhibits 1135 

biofilms. D) Engineered bacteriophage for biofilm cell killing via enhanced antibiotic penetration 1136 

along with biofilm inhibition via induction of the biofilm-inhibiting enzyme CsrA. E) Engineered 1137 

probiotic strain to sense and kill pathogen biofilms. Colin E7 lysin (E7) disrupts the probiotic host 1138 

cells, pyocin S5 (S5) kills P. aeruginosa in biofilms, and dispersin B (DspB) degrades the biofilm 1139 

matrix.  1140 

Figure 3. Biofilm utilization for patterning and biomaterial production. A) Optogenetic biofilm 1141 

patterning using light-switchable c-di-GMP regulation. BphS activated by near-infrared light 1142 

synthesizes c-di-GMP, while BlrP1 activated by blue light degrades c-di-GMP, resulting in 1143 

biofilm formation and dispersal, respectively [biofilm images from (Huang et al., 2018)]. B) pMag 1144 

on the microbial surface and nMag on the material surface form heterodimers with blue light. C) 1145 

Engineered microbe produces the self-assembled curli nanofiber CsgA with a variable peptide 1146 

domain, which confers new functions.  1147 
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