

Controlling Biofilms Using Synthetic Biology Approaches

Kuili Fang,¹ Oh-Jin Park,^{1,2} and Seok Hoon Hong^{1*}

¹Department of Chemical and Biological Engineering, Illinois Institute of Technology,
Chicago, IL 60616, USA

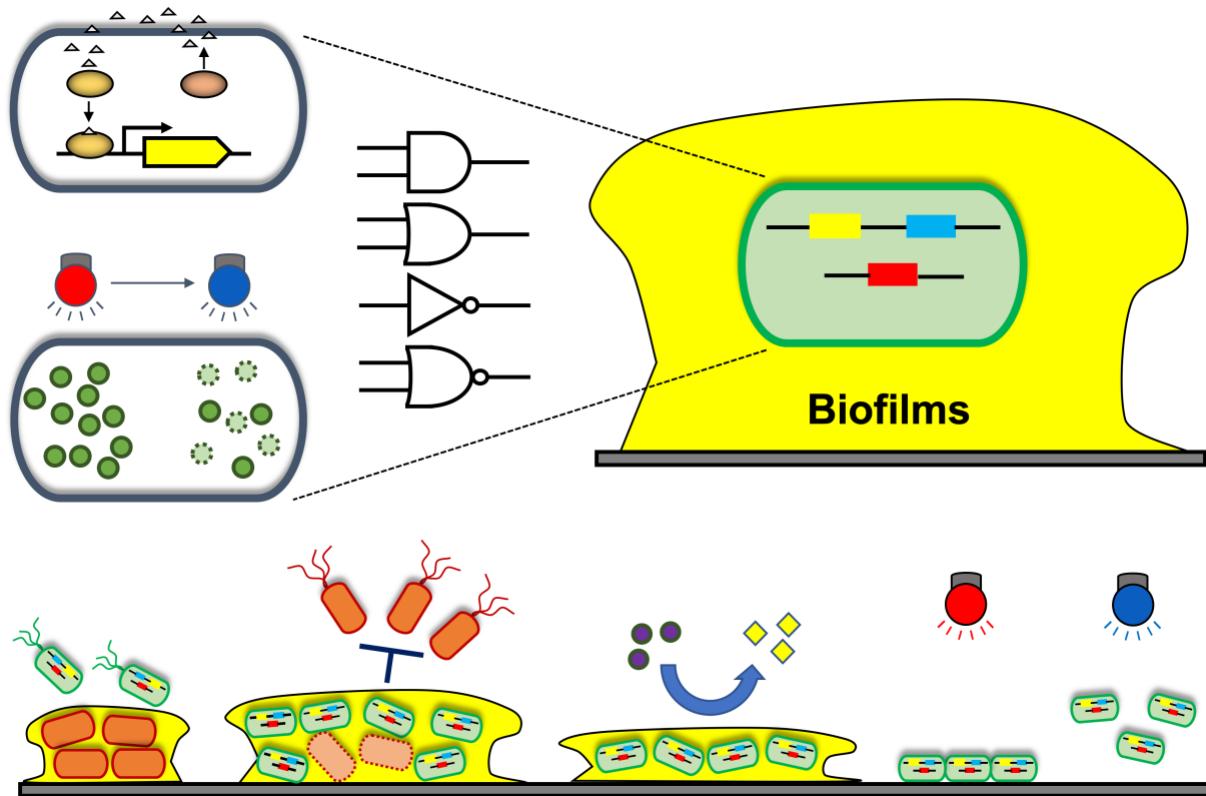
²Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China

*Corresponding author: shong26@iit.edu

Tel: (+1) 312 567 8950

16 **ABSTRACT**

17 Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular
18 communication, environmentally responsive gene expression, and secretion of extracellular polymeric
19 substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the
20 physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to
21 accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial
22 promise for controlling biofilms by improving and expanding existing biological tools, introducing novel
23 functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic
24 biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes,
25 utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology
26 also enables beneficial applications of biofilms through the production of biomaterials and patterning
27 biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel
28 biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.


29

30 **Keywords:** biofilm control, synthetic biology, genetic circuit, protein engineering, quorum sensing,
31 quorum quenching

32

33 **Graphical Abstract**

34

35

36 Synthetic biology can enable the eradication of harmful biofilms and the development of beneficial
37 biofilms.

38 **1. Introduction**

39 Biofilms are sessile microbial aggregates resulted from cooperation and competition between
40 microbes (Dang and Lovell, 2005; Elias and Banin, 2012; Nadell et al., 2016) within a self-produced
41 matrix of extracellular polymeric substances (EPS) composed of polysaccharides, proteins, lipids and
42 nucleic acids that enhance surface adherence and microbial aggregation (Costa et al., 2018; Flemming and
43 Wingender, 2010). Typically, biofilm formation causes detrimental effects in various areas including
44 industrial manufacturing (Xu et al., 2017), the environment (Beech and Sunner, 2004; Scheerer et al.,
45 2009), food safety (Zhao et al., 2017), and health (Miquel et al., 2016). Many chronic infections are
46 closely related to the biofilm state (Costerton et al., 1999; Lebeaux et al., 2014), and bacterial
47 colonization of medical devices and implants such as catheters, contact lenses, mechanical cardiac valves,
48 and dental implants can lead to device-related infections (Costerton et al., 2005; Stoodley et al., 2013).
49 Biofilms formed on industrial production lines, heat exchangers, and working surfaces lead to corrosion
50 and damage to machinery, as well as contamination of raw materials and products (Jia et al., 2019; Y. Li
51 et al., 2018). In addition, biofilms formed in food processing facilities can contaminate food products
52 (Brooks and Flint, 2008; Galié et al., 2018), contributing to foodborne outbreaks (Srey et al., 2013).

53 Biofilms serve to protect bacteria from antimicrobial agents by forming physical barriers composed of
54 EPS that reduce the diffusion of toxic compounds and by slowing bacterial growth inside the biofilms,
55 which mitigates the efficacy of antimicrobial agents (Mah and O'Toole, 2001). Although mechanical
56 brushing and cleaning can effectively remove biofilms from accessible surfaces (Berger et al., 2018;
57 González-Rivas et al., 2018), it is difficult or impossible to access biofilm-colonized surfaces in many
58 cases. For example, biofilms on indwelling medical devices (Khatoon et al., 2018), industrial pipes (Liu et
59 al., 2014), and food processing equipment (González-Rivas et al., 2018) are not easily accessible and
60 require advanced physical, chemical, and biological methods for eradication. Advanced physical methods,
61 such as pulsed electric (del Pozo et al., 2009; Khan et al., 2016), pulsed light (Garvey et al., 2015),
62 magnetic (Geilich et al., 2017; H. Park et al., 2011), sonication (Baumann et al., 2009; Bjerkan et al.,
63 2009), and cold plasma (Abramzon et al., 2006; Gilmore et al., 2018) approaches, have been used to
64 remove or destroy surface biofilms. Chemical treatments, including the use of surfactants (Percival et al.,
65 2017; Simões et al., 2005; Splendiani et al., 2006), disinfectants [*e.g.*, chlorine (Kim et al., 2008; Lee et
66 al., 2011) and hydrogen peroxide (Lin et al., 2011; Lineback et al., 2018)], and antibiotics (Ciofu et al.,
67 2017), have also been applied to control biofilms. Biological approaches for biofilm control (Roy et al.,
68 2018) include interfering with signaling pathways via quorum sensing (QS) (*e.g.*, autoinducers) (Boles
69 and Horswill, 2008; Brackman and Coenye, 2014; Hammer and Bassler, 2003; Herzberg et al., 2006;
70 McNab et al., 2003) or secondary messenger molecules [*e.g.*, cyclic di-guanosine monophosphate (c-di-
71 GMP)] (Arora et al., 2015; Barraud et al., 2015; Valentini and Filloux, 2016), inhibiting stringent

72 responses [*e.g.*, alarmone (p)ppGpp] (Chávez de Paz et al., 2012; de la Fuente-Núñez et al., 2014),
73 dispersing extracellular polymeric components by enzymatic disruption (Powell et al., 2018; Xavier et al.,
74 2005), cleaving peptidoglycan [*e.g.*, transglycosylase (Stapleton et al., 2007) and endolysin (Shen et al.,
75 2013)], and altering the membrane potential or permeabilization [*e.g.*, lantibiotics (Mathur et al., 2018)
76 and polymyxins (Lima et al., 2019; S. C. Park et al., 2011)]. Furthermore, surface materials with anti-
77 biofilm coatings (Cattò and Cappitelli, 2019) and smart antibacterial surfaces (X. Li et al., 2018) have
78 been developed for anti-biofilm strategies. Various anti-biofilm compounds, including natural products
79 [essential oils (Jafri et al., 2019) or fatty acids (Marques et al., 2015; Thibane et al., 2010)] and
80 synthesized nanoparticles (Allaker, 2010; Mi et al., 2018), have been investigated for the inhibition or
81 dispersion of biofilms.

82 Synthetic biology is the intersection of biology and engineering and has been harnessed to engineer
83 commensal and probiotic bacteria as genetically programmable sensors and drug delivery devices
84 (Bradley et al., 2016; Duan et al., 2015; Maxmen, 2017) and incorporate synthetic metabolic pathways to
85 produce useful chemicals ranging from biofuels, foods, and pharmaceuticals in the form of microbial
86 consortia (Carocho and Ferreira, 2013; Jia et al., 2016; Volke and Nikel, 2018). Tools employing
87 synthetic biology approaches are also used to investigate the organization of biofilms, uncover the
88 mechanisms of actions of anti-biofilm agents and design strategies to combat biofilms (Brenner and
89 Arnold, 2011; Hong et al., 2012; Hwang et al., 2017). By understanding the formation of microbial
90 consortia, we can design and engineer microbial ecosystems for biomedical, industrial and
91 biotechnological purposes. Recent seminal reviews have summarized the synthetic biology tools used to
92 engineer microbial communities (Bittihn et al., 2018; Jia et al., 2016; Kong et al., 2018). Here, we
93 specifically focus on reviewing synthetic biology tools and strategies to eradicate and engineer biofilms.
94

95 2. Biofilms and Signaling Molecules

96 2.1 Biofilm development and persistence

97 Biofilms develop through the cellular processes of initial reversible and irreversible attachment,
98 microcolony formation, and maturation. When biofilms become sufficiently mature, single planktonic
99 cells are dispersed from the biofilms (Costerton et al., 1999) (**Fig. 1A**). Biofilm development involves the
100 regulation of hundreds of biofilm-specific genes including those related to stress responses, QS, motility,
101 cell-surface appendages, metabolism, and transport (Domka et al., 2007). Biofilm communities release
102 diverse inter- and intra-cellular signaling molecules that directly affect the population and dynamic
103 structure of biofilms (Giaouris et al., 2015; Karatan and Watnick, 2009). These bioactive compounds
104 range from small signaling molecules known as autoinducers, D-amino acids, and metabolites, to higher-
105 order proteins that mediate bacterial interactions (Karatan and Watnick, 2009; Kostakioti et al., 2013). As

106 a result, biofilms are quite robust and frequently require costly, repetitive physical and chemical treatment
107 applications for removal. Biofilms are typically treated through the external addition of disinfectants or
108 antimicrobials, unless physical debridement, such as mechanical brushing, is used (Berger et al., 2018;
109 González-Rivas et al., 2018). However, external biocide addition shows very limited efficacy, mainly
110 because of the mass transfer limitation in complex biofilms mixed with EPS, as well as the non-
111 metabolizing nature of the cells inside biofilms (Anderson and O'Toole, 2008), which survive under high
112 concentrations of antibiotics. Compared with planktonic counterparts, biofilms are 10- to 1,000-fold more
113 resistant to various antimicrobials (Davies, 2003). Therefore, novel approaches are required to eradicate
114 biofilm bacteria.

115

116 **2.2 Regulation of biofilm formation via signaling molecules**

117 Diverse signaling molecules are involved during bacterial biofilm formation (**Fig. 1B**). QS is a cell-
118 cell communication process in bacteria mediated by the production and detection of extracellular
119 chemicals known as autoinducers (Popat et al., 2015; Waters and Bassler, 2005). QS allows bacteria to
120 coordinate their gene expression in a population-driven manner. Acyl-homoserine lactones (AHLs) are a
121 major autoinducer signal mediating QS in Gram-negative bacteria (Papenfort and Bassler, 2016). The
122 LuxI/LuxR system of *Vibrio fischeri* is known as a classical AHL QS system (Fuqua et al., 1994) (**Fig.**
123 **1C**). LuxI synthesizes the autoinducer *N*-(3-*oxo*-hexanoyl)-*L*-homoserine lactone (3*o*C6HSL), and LuxR
124 forms a complex with 3*o*C6HSL, resulting in broad gene expression activation (Fuqua et al., 2001;
125 Kumar and Rajput, 2018). In contrast, Gram-positive bacteria use modified oligopeptides as autoinducers,
126 which are detected by membrane-bound two-component signaling proteins that transduce information via
127 a series of phosphorylation events (Kleerebezem et al., 1997). The *agr* (accessory gene regulator) system
128 of *Staphylococcus aureus* is an example of a QS system in Gram-positive bacteria (Queck et al., 2008) (**Fig.**
129 **1D**). *agrD* encodes a propeptide possessing the autoinducing peptide (AIP) signal sequence (Zhang et al.,
130 2002). The propeptide is processed by cleavage of the N-terminal signal peptide by *S. aureus* signal
131 peptidase B (SpsB) and C-terminal tail by AgrB, and the mature AIP is then secreted into the extracellular
132 environment (Kavanaugh et al., 2007). Sensor transmembrane histidine kinase AgrC and its cognate
133 response regulator AgrA constitute a classical bacterial two-component signal transduction system. Once
134 AIP binds to AgrC, AgrA is phosphorylated and subsequently binds to P2 and P3 promoter regions. This
135 enables RNAII production that further triggers AIP synthesis, along with induction of RNAIII that
136 regulates genes related to virulence, biofilm formation, and other processes (Koenig et al., 2004; Queck et
137 al., 2008). Such QS signaling plays an important role in biofilm formation (Boles and Horswill, 2008). In
138 *V. cholerae* and *S. aureus*, increased cell density inhibits biofilm formation (Boles and Horswill, 2008;
139 Hammer and Bassler, 2003), while activation of QS circuits (two LuxI/R-type QS circuits, LasI/R and

140 RhII/R) in *Pseudomonas aeruginosa* stimulates biofilm formation (Duan and Surette, 2007). Autoinducer-
141 2 (AI-2) is a species-nonspecific autoinducer produced by both Gram-negative and Gram-positive
142 bacteria (Schauder and Bassler, 2001). It is synthesized by S-ribosylhomocysteine lyase (LuxS), which
143 converts S-ribosylhomocysteine to homocysteine and (S)-4,5-dihydroxy-2,3-pentanedione (DPD). DPD is
144 then processed into AI-2 molecules (Xavier et al., 2007). AI-2 was studied in regulations of intra- and
145 inter- species biofilms. In the environment of dental plaque, hundreds of bacterial species constitute
146 mixed-species biofilms, and *Streptococcus gordonii* is a main colonizer among them as AI-2 production
147 from *S. gordonii* on teeth induces the consecutive colonization by other bacteria such as *Porphyromonas*
148 *gingivalis* (McNab et al., 2003). The addition of AI-2 leads to an increase in biofilm formation in *E. coli*
149 (Herzberg et al., 2006). In addition, AI-2 from *Klebsiella pneumoniae* could promote its early biofilm
150 formation (Balestrino et al., 2005).

151 Another common signaling molecule is c-di-GMP, a ubiquitous second messenger present in almost
152 all bacteria. c-di-GMP is the central regulator of biofilm formation, as it mediates the switch between the
153 motile and sessile forms of bacteria (Valentini and Filloux, 2016). c-di-GMP is synthesized from two
154 guanosine-5'-triphosphate molecules by diguanylate cyclases (DGCs), and is degraded into 5'-
155 phosphoguanylyl-(3'-5')-guanosine and guanosine monophosphate by phosphodiesterases (PDEs).
156 Various microorganisms are reported to express multiple DGC and PDE enzymes (Hengge, 2009;
157 Römling et al., 2013; Sondermann et al., 2012). This enzymatic redundancy might be beneficial to
158 bacteria through each enzyme's specific activation and inactivation in response to different environmental
159 conditions.

160 Indole is an intercellular signaling molecule produced from tryptophan by the enzyme tryptophanase
161 TnaA (Lee and Lee, 2010). Indole has diverse roles including in spore formation, plasmid stability, drug
162 resistance, biofilm formation, and virulence in indole-producing bacteria. The effect of indole on biofilm
163 formation is controversial. Indole was initially reported to enhance biofilm formation in *E. coli* S17-1.
164 However, indole inhibits biofilm formation in nine nonpathogenic *E. coli* as well as the pathogenic *E. coli*
165 O157: H7 strain. Indole was recently reported to repress persister cells, which are metabolically dormant
166 cell populations (J. H. Lee et al., 2016).

167

168 **2.3 Regulation of biofilm dispersal via signaling molecules**

169 Nitric oxide (NO) is a simple gas and a biological signaling molecule found to induce biofilm
170 dispersal across a wide range of bacterial species (Arora et al., 2015; Barraud et al., 2015). Because of the
171 broad-spectrum anti-biofilm effects of NO, NO-releasing materials and prodrugs have also been explored
172 (Barraud et al., 2012; Hetrick et al., 2009). Increased understanding of the role of NO in biofilm
173 formation through its regulation of intracellular c-di-GMP concentrations, QS, and cellular nitrogen

174 metabolism has helped reveal the action mechanism of known drugs and identify novel targets for drug
175 development (Rinaldo et al., 2018). NO sensors such as H-NOX (heme-nitric oxide/oxygen binding) or
176 NosP (nitric oxide sensing protein) affect biofilm formation by regulating c-di-GMP concentrations and
177 QS (Hossain and Boon, 2017; Rinaldo et al., 2018). Understanding H-NOX and NosP mechanisms in
178 bacteria could lead to better control of bacterial biofilms and biofilm-related infections (Williams et al.,
179 2018).

180 Natural amino acids predominantly participating in protein synthesis are in the L-form, while D-
181 amino acids are found in the cell walls of bacteria. Recently, D-amino acids have been demonstrated to
182 act as regulatory signals for cell wall remodeling and biofilm disassembly (Cava et al., 2011; Kolodkin-
183 Gal et al., 2010). In living organisms, D-amino acids are synthesized by the action of racemases that
184 convert amino acids from L-form to D-form (Tanner, 2002). D-amino acids disperse biofilms by
185 interfering with the anchoring of amyloid fibers that link biofilm cells together (Kolodkin-Gal et al., 2010;
186 Oppenheimer-Shaanan et al., 2013) and prevent biofilm formation by altering the cell wall composition
187 (Bucher et al., 2015). Furthermore, mixtures of D-amino acids have been shown to promote biocide
188 treatments against biofilm communities in a water-cooling tower (Jia et al., 2017) and to reduce biofilms
189 in dental unit waterlines (Ampornaramveth et al., 2018). Due to the distinctive mechanisms and biological
190 roles of D-amino acids (Aliashkevich et al., 2018), the application of D-amino acids is an appealing anti-
191 biofilm approach, either alone or in combination with established antimicrobials.

192 It should be noted that during biofilm formation, the synthesis and degradation of inter- and intra-
193 cellular signaling molecules are regulated in response to key environmental factors such as temperature
194 (Lee et al., 2008; Lee and Lee, 2010; Townsley and Yildiz, 2015), pH (Chopp et al., 2003; Lee and Lee,
195 2010), osmotic pressure (Hengge, 2008; Valverde and Haas, 2008), and nutrient conditions (Stanley and
196 Lazazzera, 2004). Hence, signaling molecules are excellent candidates for controlling biofilm formation
197 and eradication.

198

199 **3. Synthetic Biology Approaches**

200 With an enhanced understanding of biofilms (Flemming et al., 2016) and a growing synthetic biology
201 toolkit (Bittihn et al., 2018; Brenner et al., 2008; Jia et al., 2016), the ability to control biofilms (Wood et
202 al., 2011) continues to expand. An important strategy in controlling biofilms is based on the ability of
203 molecules produced inside biofilms to bypass the mass transport barriers created by extracellular
204 polymeric substances, thereby reaching concentrations sufficiently high to regulate target biofilms. This
205 approach may address numerous biofilm-associated challenges in environmental, agricultural, industrial,
206 and medical areas. The biofilm eradication strategies using protein engineering and synthetic biology are
207 summarized below.

208

209 **3.1 Protein engineering of biofilm-controlling enzymes**

210 Protein engineering is a potential strategy to enhance the activity of global regulator proteins related
211 to biofilm formation (**Fig. 2A**). H-NS (histone-like nucleoid structuring protein) represses transcription by
212 recognizing curved DNA sequences and was the first engineered regulator used to control biofilm
213 formation without signaling molecules (Hong et al., 2010b). The variant H-NS K57N was found to reduce
214 biofilm formation, showing an opposite function compared to the biofilm-promoting activity of wild-type
215 H-NS (Hong et al., 2010b). Another global regulator Hha (high hemolysin activity) was engineered to
216 promote biofilm dispersal, resulting in nearly complete biofilm dispersal (Hong et al., 2010a). Proteins
217 with the ability to bind signaling molecules have been engineered for controlled biofilm formation and
218 enhanced dispersal. *E. coli* does not produce AHLs because it lacks an AHL synthase, but it senses AHL
219 signals through the AHL receptor SdiA, a homologue of LuxR (Dyszel et al., 2010). SdiA was engineered
220 via random and site-directed mutagenesis to regulate biofilm formation in the presence of AHLs or indole
221 (Lee et al., 2009). Like *E. coli*, the foodborne pathogen *Salmonella enterica* does not produce AHL
222 signals but does contain the receptor SdiA for AHL, which regulates *S. enterica* adhesion as well as
223 resistance to host immune responses (Bai and Rai, 2016). BdcA was identified as a c-di-GMP-binding
224 protein and engineered to increase biofilm dispersal through a single amino acid replacement at E50Q
225 (Ma et al., 2011a). In addition, BdcA of *E. coli* was found to control biofilm dispersal in *P.*
226 *aeruginosa* and *Rhizobium meliloti* (Ma et al., 2011b). Therefore, protein engineering of global regulators
227 or signaling molecule-binding proteins enables enhanced biofilm eradication or can be used to modulate
228 the microbial activity of biofilm formation.

229

230 **3.2 Synthetic biology for eradicating biofilms**231 **3.2.1 Quorum sensing genetic circuits**

232 Bacterial QS systems have been important components of a wide variety of engineered biological
233 devices. Autoinducers are useful as input signals because they diffuse freely in liquid media and penetrate
234 cells easily (Choudhary and Schmidt-Dannert, 2010). Because the engineered cells synthesize their own
235 QS signals, they are able to self-monitor cell density and modulate their activities without oversight
236 (Hong et al., 2012; Ryan and Dow, 2008). Synthetic QS circuit systems have great potential in that
237 population-driven QS switches may be utilized to develop synthetic genetic networks for a variety of
238 applications such as to engineer bidirectional communication, construct a predator-prey ecosystem, and
239 create a synthetic symbiotic ecosystem (Wood et al., 2011). The LasI/R and RhI/R pairs, the two best-
240 characterized QS systems of *P. aeruginosa*, have been widely used for synthetic genetic circuits. LasI
241 produces the autoinducer molecule, *N*-(3-oxo-dodecanoyl)-*L*-homoserine lactone (3oC12HSL), which is

242 sensed by LasR. Likewise, RhII produces *N*-butyryl-*L*-homoserine lactone (C4HSL) that is sensed by
243 RhIIR (Pesci et al., 1997). For biofilm formation, the RhII/R QS system was utilized to demonstrate
244 important roles for self-organization and aggregation in a synthetic biofilm consortium. The LasI/R
245 system in combination with the engineered biofilm-dispersal enzymes Hha and BdcA showed excellent
246 biofilm displacement upon sensing QS signals (Hong et al., 2012). In this system, the second biofilm
247 (disperser) is grown in the existing biofilm (colonizer), and QS signaling molecules are produced by LasI
248 and accumulate inside the dual-species biofilm. The QS molecules form a complex with LasR, which
249 triggers dispersal of the colonizer biofilm through increased c-di-GMP levels mediated by the BdcA
250 variant (**Fig. 2B**). Then, the disperser biofilm can be disrupted by inducing the Hha variant with a
251 chemical switch, resulting in cell death in the biofilm. The synthetic QS circuit was applied to prevent
252 membrane biofouling and/or to degrade environmental pollutants (Wood et al., 2016). This beneficial
253 biofilm was able to limit its own thickness on wastewater treatment membrane by secreting and sensing
254 the signaling molecule controlling c-di-GMP levels mediated by the BdcA variant. In addition, the
255 engineered biofilm also prevented biofilm formation by deleterious bacteria through NO generation and
256 was able to degrade the environmental pollutant epichlorohydrin via epoxide hydrolase. Thus, the use of
257 this beneficial biofilm enabled the development of a living biofouling-resistant membrane system. The
258 QS circuit systems for controlling biofilms can provide insights into how beneficial biofilms can be
259 developed to prevent or eradicate deleterious biofilms for various applications.

260

261 **3.2.2 Quorum quenching enzymes**

262 Finding ways to subvert microbes by interfering with their communication signals is important
263 for combating antibiotic resistance and other biofilm-related situations (Marx, 2014). Quorum quenching
264 (QQ) is the mechanism by which QS is inhibited or interrupted. One strategy here is to process, modify or
265 degrade the signaling molecules that are required for cellular communication, thereby preventing the
266 buildup of biofilms (Grandclément et al., 2016). The majority of QQ studies have focused on hydrolysis
267 of N-acyl homoserine lactones using lactonases that break down lactone rings in AHLs along with
268 acylases that cleave acyl groups (Oh and Lee, 2018) (**Fig. 2C**). Bacterial or enzymatic QQ has been
269 applied for antifouling strategies in membrane bioreactors (MBRs) for wastewater treatment (Oh and Lee,
270 2018). For example, AHL-producing bacteria on the surface of membrane were decreased by recombinant
271 *E. coli* producing lactonase AiiA from *Bacillus thuringiensis* (Oh et al., 2012) and AiiO from
272 *Agrobacterium tumefaciens* (Oh et al., 2017). Production of EPS and expression of genes related to
273 microbial attachment and agglomeration were found to be reduced with enzymatic QQ treatment (Kim et
274 al., 2013). *Rhodococcus erythropolis* W2 was used to degrade AHLs via both its oxido-reductase and
275 AHL-acylase activities (Uroz et al., 2005). Because AI-2 signaling molecules are secreted by both Gram-

negative and Gram-positive bacteria, targeting AI-2 for QQ is another useful strategy. LsrK (*luxS*-regulated kinase) that phosphorylates AI-2 is considered to be a QQ enzyme, as purified LsrK with added ATP significantly decreased the AI-2 signaling of *S. typhimurium*, *E. coli*, and *V. harveyi* (Roy et al., 2010). Farnesol, a chemical compound secreted from *Candida albicans*, is effective in repressing AI-2 synthesis and mitigating biofouling in MBRs (K. Lee et al., 2016). Metagenomic approaches have been applied to find a system for modifying AI-2 (Weiland-Bräuer et al., 2016). An indigenous bacterium *Acinetobacter* sp. DKY-1 was found to inactivate AI-2 by secreting a hydrophilic AI-2 QQ compound with a molecular weight of less than 400 Da, but the mechanistic details remain to be determined (Lee et al., 2018). QQ enzymes or chemical compound production systems integrated into synthetic genetic circuits would enable elaborate control of biofilm prevention and eradication.

286

287 **3.2.3 Bacteriophages**

288 Bacteriophages can penetrate the inner layers of biofilms because phage depolymerases can degrade
289 EPS components (Azeredo and Sutherland, 2008). Single-type phages (Curtin and Donlan, 2006; Pires et
290 al., 2011) as well as multi-phage cocktails (Fu et al., 2010; Sillankorva et al., 2010) have been applied for
291 biofilm destruction or inhibition. Bacteriophages have great potential for engineering as antimicrobial
292 agents, vehicles for drug delivery and vaccines, and the assembly of new materials (Pires et al., 2016).
293 Synthetic biology has been used to develop reinforced bacteriophages that can efficiently kill deleterious
294 biofilm cells by introducing biofilm-degrading or -inhibiting enzymes or enhancing antibiotic penetration.
295 For example, a T7 phage was engineered to produce the biofilm-degrading enzyme dispersin B (DspB)
296 during phage infection (Lu and Collins, 2007). *dspB* from *Actinobacillus actinomycetemcomitans* was
297 integrated into the phage genome under the T7 ϕ 10 promoter, leading to *dspB* transcription by the T7
298 RNA polymerase upon phage infection of *E. coli* TG1 biofilms. Along with cell killing by the phages,
299 DspB simultaneously attacked the biofilm matrix by hydrolyzing the biofilm-promoting adhesin β -1,6-N-
300 acetyl-D-glucosamine of *E. coli*. The engineered enzymatic phage reduced the *E. coli* biofilm by 2 orders
301 of magnitude compared to the wild-type non-enzymatic phage treatment. A bacteriophage was also
302 designed to increase the antibiotic susceptibility of biofilm cells (Lu and Collins, 2009). The M13mp18
303 phage, a modified non-lytic filamentous M13 phage, was engineered to contain *csrA* that encodes a
304 biofilm repressor CsrA with or without *ompF* that encodes a porin for quinolone penetration (**Fig. 2D**).
305 Infection with the engineered phage enhanced the antibiotic ofloxacin's bactericidal effect, resulting in
306 more effective killing of the biofilm as well as planktonic cells compared to unmodified phage treatment
307 (Lu and Collins, 2009). In order to overcome the narrow substrate specificity of biofilm-degrading
308 enzymes (e.g., DspB), a QQ enzyme was integrated into bacteriophage that was more effective in

309 inhibiting mixed species biofilms by disrupting AHL signals (Pei and Lamas-Samanamud, 2014).
310 Lactonase AiiA from *Bacillus sp.* cleaves the lactone rings of diverse AHLs (Wang et al., 2004). A T7
311 bacteriophage was engineered to express *aaiA* controlled by the T7 φ 10 promoter, and this QQ phage
312 treatment was effective in inhibiting *P. aeruginosa* and *E. coli* dual-species biofilm formation via both
313 cell lysis and AHL degradation (Pei and Lamas-Samanamud, 2014). Genetically engineered phages will
314 be further developed by integrating novel biofilm inhibitory functions.

315

316 **3.2.4 Probiotics**

317 Probiotics are beneficial microbes that enhance host immunity (Hill et al., 2014) and inhibit
318 pathogens (Ohland and MacNaughton, 2010). Probiotic bacteria also have the ability to inhibit biofilm
319 formation (Fang et al., 2018; Shao et al., 2019; Woo and Ahn, 2013). Due to their beneficial health effects,
320 probiotics have been considered as an engineering host for human therapeutic application. *E. coli* Nissle
321 1917 strain (EcN) is one of the best characterized probiotics and has been used for the clinical treatment
322 of intestinal disorders (Heselmans et al., 2005; Schultz, 2008; Sonnenborn and Schulze, 2009) and
323 engineered for enhancing live biotherapeutics such as tumor detection (Ozdemir et al., 2018),
324 hyperammonemia treatment (Kurtz et al., 2019), and as a drug delivery vehicle (Mckay et al., 2018). For
325 biofilms, wild-type EcN has the ability to inhibit biofilm formation of pathogenic and non-pathogenic *E.*
326 *coli* (Fang et al., 2018; Hancock et al., 2010) as well as the Gram-positive pathogens *Staphylococcus*
327 *aureus* and *S. epidermidis* in co-cultures (Fang et al., 2018). EcN was engineered to sense, kill, and inhibit
328 pathogenic biofilms for preventing *P. aeruginosa* gut infection in *Caenorhabditis elegans* and mouse
329 models (Hwang et al., 2017) (**Fig. 2E**). The *alr* and *dadX* genes in the EcN genome were knocked out to
330 enable the mutant EcN strain to become a D-alanine auxotroph, which stabilized retention of the plasmid
331 expressing *alr*. The engineered EcN contained a synthetic genetic circuit. In response to the QS molecule
332 3oC12HSL from *P. aeruginosa*, the engineered EcN produced E7 lysis protein to open the host cell, S5
333 pyocin to kill *P. aeruginosa*, and DspB to degrade the biofilm matrix. The engineered EcN with anti-
334 microbial and anti-biofilm enzymes disrupted the existing biofilm and prevented biofilm formation of *P.*
335 *aeruginosa* (Hwang et al., 2017). Taken together, synthetic genetic circuits can enhance the prophylactic
336 and therapeutic activities of probiotics against biofilm-forming pathogens.

337

338 **3.3 Synthetic biology for engineering biofilms**

339 Although the elimination of deleterious biofilm cells is crucial, biofilms may have beneficial potential
340 if their pattern, thickness, composition, and metabolism can be controlled in a tunable, spatial, and
341 temporal manner. Engineered biofilms can be applied for bioremediation (Brune and Bayer, 2012;
342 Mangwani et al., 2016), wastewater treatment (Karadag et al., 2015; Lewandowski and Boltz, 2011),

343 biocorrosion control (Jia et al., 2019; Morikawa, 2006; Narenkumar et al., 2016; Zuo, 2007), biofuel
344 production (Heimann, 2016; Hoh et al., 2016), specialty and bulk chemical biorefinery (Rosche et al.,
345 2009; Wang et al., 2017), biomedical microelectromechanical systems (bioMEMS) devices (Fernandes et
346 al., 2010), and pharmaceutical testing (Stewart, 2015). Synthetic genetic circuits and signaling can
347 facilitate the design and development of such biofilm control systems.

348

349 **3.3.1 Biofilm patterning**

350 Biofilm formation requires complex gene regulation processes (Domka et al., 2007) that are difficult
351 to manipulate when attempting to generate a desired structure or pattern. An optogenetic module was
352 developed for microprinting biofilms (Huang et al., 2018; Ryu et al., 2017). Light-activated diguanylate
353 (BphS) that synthesizes c-di-GMP under near-infrared light (Ryu and Gomelsky, 2014) and
354 phosphodiesterase (BlrP1) that hydrolyzes c-di-GMP under blue light (Barends et al., 2009) were used to
355 bidirectionally regulate c-di-GMP levels. Near-infrared light (632 nm) illumination increased the level of
356 c-di-GMP, resulting in attachment of the cells to a cover glass surface, while blue light (434 nm)
357 decreased the level of c-di-GMP to allow detachment. Dual-color illumination enabled biofilm patterning
358 with a high spatial resolution (Huang et al., 2018) (**Fig. 3A**). Another biofilm patterning utilized the
359 expression of membrane adhesion proteins in response to blue light (Jin and Riedel-Kruse, 2018). *E. coli*
360 was engineered to contain a light-activated transcriptional promoter (pDawn) that optically controls the
361 expression of an adhesin gene (Ag43). Upon blue light illumination, biofilm formation was increased and
362 optically patterned with a 25 μ m spatial resolution. Furthermore, a photoswitchable interaction between
363 nMag and pMag proteins (Kawano et al., 2015) was also developed to control bacterial adhesion (Chen
364 and Wegner, 2017) (**Fig. 3B**). pMag protein was produced on the surface of *E. coli* in the presence of blue
365 light to allow the engineered strain to adhere to the immobilized nMag protein on the material surface.
366 This adhesion was reversible. The binding was released in the dark, allowing tunable and biorthogonal
367 control (Chen and Wegner, 2017). The ability to maintain biofilm levels at a desired thickness is
368 important for bioremediation and bioproduction (Zhang and Poh, 2018). The CRISPRi/dCas9 system was
369 applied to control the expression of the *wcaF* gene involved in the synthesis of colanic acid, a key EPS
370 component in *E. coli* biofilm formation. Depending on the level of the guide RNA (gRNA) controlled by
371 a chemical inducer, *wcaF* gene expression was regulated by gRNA-dCas9 binding to the chromosomal
372 *wcaF* locus. Temporal induction resulted in different levels of biofilm thickness. When the circuit was
373 combined with the blue light-mediated expression system, biofilm thickness could be controlled by
374 switching the light. Furthermore, production of the antimicrobial peptide nisin was utilized to achieve
375 robust and tunable spatial structures (Kong et al., 2017). The external nisin gradient resulted in no
376 fluorescence or cell death at a low nisin concentration, fluorescence induction without killing the cells at

377 medium nisin level, and cell death without fluorescence at a high level of nisin, which created band-pass
378 patterns. Mixed nisin producer and responder species generated dynamic spatial structures consistent with
379 the computational model (Kong et al., 2017).

380

381 **3.3.2 Biomaterial production**

382 Biofilms can be developed as a biological platform for producing self-assembling functional materials
383 (Nguyen et al., 2014) (Fig. 3C). Biofilm-Integrated Nanofiber Display (BIND) was developed to produce
384 engineered amyloid protein CsgA, a major component of the curli fibrils of *E. coli* biofilms. The
385 engineered CsgA containing functional peptide domains was self-assembled upon secretion and
386 facilitated nanoparticle biotemplating, substrate adhesion, and site-specific protein immobilization on the
387 BIND system (Botyanszki et al., 2015; Nguyen et al., 2014). The same amyloid protein was applied to
388 create environmentally switchable conductive biofilms by using an inducible synthetic riboregulator
389 circuit and interfacing the self-assembled curli fibrils with inorganic materials such as gold nanoparticles
390 to introduce an electro-conductive property (Chen et al., 2014). 3D printing of bacteria was used to create
391 biofilm-based functional materials for bioremediation and biomedical applications (Schaffner et al., 2017).
392 Patterned biofilms were demonstrated by engineered curli production on the 3D-printed *E. coli*
393 (Schmieden et al., 2018). Synthetic biology will guide the engineering of self-assembled polymer
394 production and direct the assembly of patterned biofilms (Majerle et al., 2019).

395

396 **4. Perspective**

397 Intra- or inter-species phenomena occur in mixed-species biofilms, which exhibit dynamic
398 interactions among bacteria (Giaouris et al., 2015). The cooperative interactions between biofilm bacterial
399 species are achieved through cell-cell communication, metabolic cooperation, or spatial organization
400 (Elias and Banin, 2012). However, there are also competitive interactions regarding nutrient uptake,
401 occupation of spatial resources, or with the production of anti-biofilm agents (Giaouris et al., 2015).
402 Synthetic biology approaches can help understand and engineer such cooperative and competitive
403 behaviors among different bacterial species in biofilms. Studies on the beneficial characteristics of
404 probiotic bacteria in inhibiting deleterious biofilms are growing (Fang et al., 2018; Hager et al., 2019;
405 Wasfi et al., 2018). Ribosomally-synthesized antimicrobial proteins such as pyocins (Oluyombo et al.,
406 2019; Smith et al., 2011) or colicins (Brown et al., 2012; Jin et al., 2019, 2018; Rendueles et al., 2014)
407 that exhibit target-specific bacterial killing could be used with probiotics to eradicate harmful biofilms
408 without affecting the overall beneficial or commensal microbial consortia.

409 Biofilms with higher productivity and tolerance to toxic inhibitors can serve as microbial cell
410 factories (Berlanga and Guerrero, 2016) for producing chemicals such as ethanol (Todhanakasem et al.,

411 2014), acetone, butanol (Förberg and Häggström, 1985), and succinyl acid (Urbance et al., 2004).
412 Coordinating synthetic biofilm communities is becoming more important in industrial biochemical
413 production (Berlanga and Guerrero, 2016). The morphology and spatial organization of catalytic biofilms
414 must be programmed along with engineering of their metabolic pathways for biochemical production
415 (Volke and Nikel, 2018). A 3D printing approach combined with synthetic genetic controls will enhance
416 the design and assembly of synthetic biofilm catalysts.

417 In addition to bacterial biofilms, fungal biofilms on implanted devices and on epithelial and
418 endothelial surfaces can cause recurrent infections with increased drug resistance (Desai et al., 2014;
419 Kernien et al., 2018). *Candida*, *Aspergillus*, and *Cryptococcus* are the most prominent clinically relevant
420 fungi involved in the resilience of fungal biofilms to host immunity (Kernien et al., 2018). Antimicrobial
421 peptides naturally found in living organisms can effectively treat fungal biofilms without eliciting an
422 immune response. For example, histatin-5 (Hst-5) from human saliva is an antifungal peptide that can
423 inhibit the growth of *Candida albicans* (Baev et al., 2002) but has limited antifungal activity due to its
424 rapid degradation at the site of action (Moffa et al., 2015a). Recently, liposome encapsulation has enabled
425 the prolonged delivery of Hst-5 (Zambom et al., 2019), and the design of proteolysis-resistant peptides
426 has been shown to stabilize Hst-5, resulting in enhanced antifungal activity (Ikonomova et al., 2019,
427 2018), which may be applied for the control of fungal biofilms (Moffa et al., 2015b). In contrast to
428 harmful fungal biofilms, some fungal biofilms are beneficial. For example, the formation of fungal–
429 bacterial biofilms on the plant root promotes plant growth by supplying essential nutrients and providing
430 plant growth-promoting substances (Gentili and Jumpponen, 2006; Herath et al., 2015). Such symbiotic
431 relationships between plants and microbes, including fungi and bacteria (Goh et al., 2013; Hassani et al.,
432 2018), have resulted the development of biofilmed biofertilizers, presenting a viable alternative for
433 chemical fertilizers in agriculture (Zakeel and Safeena, 2019). Despite the need to control fungal biofilms
434 in medical, industrial, and agricultural applications, synthetic biology techniques for fungal cells are still
435 in the early developmental stages (Hennig et al., 2015). Fungal QS (Albuquerque and Casadevall, 2012)
436 and pheromone communication (Hennig et al., 2015) may be attractive targets for modulating fungal
437 biofilms.

438 Signaling molecules exhibit some drawbacks in the control of biofilms and thus require further
439 improvement. As mentioned above, QS molecules have been widely utilized in synthetic biology
440 (Choudhary and Schmidt-Dannert, 2010; Hong et al., 2012; Ryan and Dow, 2008), as signals produced in
441 the host cell can bind to receptors of the target cell, resulting in population-driven responses (Popat et al.,
442 2015; Waters and Bassler, 2005). However, QS signal production and detection are strain-specific
443 (Hawver et al., 2016); therefore, it is difficult to apply QS circuits to target non-model strains or species
444 that have different QS systems or that lack QS signal recognition, which commonly arise in real-world

445 situations. In contrast, c-di-GMP is a nearly ubiquitous bacterial signal (Hengge, 2009; Römling et al.,
446 2013; Sondermann et al., 2012) that regulates biofilm formation, but it acts intracellularly (Valentini and
447 Filloux, 2016). This lack of signal diffusion to other cells limits the development of a c-di-GMP genetic
448 circuit and the corresponding control strategy to the host cells. Nitric oxide (NO) signaling in nitrogen
449 metabolism is involved in c-di-GMP metabolism (Rinaldo et al., 2018), and NO production can be
450 triggered by the external addition of chemicals (Barraud et al., 2012; Hetrick et al., 2009) to modulate c-
451 di-GMP production in a broad range of bacteria. Therefore, combining ubiquitous c-di-GMP regulation
452 and strain-specific QS systems will enable the development of a broad spectrum of synthetic genetic
453 circuits for the control of complex biofilms. Additionally, bioactive phytochemicals found in natural
454 products, such as green tea leaves (Qais et al., 2019) and medicinal plant extracts (Shukla and Bhathena,
455 2016), that exhibit broad-spectrum QS and biofilm inhibition may be integrated in the development of
456 biofilm-controlling genetic circuits. Furthermore, models of the effects of signaling molecules in biofilm
457 communities (Abisado et al., 2018; Emerenini et al., 2015; Frederick et al., 2011) can aid in the design
458 and validation of synthetic biological circuits for effective biofilm control.

459

460 **5. Conclusion**

461 Control of biofilms, including their eradication and utilization, has been hampered due to insufficient
462 knowledge of biofilm development and the limitations of biological toolkits. Recent investigations of
463 biofilm physiology and synthetic biology advancements can facilitate fine control of biofilms, resulting in
464 the efficient eradication of deleterious biofilms without the use of antibiotics and beneficial utilization of
465 engineered biofilms. However, such synthetic biology approaches for controlling biofilms remain in the
466 early stages. Rather than a single gene or signaling molecule, multiple factors contribute simultaneously
467 or in series at the different stages of biofilm development. Hence, multi-stage and multi-target strategies
468 may be required to achieve the desired level of biofilm control, which will be enabled by mimicking
469 native biofilm formation and dispersal processes. Growing sets of synthetic biology tools as well as
470 continued investigations into biofilm regulation will provide insights for biofilm-controlling strategies
471 and their application in medical, food-processing, agricultural, industrial, and environmental fields.

472

473 **Acknowledgements**

474 This work was supported by the National Institute of Allergy and Infectious Diseases of the National
475 Institutes of Health (R15AI130988), the National Science Foundation (CBET 1917130), and the
476 Interdisciplinary Seed Funding Grants program of Wanger Institute for Sustainable Energy Research at
477 Illinois Institute of Technology.

478

479 **Competing financial interests:** The authors declare no competing financial interests.

480

481 **References**

482 Abisado, R.G., Benomar, S., Klaus, J.R., Dandekar, A.A., Chandler, J.R., 2018. Bacterial quorum sensing
483 and microbial community interactions. *MBio* 9, e02331-17. <https://doi.org/10.1128/mBio.02331-17>

484 Abramzon, N., Joaquin, J.C., Bray, J., Brelles-Mariño, G., 2006. Biofilm destruction by RF high-pressure
485 cold plasma jet. *IEEE Trans. Plasma Sci.* 34, 1304–1309. <https://doi.org/10.1109/TPS.2006.877515>

486 Albuquerque, P., Casadevall, A., 2012. Quorum sensing in fungi-a review. *Med. Mycol.* 50, 337–345.
487 <https://doi.org/10.3109/13693786.2011.652201>

488 Aliashkevich, A., Alvarez, L., Cava, F., 2018. New insights into the mechanisms and biological roles of
489 D-amino acids in complex eco-systems. *Front. Microbiol.* 9, 683.
490 <https://doi.org/10.3389/fmicb.2018.00683>

491 Allaker, R.P., 2010. Critical review in oral biology & medicine: The use of nanoparticles to control oral
492 biofilm formation. *J. Dent. Res.* 89, 1175–1186. <https://doi.org/10.1177/0022034510377794>

493 Ampornaramveth, R.S., Akeatichod, N., Lertnukkhid, J., Songsang, N., 2018. Application of D-amino
494 acids as biofilm dispersing agent in dental unit waterlines. *Int. J. Dent.* 2018, 9413925.
495 <https://doi.org/10.1155/2018/9413925>

496 Anderson, G.G., O'Toole, G.A., 2008. Innate and induced resistance mechanisms of bacterial biofilms, in:
497 Romeo, T. (Ed.), *Bacterial Biofilms*. Springer, Berlin, Heidelberg, pp. 85–105.
498 https://doi.org/10.1007/978-3-540-75418-3_5

499 Arora, D.P., Hossain, S., Xu, Y., Boon, E.M., 2015. Nitric oxide regulation of bacterial biofilms.
500 *Biochemistry* 54, 3717–3728. <https://doi.org/10.1021/bi501476n>

501 Azeredo, J., Sutherland, I.W., 2008. The use of phages for the removal of infectious biofilms. *Curr.*
502 *Pharm. Biotechnol.* 9, 261–266. <https://doi.org/10.2174/138920108785161604>

503 Baev, D., Li, X.S., Dong, J., Keng, P., Edgerton, M., 2002. Human salivary histatin 5 causes disordered
504 volume regulation and cell cycle arrest in *Candida albicans*. *Infect. Immun.* 70, 4777–4784.
505 <https://doi.org/10.1128/IAI.70.9.4777-4784.2002>

506 Bai, A.J., Rai, R. V., 2016. Effect of small chain N acyl homoserine lactone quorum sensing signals on
507 biofilms of food-borne pathogens. *J. Food Sci. Technol.* 53, 3609–3614.
508 <https://doi.org/10.1007/s13197-016-2346-1>

509 Balestrino, D., Haagensen, J.A.J., Rich, C., Forestier, C., 2005. Characterization of type 2 quorum sensing
510 in *Klebsiella pneumoniae* and relationship with biofilm formation. *J. Bacteriol.* 187, 2870–2880.
511 <https://doi.org/10.1128/JB.187.8.2870-2880.2005>

512 Barends, T.R.M., Hartmann, E., Griese, J.J., Beitlich, T., Kirienko, N. V., Ryjenkov, D.A., Reinstein, J.,
513 Shoeman, R.L., Gomelsky, M., Schlichting, I., 2009. Structure and mechanism of a bacterial light-
514 regulated cyclic nucleotide phosphodiesterase. *Nature* 459, 1015–1018.
515 <https://doi.org/10.1038/nature07966>

516 Barraud, N., Kardak, B.G., Yepuri, N.R., Howlin, R.P., Webb, J.S., Faust, S.N., Kjelleberg, S., Rice, S.A.,
517 Kelso, M.J., 2012. Cephalosporin-3'-diaziniumdiolates: targeted NO-donor prodrugs for dispersing
518 bacterial biofilms. *Angew. Chemie - Int. Ed.* 51, 9057–9060.
519 <https://doi.org/10.1002/anie.201202414>

520 Barraud, N., Kelso, M.J., Rice, S.A., Kjelleberg, S., 2015. Nitric oxide : a key mediator of biofilm
521 dispersal with applications in infectious diseases. *Curr. Pharm. Des.* 21, 31–42.
522 <https://doi.org/10.2174/1381612820666140905112822>

523 Baumann, A.R., Martin, S.E., Feng, H., 2009. Removal of *Listeria monocytogenes* biofilms from stainless
524 steel by use of ultrasound and ozone. *J. Food Prot.* 72, 1306–1309. <https://doi.org/10.4315/0362-028x-72.6.1306>

525 Beech, I.B., Sunner, J., 2004. Biocorrosion: Towards understanding interactions between biofilms and
526 metals. *Curr. Opin. Biotechnol.* 15, 181–186. <https://doi.org/10.1016/j.copbio.2004.05.001>

527 Berger, D., Rakhamimova, A., Pollack, A., Loewy, Z., 2018. Oral biofilms: development, control, and
528 analysis. *High-Throughput* 7, 24. <https://doi.org/10.3390/HT7030024>

529 Berlanga, M., Guerrero, R., 2016. Living together in biofilms: the microbial cell factory and its

531 biotechnological implications. *Microb. Cell Fact.* 15, 165. <https://doi.org/10.1186/s12934-016-0569-5>

533 Bittihn, P., Din, M.O., Tsimring, L.S., Hasty, J., 2018. Rational engineering of synthetic microbial
534 systems: from single cells to consortia. *Curr. Opin. Microbiol.* 45, 92–99.
535 <https://doi.org/10.1016/j.mib.2018.02.009>

536 Bjerkan, G., Witso, E., Bergh, K., 2009. Sonication is superior to scraping for retrieval of bacteria in
537 biofilm on titanium and steel surfaces in vitro. *Acta Orthop.* 80, 245–250.
538 <https://doi.org/10.3109/17453670902947457>

539 Boles, B.R., Horswill, A.R., 2008. *agr*-mediated dispersal of *Staphylococcus aureus* biofilms. *PLoS*
540 *Pathog.* 4, e1000052. <https://doi.org/10.1371/journal.ppat.1000052>

541 Botyanszki, Z., Tay, P.K.R., Nguyen, P.Q., Nussbaumer, M.G., Joshi, N.S., 2015. Engineered catalytic
542 biofilms: Site-specific enzyme immobilization onto *E. coli* curli nanofibers. *Biotechnol. Bioeng.* 112,
543 2016–2024. <https://doi.org/10.1002/bit.25638>

544 Brackman, G., Coenye, T., 2014. Quorum sensing inhibitors as anti-biofilm agents. *Curr. Pharm. Des.* 21,
545 5–11. <https://doi.org/10.2174/1381612820666140905114627>

546 Bradley, R.W., Buck, M., Wang, B., 2016. Tools and principles for microbial gene circuit engineering. *J.*
547 *Mol. Biol.* 428, 862–888. <https://doi.org/10.1016/j.jmb.2015.10.004>

548 Brenner, K., Arnold, F.H., 2011. Self-organization, layered structure, and aggregation enhance
549 persistence of a synthetic biofilm consortium. *PLoS One* 6, e16791.
550 <https://doi.org/10.1371/journal.pone.0016791>

551 Brenner, K., You, L., Arnold, F.H., 2008. Engineering microbial consortia: a new frontier in synthetic
552 biology. *Trends Biotechnol.* 26, 483–489. <https://doi.org/10.1016/j.tibtech.2008.05.004>

553 Brooks, J.D., Flint, S.H., 2008. Biofilms in the food industry: problems and potential solutions. *Int. J.*
554 *Food Sci. Technol.* 43, 2163–2176. <https://doi.org/10.1111/j.1365-2621.2008.01839.x>

555 Brown, C.L., Smith, K., McCaughey, L., Walker, D., 2012. Colicin-like bacteriocins as novel therapeutic
556 agents for the treatment of chronic biofilm-mediated infection. *Biochem. Soc. Trans.* 40, 1549–1552.
557 <https://doi.org/10.1042/bst20120241>

558 Brune, K.D., Bayer, T.S., 2012. Engineering microbial consortia to enhance biomining and
559 bioremediation. *Front. Microbiol.* 3, 203. <https://doi.org/10.3389/fmicb.2012.00203>

560 Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z., Kolodkin-Gal, I., 2015.
561 Disturbance of the bacterial cell wall specifically interferes with biofilm formation. *Environ.*
562 *Microbiol. Rep.* 7, 990–1004. <https://doi.org/10.1111/1758-2229.12346>

563 Carocho, M., Ferreira, I.C.F.R., 2013. A review on antioxidants, prooxidants and related controversy:
564 Natural and synthetic compounds, screening and analysis methodologies and future perspectives.
565 *Food Chem. Toxicol.* 51, 15–25. <https://doi.org/10.1016/j.fct.2012.09.021>

566 Cattò, C., Cappitelli, F., 2019. Testing anti-biofilm polymeric surfaces: Where to start? *Int. J. Mol. Sci.* 20,
567 3794. <https://doi.org/10.3390/ijms20153794>

568 Cava, F., Lam, H., de Pedro, M.A., Waldor, M.K., 2011. Emerging knowledge of regulatory roles of D-
569 amino acids in bacteria. *Cell. Mol. Life Sci.* 68, 817–831. <https://doi.org/10.1007/s00018-010-0571-8>

570 Chávez de Paz, L.E., Lemos, J.A., Wickström, C., Sedgley, C.M., 2012. Role of (p)ppGpp in biofilm
571 formation by *Enterococcus faecalis*. *Appl. Environ. Microbiol.* 78, 1627–1630.
572 <https://doi.org/10.1128/AEM.07036-11>

573 Chen, A.Y., Deng, Z., Billings, A.N., Seker, U.O.S., Lu, M.Y., Citorik, R.J., Zakeri, B., Lu, T.K., 2014.
574 Synthesis and patterning of tunable multiscale materials with engineered cells. *Nat. Mater.* 13, 515–
575 523. <https://doi.org/10.1038/nmat3912>

576 Chen, F., Wegner, S. V., 2017. Blue light switchable bacterial adhesion as a key step toward the design of
577 biofilms. *ACS Synth. Biol.* 6, 2170–2174. <https://doi.org/10.1021/acssynbio.7b00197>

578 Chopp, D.L., Kirisits, M.J., Moran, B., Parsek, M.R., 2003. The dependence of quorum sensing on the
579 depth of a growing biofilm. *Bull. Math. Biol.* 65, 1053–1079. [https://doi.org/10.1016/S0092-8240\(03\)00057-0](https://doi.org/10.1016/S0092-
580 8240(03)00057-0)

581

582 Choudhary, S., Schmidt-Dannert, C., 2010. Applications of quorum sensing in biotechnology. *Appl.*
583 *Microbiol. Biotechnol.* 86, 1267–1279. <https://doi.org/10.1007/s00253-010-2521-7>

584 Ciofu, O., Rojo-Molinero, E., Macià, M.D., Oliver, A., 2017. Antibiotic treatment of biofilm infections.
585 *Appl. Microbiol.* 125, 304–319. [https://doi.org/10.1111/1462-12673](https://doi.org/10.1111/1462-1267.12673)

586 Costa, O.Y.A., Raaijmakers, J.M., Kuramae, E.E., 2018. Microbial extracellular polymeric substances:
587 Ecological function and impact on soil aggregation. *Front. Microbiol.* 9, 1636.
588 <https://doi.org/10.3389/fmicb.2018.01636>

589 Costerton, J.W., Montanaro, L., Arciola, C.R., 2005. Biofilm in implant infections: its production and
590 regulation. *Int. J. Artif. Organs* 28, 1062–1068. <https://doi.org/10.1177/039139880502801103>

591 Costerton, J.W., Stewart, P.S., Greenberg, E.P., 1999. Bacterial biofilms: a common cause of persistent
592 infections. *Science* 284, 1318–1322. <https://doi.org/10.1126/science.284.5418.1318>

593 Curtin, J.J., Donlan, R.M., 2006. Using bacteriophages to reduce formation of catheter-associated
594 biofilms by *Staphylococcus epidermidis*. *Antimicrob. Agents Chemother.* 50, 1268–1275.
595 <https://doi.org/10.1128/AAC.50.4.1268-1275.2006>

596 Dang, H., Lovell, C.R., 2005. Microbial surface colonization and biofilm development in marine
597 environments. *Microbiol. Mol. Biol. Rev.* 80, 91–138. <https://doi.org/10.1128/MMBR.00037-15>

598 Davies, D., 2003. Understanding biofilm resistance to antibacterial agents. *Nat Rev Drug Discov* 2, 114–
599 122. <https://doi.org/10.1038/nrd1008>

600 de la Fuente-Núñez, C., Reffuveille, F., Haney, E.F., Straus, S.K., Hancock, R.E.W., 2014. Broad-
601 spectrum anti-biofilm peptide that targets a cellular stress response. *PLoS Pathog.* 10, e1004152.
602 <https://doi.org/10.1371/journal.ppat.1004152>

603 del Pozo, J.L., Rouse, M.S., Mandrekar, J.N., Sampedro, M.F., Steckelberg, J.M., Patel, R., 2009. Effect
604 of electrical current on the activities of antimicrobial agents against *Pseudomonas aeruginosa*,
605 *Staphylococcus aureus*, and *Staphylococcus epidermidis* biofilms. *Antimicrob. Agents Chemother.*
606 53, 35–40. <https://doi.org/10.1128/AAC.00237-08>

607 Desai, J. V., Mitchell, A.P., Andes, D.R., 2014. Fungal biofilms, drug resistance, and recurrent Infection.
608 *Cold Spring Harb. Perspect. Med.* 4, a019729. <https://doi.org/10.1101/cshperspect.a019729>

609 Domka, J., Lee, J., Bansal, T., Wood, T.K., 2007. Temporal gene-expression in *Escherichia coli* K-12
610 biofilms. *Environ. Microbiol.* 9, 332–346. <https://doi.org/10.1111/j.1462-2920.2006.01143.x>

611 Duan, F.F., Liu, J.H., March, J.C., 2015. Engineered commensal bacteria reprogram intestinal cells into
612 glucose-responsive insulin-secreting cells for the treatment of diabetes. *Diabetes* 64, 1794–1803.
613 <https://doi.org/10.2337/db14-0635>

614 Duan, K., Surette, M.G., 2007. Environmental regulation of *Pseudomonas aeruginosa* PAO1 Las and Rhl
615 quorum-sensing systems. *J. Bacteriol.* 189, 4827–4836. <https://doi.org/10.1128/JB.00043-07>

616 Dyszel, J.L., Soares, J.A., Swearingen, M.C., Lindsay, A., Smith, J.N., Ahmer, B.M.M., 2010. *E. coli* K-
617 12 and EHEC genes regulated by SdiA. *PLoS One* 5, e8946.
618 <https://doi.org/10.1371/journal.pone.0008946>

619 Elias, S., Banin, E., 2012. Multi-species biofilms: living with friendly neighbors. *FEMS Microbiol. Rev.*
620 36, 990–1004. <https://doi.org/10.1111/j.1574-6976.2012.00325.x>

621 Emerenini, B.O., Hense, B.A., Kuttler, C., Eberl, H.J., 2015. A mathematical model of quorum sensing
622 induced biofilm detachment. *PLoS One* 10, e0132385. <https://doi.org/10.1371/journal.pone.0132385>

623 Fang, K., Jin, X., Hong, S.H., 2018. Probiotic *Escherichia coli* inhibits biofilm formation of pathogenic *E.*
624 *coli* via extracellular activity of DegP. *Sci. Rep.* 8, 4939. <https://doi.org/10.1038/s41598-018-23180-1>

625 Fernandes, R., Luo, X., Tsao, C.Y., Payne, G.F., Ghodssi, R., Rubloff, G.W., Bentley, W.E., 2010.
626 Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing
627 bacteria in a bioMEMS device. *Lab Chip* 10, 1128–1134. <https://doi.org/10.1039/b926846d>

628 Flemming, H.C., Wingender, J., 2010. The biofilm matrix. *Nat. Rev. Microbiol.* 8, 623–633.
629 <https://doi.org/10.1080/0892701031000072190>

630 Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., 2016. Biofilms: an
631 emergent form of bacterial life. *Nat. Rev. Microbiol.* 14, 563–575.

632

633 https://doi.org/10.1038/nrmicro.2016.94
634 Förberg, C., Häggström, L., 1985. Control of cell adhesion and activity during continuous production of
635 acetone and butanol with adsorbed cells. Enzyme Microb. Technol. 7, 230–234.
636 https://doi.org/10.1016/0141-0229(85)90073-0
637 Frederick, M.R., Kuttler, C., Hense, B.A., Eberl, H.J., 2011. A mathematical model of quorum sensing
638 regulated EPS production in biofilm communities. Theor. Biol. Med. Model. 8, 8.
639 https://doi.org/10.1186/1742-4682-8-8
640 Fu, W., Forster, T., Mayer, O., Curtin, J.J., Lehman, S.M., Donlan, R.M., 2010. Bacteriophage cocktail
641 for the prevention of biofilm formation by *Pseudomonas aeruginosa* on catheters in an *in vitro*
642 model system. Antimicrob. Agents Chemother. 54, 397–404. https://doi.org/10.1128/AAC.00669-09
643 Fuqua, C., Parsek, M.R., Greenberg, E.P., 2001. Regulation of gene expression by cell-to-cell
644 communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468.
645 https://doi.org/10.1146/annurev.genet.35.102401.090913
646 Fuqua, W.C., Winans, S.C., Greenberg, E.P., 1994. Quorum sensing in bacteria: the LuxR-LuxI family of
647 cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.
648 https://doi.org/10.1128/jb.176.2.269-275.1994
649 Galié, S., García-Gutiérrez, C., Miguélez, E.M., Villar, C.J., Lombó, F., 2018. Biofilms in the food
650 industry: Health aspects and control methods. Front. Microbiol. 9, 898.
651 https://doi.org/10.3389/fmicb.2018.00898
652 Garvey, M., Rabbitt, D., Stocca, A., Rowan, N., 2015. Pulsed ultraviolet light inactivation of
653 *Pseudomonas aeruginosa* and *Staphylococcus aureus* biofilms. Water Environ. J. 29, 36–42.
654 https://doi.org/10.1111/wej.12088
655 Geilich, B.M., Gelfat, I., Sridhar, S., van de Ven, A.L., Webster, T.J., 2017. Superparamagnetic iron
656 oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119, 78–85.
657 https://doi.org/10.1016/j.biomaterials.2016.12.011
658 Gentili, F., Jumpponen, A., 2006. Potential and possible uses of bacterial and fungal biofertilizers, in: Rai,
659 M. (Ed.), Handbook of Microbial Biofertilizers. The Haworth Press Incorporated, pp. 1–18.
660 https://doi.org/10.1201/9781482277760
661 Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Mørcretre, T., Langsrud, S., Doulgeraki, A., Nychas, G.-
662 J., Kačániová, M., Czacyk, K., Ölmez, H., Simões, M., 2015. Intra- and inter-species interactions
663 within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 6, 841.
664 https://doi.org/10.3389/fmicb.2015.00841
665 Gilmore, B.F., Flynn, P.B., O'Brien, S., Hickok, N., Freeman, T., Bourke, P., 2018. Cold plasmas for
666 biofilm control: opportunities and challenges. Trends Biotechnol. 36, 627–638.
667 https://doi.org/10.1016/j.tibtech.2018.03.007
668 Goh, C.H., Veliz Vallejos, D.F., Nicotra, A.B., Mathesius, U., 2013. The impact of beneficial plant-
669 associated microbes on plant phenotypic plasticity. J. Chem. Ecol. 39, 826–839.
670 https://doi.org/10.1007/s10886-013-0326-8
671 González-Rivas, F., Ripolles-Avila, C., Fontecha-Umaña, F., Ríos-Castillo, A.G., Rodríguez-Jerez, J.J.,
672 2018. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr. Rev. Food
673 Sci. Food Saf. 17, 1261–1276. https://doi.org/10.1111/1541-4337.12378
674 Grandclément, C., Tannières, M., Moréra, S., Dessaix, Y., Faure, D., 2016. Quorum quenching: role in
675 nature and applied developments. FEMS Microbiol. Rev. 40, 86–116.
676 https://doi.org/10.1093/femsre/fuv038
677 Hager, C.L., Isham, N., Schrom, K.P., Chandra, J., McCormick, T., Miyagi, M., Ghannoum, M.A., 2019.
678 Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms.
679 MBio 10, e00338-19. https://doi.org/10.1128/mbio.00338-19
680 Hammer, B.K., Bassler, B.L., 2003. Quorum sensing controls biofilm formation in *Vibrio cholerae*. Mol.
681 Microbiol. 50, 101–114. https://doi.org/10.1046/j.1365-2958.2003.03688.x
682 Hancock, V., Dahl, M., Klemm, P., 2010. Probiotic *Escherichia coli* strain Nissle 1917 outcompetes
683 intestinal pathogens during biofilm formation. J. Med. Microbiol. 59, 392–399.

684 https://doi.org/10.1099/jmm.0.008672-0
685 Hassani, M.A., Durán, P., Hacquard, S., 2018. Microbial interactions within the plant holobiont.
686 Microbiome 6, 58. https://doi.org/10.1186/s40168-018-0445-0
687 Hawver, L.A., Jung, S.A., Ng, W.L., 2016. Specificity and complexity in bacterial quorum-sensing
688 systems. FEMS Microbiol. Rev. 40, 738–752. https://doi.org/10.1093/femsre/fuw014
689 Heimann, K., 2016. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and
690 biofuel production. Curr. Opin. Biotechnol. 38, 183–189.
691 https://doi.org/10.1016/j.copbio.2016.02.024
692 Hengge, R., 2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273.
693 https://doi.org/10.1038/nrmicro2109
694 Hengge, R., 2008. The two-component network and the general stress sigma factor RpoS (σ s) in
695 *Escherichia coli*, in: Utsumi, R. (Ed.), Bacterial Signal Transduction: Networks and Drug Targets.
696 Springer, New York, pp. 40–53. https://doi.org/10.1007/978-0-387-78885-2_4
697 Hennig, S., Rödel, G., Ostermann, K., 2015. Artificial cell-cell communication as an emerging tool in
698 synthetic biology applications. J. Biol. Eng. 9, 13. https://doi.org/10.1186/s13036-015-0011-2
699 Herath, H.M.L.I., Menikdiwela, K.R., Igalavithana, A.D., Seneviratne, G., 2015. Developed fungal-
700 bacterial biofilms having nitrogen fixers: Universal biofertilizers for legumes and non-legumes, in:
701 de Bruijn, F.J. (Ed.), Biological Nitrogen Fixation. John Wiley & Sons, Inc, pp. 1041–1046.
702 https://doi.org/10.1002/9781119053095.ch102
703 Herzberg, M., Kaye, I.K., Peti, W., Thomas, K., Wood, T.K., 2006. YdgG (TqsA) controls biofilm
704 formation in *Escherichia coli* K-12 through autoinducer 2 transport. J. Bacteriol. 188, 587–598.
705 https://doi.org/10.1128/JB.188.2.587-598.2006
706 Heselmans, M., Reid, G., Akkermans, L.M.A., Savelkoul, H., Timmerman, H., Rombouts, F.M., 2005.
707 Gut flora in health and disease: potential role of probiotics. Curr. Issues Intest. Microbiol. 6, 1–7.
708 Hetrick, E.M., Shin, J.H., Paul, H.S., Schoenfisch, M.H., 2009. Anti-biofilm efficacy of nitric oxide-
709 releasing silica nanoparticles. Biomaterials 30, 2782–2789.
710 https://doi.org/10.1016/j.biomaterials.2009.01.052
711 Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint,
712 H.J., Salminen, S., Calder, P.C., Sanders, M.E., 2014. Expert consensus document: The International
713 scientific association for probiotics and prebiotics consensus statement on the scope and appropriate
714 use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514.
715 https://doi.org/10.1038/nrgastro.2014.66
716 Hoh, D., Watson, S., Kan, E., 2016. Algal biofilm reactors for integrated wastewater treatment and
717 biofuel production: A review. Chem. Eng. J. 287, 466–473.
718 https://doi.org/10.1016/j.cej.2015.11.062
719 Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., Wood, T.K., 2012. Synthetic quorum-sensing
720 circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat. Commun.
721 3, 613. https://doi.org/10.1038/ncomms1616
722 Hong, S.H., Lee, J., Wood, T.K., 2010a. Engineering global regulator Hha of *Escherichia coli* to control
723 biofilm dispersal. Microb. Biotechnol. 3, 717–728. https://doi.org/10.1111/j.1751-
724 7915.2010.00220.x
725 Hong, S.H., Wang, X., Wood, T.K., 2010b. Controlling biofilm formation, prophage excision and cell
726 death by rewiring global regulator H-NS of *Escherichia coli*. Microb. Biotechnol. 3, 344–356.
727 https://doi.org/10.1111/j.1751-7915.2010.00164.x
728 Hossain, S., Boon, E.M., 2017. Discovery of a novel nitric oxide binding protein and nitric-oxide-
729 responsive signaling pathway in *Pseudomonas aeruginosa*. ACS Infect. Dis. 3, 454–461.
730 https://doi.org/10.1021/acsinfecdis.7b00027
731 Huang, Y., Xia, A., Yang, G., Jin, F., 2018. Bioprinting living biofilms through optogenetic manipulation.
732 ACS Synth. Biol. 7, 1195–1200. https://doi.org/10.1021/acssynbio.8b00003
733 Hwang, I.Y., Koh, E., Wong, A., March, J.C., Bentley, W.E., Lee, Y.S., Chang, M.W., 2017. Engineered
734 probiotic *Escherichia coli* can eliminate and prevent *Pseudomonas aeruginosa* gut infection in

735 animal models. *Nat. Commun.* 8, 15028. <https://doi.org/10.1038/ncomms15028>

736 Ikonomova, S.P., Moghaddam-Taaheri, P., Jabra-Rizk, M.A., Wang, Y., Karlsson, A.J., 2018.

737 Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to

738 *Candida albicans* secreted aspartic proteases and enhanced antimicrobial potency. *FEBS J.* 285,

739 146–159. <https://doi.org/10.1111/febs.14327>

740 Ikonomova, S.P., Moghaddam-Taaheri, P., Wang, Y., Doolin, M.T., Stroka, K.M., Hube, B., Karlsson,

741 A.J., 2019. Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis.

742 *Protein Sci.* 1–14. <https://doi.org/10.1002/pro.3767>

743 Jafri, H., Ansari, F.A., Ahmad, I., 2019. Prospects of essential oils in controlling pathogenic biofilm, New

744 Look to Phytomedicine. Elsevier Inc. <https://doi.org/10.1016/b978-0-12-814619-4.00009-4>

745 Jia, R., Li, Y., Al-Mahamedh, H.H., Gu, T., 2017. Enhanced biocide treatments with D-amino acid

746 mixtures against a biofilm consortium from a water cooling tower. *Front. Microbiol.* 8, 1538.

747 <https://doi.org/10.3389/fmicb.2017.01538>

748 Jia, R., Unsal, T., Xu, D., Lekbach, Y., Gu, T., 2019. Microbiologically influenced corrosion and current

749 mitigation strategies: A state of the art review. *Int. Biodeterior. Biodegrad.* 137, 42–58.

750 <https://doi.org/10.1016/j.ibiod.2018.11.007>

751 Jia, X., Liu, C., Song, H., Ding, M., Du, J., Ma, Q., Yuan, Y., 2016. Design, analysis and application of

752 synthetic microbial consortia. *Synth. Syst. Biotechnol.* 1, 109–117.

753 <https://doi.org/10.1016/j.synbio.2016.02.001>

754 Jin, X., Kightlinger, W., Hong, S.H., 2019. Optimizing cell-free protein synthesis for increased yield and

755 activity of colicins. *Methods Protoc.* 2, 28. <https://doi.org/10.3390/mps2020028>

756 Jin, X., Kightlinger, W., Kwon, Y.-C., Hong, S.H., 2018. Rapid production and characterization of

757 antimicrobial colicins using *Escherichia coli*-based cell-free protein synthesis. *Synth. Biol.* 3,

758 *ysy004*. <https://doi.org/10.1093/synbio/ysy004>

759 Jin, X., Riedel-Kruse, I.H., 2018. Biofilm Lithography enables high-resolution cell patterning via

760 optogenetic adhesin expression. *Proc. Natl. Acad. Sci.* 115, 3698–3703.

761 <https://doi.org/10.1073/pnas.1720676115>

762 Karadag, D., Köröglu, O.E., Ozkaya, B., Cakmakci, M., 2015. A review on anaerobic biofilm reactors for

763 the treatment of dairy industry wastewater. *Process Biochem.* 50, 262–271.

764 <https://doi.org/10.1016/j.procbio.2014.11.005>

765 Karatan, E., Watnick, P., 2009. Signals, regulatory networks, and materials that build and break bacterial

766 biofilms. *Microbiol. Mol. Biol. Rev.* 73, 310–347. <https://doi.org/10.1128/mmbr.00041-08>

767 Kavanaugh, J.S., Thoendel, M., Horswill, A.R., 2007. A role for type I signal peptidase in *Staphylococcus*

768 *aureus* quorum sensing. *Mol. Microbiol.* 65, 780–798. <https://doi.org/10.1111/j.1365-2958.2007.05830.x>

769 Kawano, F., Suzuki, H., Furuya, A., Sato, M., 2015. Engineered pairs of distinct photoswitches for

770 optogenetic control of cellular proteins. *Nat. Commun.* 6, 6256.

771 <https://doi.org/10.1038/ncomms7256>

772 Kernien, J.F., Snarr, B.D., Sheppard, D.C., Nett, J.E., 2018. The interface between fungal biofilms and

773 innate immunity. *Front. Immunol.* 8, 1968. <https://doi.org/10.3389/fimmu.2017.01968>

774 Khan, S.I., Blumrosen, G., Vecchio, D., Golberg, A., McCormack, M.C., Yarmush, M.L., Hamblin, M.R.,

775 Austen, W.G., 2016. Eradication of multidrug-resistant *Pseudomonas* biofilm with pulsed electric

776 fields. *Biotechnol. Bioeng.* 113, 643–650. <https://doi.org/10.1002/bit.25818>

777 Khatoon, Z., McTiernan, C.D., Suuronen, E.J., Mah, T.F., Alarcon, E.I., 2018. Bacterial biofilm

778 formation on implantable devices and approaches to its treatment and prevention. *Heliyon*.

779 <https://doi.org/10.1016/j.heliyon.2018.e01067>

780 Kim, H.-W., Oh, H.-S., Kim, S.-R., Lee, K.-B., Yeon, K.-M., Lee, C.-H., Kim, S., Lee, J.-K., 2013.

781 Microbial population dynamics and proteomics in membrane bioreactors with enzymatic quorum

782 quenching. *Appl. Microbiol. Biotechnol.* 97, 4665–4675. <https://doi.org/10.1007/s00253-012-4272-0>

783 Kim, J., Pitts, B., Stewart, P.S., Camper, A., Yoon, J., 2008. Comparison of the antimicrobial effects of

784

785

786 chlorine, silver ion, and tobramycin on biofilm. *Antimicrob. Agents Chemother.* 52, 1446–1453.
787 <https://doi.org/10.1128/AAC.00054-07>

788 Kleerebezem, M., Quadri, L.E.N., Kuipers, O.P., de Vos, W.M., 1997. Quorum sensing by peptide
789 pheromones and two-component signal-transduction systems in Gram-positive bacteria. *Mol.*
790 *Microbiol.* 24, 895–904. <https://doi.org/10.1046/j.1365-2958.1997.4251782.x>

791 Koenig, R.L., Ray, J.L., Maleki, S.J., Smeltzer, M.S., Hurlburt, B.K., 2004. *Staphylococcus aureus* AgrA
792 binding to the RNAIII-*agr* regulatory region. *J. Bacteriol.* 186, 7549–7555.
793 <https://doi.org/10.1128/jb.186.22.7549-7555.2004>

794 Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., Losick, R., 2010. D-amino acids trigger
795 biofilm disassembly. *Science* 328, 627–629. <https://doi.org/10.1126/science.1188628>

796 Kong, W., Blanchard, A.E., Liao, C., Lu, T., 2017. Engineering robust and tunable spatial structures with
797 synthetic gene circuits. *Nucleic Acids Res.* 45, 1005–1014. <https://doi.org/10.1093/nar/gkw1045>

798 Kong, W., Meldgin, D.R., Collins, J.J., Lu, T., 2018. Designing microbial consortia with defined social
799 interactions. *Nat. Chem. Biol.* 14, 821–829. <https://doi.org/10.1038/s41589-018-0091-7>

800 Kostakioti, M., Hadjifrangiskou, M., Hultgren, S.J., 2013. Bacterial biofilms: development, dispersal, and
801 therapeutic strategies in the dawn of the postantibiotic era. *Cold Spring Harb. Perspect. Med.* 3,
802 a010306. <https://doi.org/10.1101/csphperspect.a010306>

803 Kumar, M., Rajput, A., 2018. Phylogenomics and evolutionary perspective of quorum sensing regulators
804 (LuxI/LuxR) in prokaryotes, in: Kalia, V.C. (Ed.), *Quorum Sensing and Its Biotechnological*
805 *Applications*. Springer, Singapore, pp. 61–70. https://doi.org/10.1007/978-981-13-0848-2_4

806 Kurtz, C.B., Millet, Y.A., Puurunen, M.K., Perreault, M., Charbonneau, M.R., Isabella, V.M., Kotula,
807 J.W., Antipov, E., Dagon, Y., Denney, W.S., Wagner, D.A., West, K.A., Degar, A.J., Brennan,
808 A.M., Miller, P.F., 2019. An engineered *E. coli* Nissle improves hyperammonemia and survival in
809 mice and shows dose-dependent exposure in healthy humans. *Sci. Transl. Med.* 11, eaau7975.
810 <https://doi.org/10.1126/scitranslmed.aau7975>

811 Lebeaux, D., Ghigo, J.-M., Beloin, C., 2014. Biofilm-related infections: Bridging the gap between clinical
812 management and fundamental aspects of recalcitrance toward antibiotics. *Microbiol. Mol. Biol. Rev.*
813 78, 510–543. <https://doi.org/10.1128/mmbr.00013-14>

814 Lee, J., Maeda, T., Hong, S.H., Wood, T.K., 2009. Reconfiguring the quorum-sensing regulator SdiA of
815 *Escherichia coli* to control biofilm formation via indole and N-acylhomoserine lactones. *Appl.*
816 *Environ. Microbiol.* 75, 1703–1716. <https://doi.org/10.1128/AEM.02081-08>

817 Lee, J., Zhang, X.-S., Hegde, M., Bentley, W.E., Jayaraman, A., Wood, T.K., 2008. Indole cell signaling
818 occurs primarily at low temperatures in *Escherichia coli*. *ISME J.* 2, 1007–1023.
819 <https://doi.org/10.1038/ismej.2008.54>

820 Lee, J.H., Kim, Y.G., Gwon, G., Wood, T.K., Lee, J., 2016. Halogenated indoles eradicate bacterial
821 persister cells and biofilms. *AMB Express* 6, 123. <https://doi.org/10.1186/s13568-016-0297-6>

822 Lee, J.H., Lee, J., 2010. Indole as an intercellular signal in microbial communities. *FEMS Microbiol. Rev.*
823 34, 426–444. <https://doi.org/10.1111/j.1574-6976.2009.00204.x>

824 Lee, K., Kim, Y.-W., Lee, S., Lee, S.H., Nahm, C.H., Kwon, H., Park, P.-K., Choo, K.-H., Koyuncu, I.,
825 Drews, A., Lee, C.-H., Lee, J.-K., 2018. Stopping autoinducer-2 chatter by means of an indigenous
826 bacterium (*Acinetobacter* sp. DKY-1): a new antibiofouling strategy in a membrane bioreactor for
827 wastewater treatment. *Environ. Sci. Technol.* 52, 6237–6245.
828 <https://doi.org/10.1021/acs.est.7b05824>

829 Lee, K., Lee, S., Lee, S.H., Kim, S.-R., Oh, H.-S., Park, P.-K., Choo, K.-H., Kim, Y.-W., Lee, J.-K., Lee,
830 C.-H., 2016. Fungal quorum quenching: a paradigm shift for energy savings in membrane bioreactor
831 (MBR) for wastewater treatment. *Environ. Sci. Technol.* 50, 10914–10922.
832 <https://doi.org/10.1021/acs.est.6b00313>

833 Lee, W.H., Wahman, D.G., Bishop, P.L., Pressman, J.G., 2011. Free chlorine and monochloramine
834 application to nitrifying biofilm: Comparison of biofilm penetration, activity, and viability. *Environ.*
835 *Sci. Technol.* 45, 1412–1419. <https://doi.org/10.1021/es1035305>

836 Lewandowski, Z., Boltz, J.P., 2011. Biofilms in water and wastewater treatment, in: Wilderer, P. (Ed.),

837 Treatise on Water Science. Elsevier Science, pp. 529–570. <https://doi.org/10.1016/B978-0-444-53199-5.00095-6>

838

839 Li, X., Wu, B., Chen, H., Nan, K., Jin, Y., Sun, L., Wang, B., 2018. Recent developments in smart
840 antibacterial surfaces to inhibit biofilm formation and bacterial infections. *J. Mater. Chem. B* 6,
841 4274–4292. <https://doi.org/10.1039/C8TB01245H>

842 Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F., Gu, T., 2018. Anaerobic
843 microbiologically influenced corrosion mechanisms interpreted using bioenergetics and
844 bioelectrochemistry: A review. *J. Mater. Sci. Technol.* 34, 1713–1718.
845 <https://doi.org/10.1016/j.jmst.2018.02.023>

846 Lima, M.R., Ferreira, G.F., Neto, W.R.N., de Melo Monteiro, J., Santos, Á.R.C., Tavares, P.B., Denadai,
847 Â.M.L., Bomfim, M.R.Q., dos Santos, V.L., Marques, S.G., de Souza Monteiro, A., 2019.
848 Evaluation of the interaction between polymyxin B and *Pseudomonas aeruginosa* biofilm and
849 planktonic cells: Reactive oxygen species induction and zeta potential. *BMC Microbiol.* 19, 1–9.
850 <https://doi.org/10.1186/s12866-019-1485-8>

851 Lin, S.-M., Svoboda, K.K.H., Giletto, A., Seibert, J., Puttaiah, R., 2011. Effects of hydrogen peroxide on
852 dental unit biofilms and treatment water contamination. *Eur. J. Dent.* 5, 47–59.

853 Lineback, C.B., Nkemngong, C.A., Wu, S.T., Li, X., Teska, P.J., Oliver, H.F., 2018. Hydrogen peroxide
854 and sodium hypochlorite disinfectants are more effective against *Staphylococcus aureus* and
855 *Pseudomonas aeruginosa* biofilms than quaternary ammonium compounds. *Antimicrob. Resist.*
856 *Infect. Control* 7, 154. <https://doi.org/10.1186/s13756-018-0447-5>

857 Liu, X., Tang, B., Gu, Q., Yu, X., 2014. Elimination of the formation of biofilm in industrial pipes using
858 enzyme cleaning technique. *MethodsX* 1, 130–136. <https://doi.org/10.1016/j.mex.2014.08.008>

859 Lu, T.K., Collins, J.J., 2009. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic
860 therapy. *Proc. Natl. Acad. Sci.* 106, 4629–4634. <https://doi.org/10.1073/pnas.0800442106>

861 Lu, T.K., Collins, J.J., 2007. Dispersing biofilms with engineered enzymatic bacteriophage. *Proc. Natl.*
862 *Acad. Sci.* 104, 11197–11202. <https://doi.org/10.1073/pnas.0704624104>

863 Ma, Q., Yang, Z., Pu, M., Peti, W., Wood, T.K., 2011a. Engineering a novel c-di-GMP-binding protein
864 for biofilm dispersal. *Environ. Microbiol.* 13, 631–642. <https://doi.org/10.1111/j.1462-2920.2010.02368.x>

865 Ma, Q., Zhang, G., Wood, T.K., 2011b. *Escherichia coli* BdcA controls biofilm dispersal in *Pseudomonas*
866 *aeruginosa* and *Rhizobium meliloti*. *BMC Res. Notes* 4, 447. <https://doi.org/10.1186/1756-0500/4/447>

867 Mah, T.-F.C., O'Toole, G.A., 2001. Mechanisms of biofilm resistance to antimicrobial agents. *Trends*
868 *Microbiol.* 9, 34–39. [https://doi.org/10.1016/S0966-842X\(00\)01913-2](https://doi.org/10.1016/S0966-842X(00)01913-2)

869 Majorle, A., Schmieden, D.T., Jerala, R., Meyer, A.S., 2019. Synthetic biology for multiscale designed
870 biomimetic assemblies: from designed self-assembling biopolymers to bacterial bioprinting.
871 *Biochemistry* 58, 2095–2104. <https://doi.org/10.1021/acs.biochem.8b00922>

872 Mangwani, N., Kumari, S., Das, S., 2016. Bacterial biofilms and quorum sensing: fidelity in
873 bioremediation technology. *Biotechnol. Genet. Eng. Rev.* 32, 43–73.
874 <https://doi.org/10.1080/02648725.2016.1196554>

875 Marques, C.N.H., Davies, D.G., Sauer, K., 2015. Control of biofilms with the fatty acid signaling
876 molecule *cis*-2-decenoic acid. *Pharmaceuticals* 8, 816–835. <https://doi.org/10.3390/ph8040816>

877 Marx, V., 2014. Stop the microbial chatter. *Nature* 511, 493–497. <https://doi.org/10.1038/511493a>

878 Mathur, H., Field, D., Rea, M.C., Cotter, P.D., Hill, C., Ross, R.P., 2018. Fighting biofilms with
879 lantibiotics and other groups of bacteriocins. *npj Biofilms Microbiomes* 4, 9.
880 <https://doi.org/10.1038/s41522-018-0053-6>

881 Maxmen, A., 2017. Living therapeutics: Scientists genetically modify bacteria to deliver drugs. *Nat. Med.*
882 23, 5–7. <https://doi.org/10.1038/nm0117-5>

883 Mckay, R., Ghodasra, M., Schardt, J., Quan, D., Pottash, A.E., Shang, W., Jay, S.M., Gregory, F.P.,
884 Chang, M.W., March, J.C., William, E.B., 2018. A platform of genetically engineered bacteria as
885 vehicles for localized delivery of therapeutics: toward applications for Crohn's disease. *Bioeng.*
886

887

888 Transl. Med. 3, 209–221. <https://doi.org/10.1002/btm2.10113>

889 McNab, R., Ford, S.K., El-Sabaeny, A., Barbieri, B., Cook, G.S., Lamont, R.J., 2003. LuxS-based
890 signaling in *Streptococcus gordonii*: autoinducer 2 controls carbohydrate metabolism and biofilm
891 formation with *Porphyromonas gingivalis*. J. Bacteriol. 185, 274–284.
892 <https://doi.org/10.1128/JB.185.1.274>

893 Mi, G., Shi, D., Wang, M., Webster, T.J., 2018. Reducing bacterial infections and biofilm formation using
894 nanoparticles and nanostructured antibacterial surfaces. Adv. Healthc. Mater. 7, 1800103.
895 <https://doi.org/10.1002/adhm.201800103>

896 Miquel, S., Lagraveille, R., Souweine, B., Forestier, C., 2016. Anti-biofilm activity as a health issue.
897 Front. Microbiol. 7, 592. <https://doi.org/10.3389/fmicb.2016.00592>

898 Moffa, E.B., Machado, M.A.A.M., Mussi, M.C.M., Xiao, Y., Garrido, S.S., Giampaolo, E.T., Siqueira,
899 W.L., 2015a. *In vitro* identification of histatin 5 salivary complexes. PLoS One 10, e0142517.
900 <https://doi.org/10.1371/journal.pone.0142517>

901 Moffa, E.B., Mussi, M.C.M., Xiao, Y., Garrido, S.S., Machado, M.A.A.M., Giampaolo, E.T., Siqueira,
902 W.L., 2015b. Histatin 5 inhibits adhesion of *C. albicans* to reconstructed human oral epithelium.
903 Front. Microbiol. 6, 885. <https://doi.org/10.3389/fmicb.2015.00885>

904 Morikawa, M., 2006. Beneficial biofilm formation by industrial bacteria *Bacillus subtilis* and related
905 species. J. Biosci. Bioeng. 101, 1–8. <https://doi.org/10.1263/jbb.101.1>

906 Nadell, C.D., Drescher, K., Foster, K.R., 2016. Spatial structure, cooperation and competition in biofilms.
907 Nat. Rev. Microbiol. 14, 589–600. <https://doi.org/10.1038/nrmicro.2016.84>

908 Narenkumar, J., Madhavan, J., Nicoletti, M., Benelli, G., Murugan, K., Rajasekar, A., 2016. Role of
909 bacterial plasmid on biofilm formation and its influence on corrosion of engineering materials. J.
910 Bio-Tribo-Corrosion 2, 24. <https://doi.org/10.1007/s40735-016-0054-z>

911 Nguyen, P.Q., Botyanszki, Z., Tay, P.K.R., Joshi, N.S., 2014. Programmable biofilm-based materials
912 from engineered curli nanofibres. Nat. Commun. 5, 4945. <https://doi.org/10.1038/ncomms5945>

913 Oh, H.-S., Lee, C.-H., 2018. Origin and evolution of quorum quenching technology for biofouling control
914 in MBRs for wastewater treatment. J. Memb. Sci. 554, 331–345.
915 <https://doi.org/10.1016/J.MEMSCI.2018.03.019>

916 Oh, H.-S., Tan, C.H., Low, J.H., Rzechorowicz, M., Siddiqui, M.F., Winters, H., Kjelleberg, S., Fane, A.G.,
917 Rice, S.A., 2017. Quorum quenching bacteria can be used to inhibit the biofouling of reverse
918 osmosis membranes. Water Res. 112, 29–37. <https://doi.org/10.1016/j.watres.2017.01.028>

919 Oh, H.S., Yeon, K.M., Yang, C.S., Kim, S.R., Lee, C.H., Park, S.Y., Han, J.Y., Lee, J.K., 2012. Control
920 of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria
921 encapsulated in microporous membrane. Environ. Sci. Technol. 46, 4877–4884.
922 <https://doi.org/10.1021/es204312u>

923 Ohland, C.L., MacNaughton, W.K., 2010. Probiotic bacteria and intestinal epithelial barrier function. Am.
924 J. Physiol. Liver Physiol. 298, G807–G819. <https://doi.org/10.1152/ajpgi.00243.2009>.

925 Oluyombo, O., Penfold, C.N., Diggle, S.P., 2019. Competition in biofilms between cystic fibrosis isolates
926 of *Pseudomonas aeruginosa* is shaped by R-pyocins. MBio 10, e01828-18.
927 <https://doi.org/10.1128/mbio.01828-18>

928 Oppenheimer-Shaanan, Y., Steinberg, N., Kolodkin-Gal, I., 2013. Small molecules are natural triggers for
929 the disassembly of biofilms. Trends Microbiol. 21, 594–601.
930 <https://doi.org/10.1016/j.tim.2013.08.005>

931 Ozdemir, T., Fedorec, A.J.H., Danino, T., Barnes, C.P., 2018. Synthetic biology and engineered live
932 biotherapeutics: toward increasing system complexity. Cell Syst. 7, 5–16.
933 <https://doi.org/10.1016/j.cels.2018.06.008>

934 Papenfort, K., Bassler, B.L., 2016. Quorum sensing signal-response systems in Gram-negative bacteria.
935 Nat. Rev. Microbiol. 14, 576–588. <https://doi.org/10.1038/nrmicro.2016.89>

936 Park, H., Park, H.J., Kim, J.A., Lee, S.H., Kim, J.H., Yoon, J., Park, T.H., 2011. Inactivation of
937 *Pseudomonas aeruginosa* PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J.
938 Microbiol. Methods 84, 41–45. <https://doi.org/10.1016/j.mimet.2010.10.010>

939 Park, S.C., Park, Y., Hahm, K.S., 2011. The role of antimicrobial peptides in preventing multidrug-
940 resistant bacterial infections and biofilm formation. *Int. J. Mol. Sci.* 12, 5971–5992.
941 <https://doi.org/10.3390/ijms12095971>

942 Pei, R., Lamas-Samanamud, G.R., 2014. Inhibition of biofilm formation by T7 bacteriophages producing
943 quorum-quenching enzymes. *Appl. Environ. Microbiol.* 80, 5340–5348.
944 <https://doi.org/10.1128/aem.01434-14>

945 Percival, S.L., Mayer, D., Malone, M., Swanson, T., Gibson, D., Schultz, G., 2017. Surfactants and their
946 role in wound cleansing and biofilm management. *J. Wound Care* 26, 680–690.
947 <https://doi.org/10.12968/jowc.2017.26.11.680>

948 Pesci, E.C., Pearson, J.P., Seed, P.C., Iglewski, B.H., 1997. Regulation of *las* and *rhl* quorum sensing in
949 *Pseudomonas aeruginosa*. *J. Bacteriol.* 179, 3127–3132. <https://doi.org/10.1128/jb.179.10.3127-3132.1997>

950 Pires, D., Sillankorva, S., Faustino, A., Azeredo, J., 2011. Use of newly isolated phages for control of
951 *Pseudomonas aeruginosa* PAO1 and ATCC 10145 biofilms. *Res. Microbiol.* 162, 798–806.
952 <https://doi.org/10.1016/j.resmic.2011.06.010>

953 Pires, D.P., Cleto, S., Sillankorva, S., Azeredo, J., Lu, T.K., 2016. Genetically engineered phages: a
954 review of advances over the last decade. *Microbiol. Mol. Biol. Rev.* 80, 523–543.
955 <https://doi.org/10.1128/MMBR.00069-15>

956 Popat, R., Cornforth, D.M., McNally, L., Brown, S.P., 2015. Collective sensing and collective responses
957 in quorum-sensing bacteria. *J. R. Soc. Interface* 12, 20140882.
958 <https://doi.org/10.1098/rsif.2014.0882>

959 Powell, L.C., Pritchard, M.F., Ferguson, E.L., Powell, K.A., Patel, S.U., Rye, P.D., Sakellakou, S.M.,
960 Buurma, N.J., Brilliant, C.D., Coping, J.M., Menzies, G.E., Lewis, P.D., Hill, K.E., Thomas, D.W.,
961 2018. Targeted disruption of the extracellular polymeric network of *Pseudomonas aeruginosa*
962 biofilms by alginate oligosaccharides. *npj Biofilms Microbiomes* 4, 13.
963 <https://doi.org/10.1038/s41522-018-0056-3>

964 Qais, F.A., Khan, M.S., Ahmad, I., 2019. Broad-spectrum quorum sensing and biofilm inhibition by
965 green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds
966 through molecular modelling. *Microb. Pathog.* 126, 379–392.
967 <https://doi.org/10.1016/j.micpath.2018.11.030>

968 Queck, S.Y., Jameson-Lee, M., Villaruz, A.E., Bach, T.H.L., Khan, B.A., Sturdevant, D.E., Ricklefs,
969 S.M., Li, M., Otto, M., 2008. RNAIII-independent target gene control by the *agr* quorum-sensing
970 system: insight into the evolution of virulence regulation in *Staphylococcus aureus*. *Mol. Cell* 32,
971 150–158. <https://doi.org/10.1016/j.molcel.2008.08.005>

972 Rendueles, O., Beloin, C., Latour-Lambert, P., Ghigo, J.-M., 2014. A new biofilm-associated colicin with
973 increased efficiency against biofilm bacteria. *ISME J.* 8, 1275–1288.
974 <https://doi.org/10.1038/ismej.2013.238>

975 Rinaldo, S., Giardina, G., Mantoni, F., Paone, A., Cutruzzolà, F., 2018. Beyond nitrogen metabolism:
976 nitric oxide, cyclic-di-GMP and bacterial biofilms. *FEMS Microbiol. Lett.* 365, fny029.
977 <https://doi.org/10.1093/femsle/fny029>

978 Römling, U., Galperin, M.Y., Gomelsky, M., 2013. Cyclic di-GMP: the first 25 years of a universal
979 bacterial second messenger. *Microbiol. Mol. Biol. Rev.* 77, 1–52.
980 <https://doi.org/10.1128/mmbr.00043-12>

981 Rosche, B., Li, X.Z., Hauer, B., Schmid, A., Buehler, K., 2009. Microbial biofilms: a concept for
982 industrial catalysis? *Trends Biotechnol.* 27, 636–643. <https://doi.org/10.1016/j.tibtech.2009.08.001>

983 Roy, R., Tiwari, M., Donelli, G., Tiwari, V., 2018. Strategies for combating bacterial biofilms: a focus on
984 anti-biofilm agents and their mechanisms of action. *Virulence* 9, 522–554.
985 <https://doi.org/10.1080/21505594.2017.1313372>

986 Roy, V., Fernandes, R., Tsao, C.-Y., Bentley, W.E., 2010. Cross species quorum quenching using a native
987 AI-2 processing enzyme. *ACS Chem. Biol.* 5, 223–232. <https://doi.org/10.1021/cb9002738>

988 Ryan, R.P., Dow, J.M., 2008. Diffusible signals and interspecies communication in bacteria.
989

990 Microbiology 154, 1845–1858. <https://doi.org/10.1099/mic.0.2008/017871-0>

991 Ryu, M.-H., Fomicheva, A., Moskvin, O. V., Gomelsky, M., 2017. Optogenetic module for dichromatic
992 control of c-di-GMP signaling. *J. Bacteriol.* 199, e00014-17. <https://doi.org/10.1128/jb.00014-17>

993 Ryu, M.H., Gomelsky, M., 2014. Near-infrared light responsive synthetic c-di-GMP module for
994 optogenetic applications. *ACS Synth. Biol.* 3, 802–810. <https://doi.org/10.1021/sb400182x>

995 Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S., Studart, A.R., 2017. 3D printing of bacteria into
996 functional complex materials. *Sci. Adv.* 3, eaao6804. <https://doi.org/10.1126/sciadv.aao6804>

997 Schauder, S., Bassler, B.L., 2001. The languages of bacteria. *Genes Dev.* 15, 1468–1480.
998 <https://doi.org/10.1101/GAD.899601>

999 Scheerer, S., Ortega-Morales, O., Gaylarde, C., 2009. Microbial deterioration of stone monuments—an
1000 updated overview, in: Laskin, A.I., Sariaslani, S., Gadd, G.M. (Eds.), *Advances in Applied*
1001 *Microbiology*. Elsevier, pp. 97–139. [https://doi.org/10.1016/S0065-2164\(08\)00805-8](https://doi.org/10.1016/S0065-2164(08)00805-8)

1002 Schmieden, D.T., Basalo Vázquez, S.J., Sangüesa, H., Van Der Does, M., Idema, T., Meyer, A.S., 2018.
1003 Printing of patterned, engineered *E. coli* biofilms with a low-cost 3D printer. *ACS Synth. Biol.* 7,
1004 1328–1337. <https://doi.org/10.1021/acssynbio.7b00424>

1005 Schultz, M., 2008. Clinical use of *E. coli* Nissle 1917 in inflammatory bowel disease. *Inflamm. Bowel*
1006 *Dis.* 14, 1012–1018. <https://doi.org/10.1002/ibd.20377>

1007 Shao, X., Fang, K., Medina, D., Wan, J., Lee, J.L., Hong, S.H., 2019. The probiotic, *Leuconostoc*
1008 *mesenteroides*, inhibits *Listeria monocytogenes* biofilm formation. *J. Food Saf.* e12750.
1009 <https://doi.org/10.1111/jfs.12750>

1010 Shen, Y., Köller, T., Kreikemeyer, B., Nelson, D.C., 2013. Rapid degradation of *Streptococcus pyogenes*
1011 biofilms by PlyC, a bacteriophage-encoded endolysin. *J. Antimicrob. Chemother.* 68, 1818–1824.
1012 <https://doi.org/10.1093/jac/dkt104>

1013 Shukla, V., Bhathena, Z., 2016. Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts
1014 of Indian medicinal plants. *Scientifica.* 2016, 5823013. <https://doi.org/10.1155/2016/5823013>

1015 Sillankorva, S., Neubauer, P., Azeredo, J., 2010. Phage control of dual species biofilms of *Pseudomonas*
1016 *fluorescens* and *Staphylococcus lentus*. *Biofouling* 26, 567–575.
1017 <https://doi.org/10.1080/08927014.2010.494251>

1018 Simões, M., Pereira, M.O., Vieira, M.J., 2005. Action of a cationic surfactant on the activity and removal
1019 of bacterial biofilms formed under different flow regimes. *Water Res.* 39, 478–486.
1020 <https://doi.org/10.1016/j.watres.2004.09.018>

1021 Smith, K., Martin, L., Rinaldi, A., Rajendran, R., Ramage, G., Walker, D., 2011. Activity of pyocin S2
1022 against *Pseudomonas aeruginosa* biofilms. *Antimicrob. Agents Chemother.* 56, 1599–1601.
1023 <https://doi.org/10.1128/aac.05714-11>

1024 Sondermann, H., Shikuma, N.J., Yildiz, F.H., 2012. You've come a long way: c-di-GMP signaling. *Curr.*
1025 *Opin. Microbiol.* 15, 140–146. <https://doi.org/10.1016/j.mib.2011.12.008>

1026 Sonnenborn, U., Schulze, J., 2009. The non-pathogenic *Escherichia coli* strain Nissle 1917-features of a
1027 versatile probiotic. *Microb. Ecol. Health Dis.* 21, 122–158.
1028 <https://doi.org/http://dx.doi.org/10.3109/08910600903444267>

1029 Splendiani, A., Livingston, A.G., Nicolella, C., 2006. Control of membrane-attached biofilms using
1030 surfactants. *J. Anat.* 94, 15–23. <https://doi.org/10.1002/bit>

1031 Srey, S., Jahid, I.K., Ha, S. Do, 2013. Biofilm formation in food industries: a food safety concern. *Food*
1032 *Control* 31, 572–585. <https://doi.org/10.1016/j.foodcont.2012.12.001>

1033 Stanley, N.R., Lazazzeri, B.A., 2004. Environmental signals and regulatory pathways that influence
1034 biofilm formation. *Mol. Microbiol.* 52, 917–924. <https://doi.org/10.1111/j.1365-2958.2004.04036.x>

1035 Stapleton, M.R., Horsburgh, M.J., Hayhurst, E.J., Wright, L., Jonsson, I.M., Tarkowski, A., Kokai-Kun,
1036 J.F., Mond, J.J., Foster, S.J., 2007. Characterization of IsaA and SceD, two putative lytic
1037 transglycosylases of *Staphylococcus aureus*. *J. Bacteriol.* 189, 7316–7325.
1038 <https://doi.org/10.1128/JB.00734-07>

1039 Stewart, P.S., 2015. Prospects for anti-biofilm pharmaceuticals. *Pharmaceuticals* 8, 504–511.
1040 <https://doi.org/10.3390/ph8030504>

1041 Stoodley, P., Hall-Stoodley, L., Costerton, B., DeMeo, P., Shirtliff, M., Gawalt, E., Kathju, S., 2013.
1042 Biofilms, biomaterials, and device-related infections, in: Modjarrad, K., Ebnesajjad, S. (Eds.),
1043 Handbook of Polymer Applications in Medicine and Medical Devices. William Andrew Publishing,
1044 Oxford, pp. 77–101. <https://doi.org/10.1016/B978-0-323-22805-3.00005-0>

1045 Tanner, M.E., 2002. Understanding nature's strategies for enzyme-catalyzed racemization and
1046 epimerization. *Acc. Chem. Res.* 35, 237–246. <https://doi.org/10.1021/ar000056y>

1047 Thibane, V.S., Kock, J.L.F., Ells, R., van Wyk, P.W.J., Pohl, C.H., 2010. Effect of marine
1048 polyunsaturated fatty acids on biofilm formation of *Candida albicans* and *Candida dubliniensis*.
1049 *Mar. Drugs* 8, 2597–2604. <https://doi.org/10.3390/md8102597>

1050 Todhanakasem, T., Sangsuthiseree, A., Areerat, K., Young, G.M., Thanonkeo, P., 2014. Biofilm
1051 production by *Zymomonas mobilis* enhances ethanol production and tolerance to toxic inhibitors
1052 from rice bran hydrolysate. *N. Biotechnol.* 31, 451–459. <https://doi.org/10.1016/j.nbt.2014.06.002>

1053 Townsley, L., Yildiz, F.H., 2015. Temperature affects c-di-GMP signalling and biofilm formation in
1054 *Vibrio cholerae*. *Environ. Microbiol.* 17, 4290–4305. <https://doi.org/10.1111/1462-2920.12799>

1055 Urbance, S.E., Pometto, A.L., DiSpirito, A.A., Denli, Y., 2004. Evaluation of succinic acid continuous
1056 and repeat-batch biofilm fermentation by *Actinobacillus succinogenes* using plastic composite
1057 support bioreactors. *Appl. Microbiol. Biotechnol.* 65, 664–670. <https://doi.org/10.1007/s00253-004-1634-2>

1058 Uroz, S., Chhabra, S.R., Cámara, M., Williams, P., Oger, P., Dessaix, Y., 2005. N-Acylhomoserine
1059 lactone quorum-sensing molecules are modified and degraded by *Rhodococcus erythropolis* W2 by
1060 both amidolytic and novel oxidoreductase activities. *Microbiology* 151, 3313–3322.
1061 <https://doi.org/10.1099/mic.0.27961-0>

1062 Valentini, M., Filloux, A., 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from
1063 *Pseudomonas aeruginosa* and other bacteria. *J. Biol. Chem.* 291, 12547–12555.
1064 <https://doi.org/10.1074/jbc.R115.711507>

1065 Valverde, C., Haas, D., 2008. Small RNAs controlled by two-component systems, in: Utsumi, R. (Ed.),
1066 Bacterial Signal Transduction: Networks and Drug Targets. Springer, New York, pp. 54–79.
1067 https://doi.org/10.1007/978-0-387-78885-2_5

1068 Volke, D.C., Nikel, P.I., 2018. Getting bacteria in shape: synthetic morphology approaches for the design
1069 of efficient microbial cell factories. *Adv. Biosyst.* 2, 1800111.
1070 <https://doi.org/10.1002/adbi.201800111>

1071 Wang, J., Liu, W., Liu, T., 2017. Biofilm based attached cultivation technology for microalgal
1072 biorefineries—A review. *Bioresour. Technol.* 244, 1245–1253.
1073 <https://doi.org/10.1016/j.biortech.2017.05.136>

1074 Wang, L.H., Weng, L.X., Dong, Y.H., Zhang, L.H., 2004. Specificity and enzyme kinetics of the quorum-
1075 quenching N-acyl homoserine lactone lactonase (AHL-lactonase). *J. Biol. Chem.* 279, 13645–13651.
1076 <https://doi.org/10.1074/jbc.M311194200>

1077 Wasfi, R., Abd El-Rahman, O.A., Zafer, M.M., Ashour, H.M., 2018. Probiotic *Lactobacillus* sp. inhibit
1078 growth, biofilm formation and gene expression of caries-inducing *Streptococcus mutans*. *J. Cell.*
1079 *Mol. Med.* 22, 1972–1983. <https://doi.org/10.1111/jcmm.13496>

1080 Waters, C.M., Bassler, B.L., 2005. Quorum sensing: cell-to-cell communication in bacteria. *Annu. Rev.*
1081 *Cell Dev. Biol.* 21, 319–346. <https://doi.org/10.1146/annurev.cellbio.21.012704.131001>

1082 Weiland-Bräuer, N., Kisch, M.J., Pinnow, N., Liese, A., Schmitz, R.A., 2016. Highly effective inhibition
1083 of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. *Front. Microbiol.* 7,
1084 1098. <https://doi.org/10.3389/fmicb.2016.01098>

1085 Williams, D.E., Nisbett, L.-M., Bacon, B., Boon, E., 2018. Bacterial heme-based sensors of nitric oxide.
1086 *Antioxid. Redox Signal.* 29, 1872–1887. <https://doi.org/10.1089/ars.2017.7235>

1087 Woo, J., Ahn, J., 2013. Probiotic-mediated competition, exclusion and displacement in biofilm formation
1088 by food-borne pathogens. *Lett. Appl. Microbiol.* 56, 307–313. <https://doi.org/10.1111/lam.12051>

1089 Wood, T.K., Hong, S.H., Ma, Q., 2011. Engineering biofilm formation and dispersal. *Trends Biotechnol.*
1090 29, 87–94. <https://doi.org/10.1016/j.tibtech.2010.11.001>

1091

1092 Wood, T.L., Guha, R., Tang, L., Geitner, M., Kumar, M., Wood, T.K., 2016. Living biofouling-resistant
1093 membranes as a model for the beneficial use of engineered biofilms. Proc. Natl. Acad. Sci. 113,
1094 2802–2811. <https://doi.org/10.1073/pnas.1521731113>

1095 Xavier, J.B., Picioreanu, C., Abdul Rani, S., van Loosdrecht, M.C.M., Stewart, P.S., 2005. Biofilm-
1096 control strategies based on enzymic disruption of the extracellular polymeric substance matrix - A
1097 modelling study. Microbiology 151, 3817–3832. <https://doi.org/10.1099/mic.0.28165-0>

1098 Xavier, K.B., Miller, S.T., Lu, W., Kim, J.H., Rabinowitz, J., Pelczer, I., Semmelhack, M.F., Bassler,
1099 B.L., 2007. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in
1100 enteric bacteria. ACS Chem. Biol. 2, 128–136. <https://doi.org/10.1021/cb600444h>

1101 Xu, D., Jia, R., Li, Y., Gu, T., 2017. Advances in the treatment of problematic industrial biofilms. World
1102 J. Microbiol. Biotechnol. 33, 97. <https://doi.org/10.1007/s11274-016-2203-4>

1103 Zakeel, M.C.M., Safeena, M.I.S., 2019. Biofilmed biofertilizer for sustainable agriculture, in: Ansari,
1104 R.A., Mahmood, I. (Eds.), Plant Health Under Biotic Stress. Springer, Singapore, pp. 65–82.
1105 https://doi.org/10.1007/978-981-13-6040-4_3

1106 Zambom, C.R., da Fonseca, F.H., Crusca, E., da Silva, P.B., Pavan, F.R., Chorilli, M., Garrido, S.S., 2019.
1107 A novel antifungal system with potential for prolonged delivery of histatin 5 to limit growth of
1108 *Candida albicans*. Front. Microbiol. 10, 1667. <https://doi.org/10.3389/fmicb.2019.01667>

1109 Zhang, J., Poh, C.L., 2018. Regulating exopolysaccharide gene *wcaF* allows control of *Escherichia coli*
1110 biofilm formation. Sci. Rep. 8, 13127. <https://doi.org/10.1038/s41598-018-31161-7>

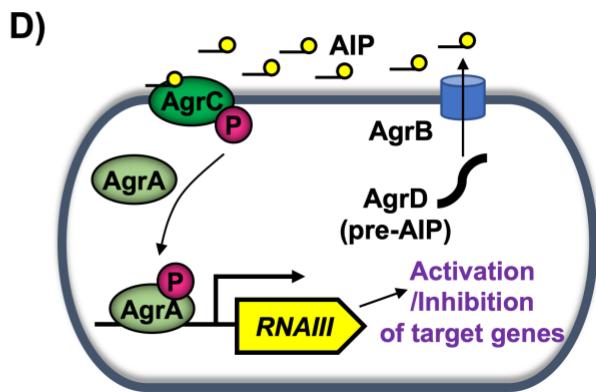
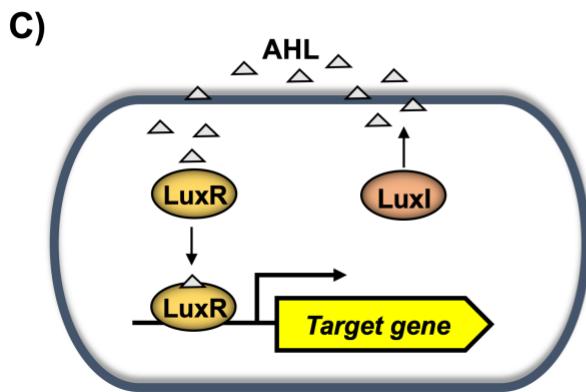
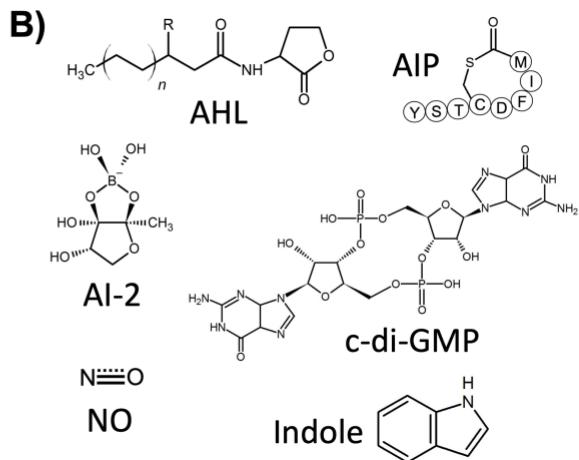
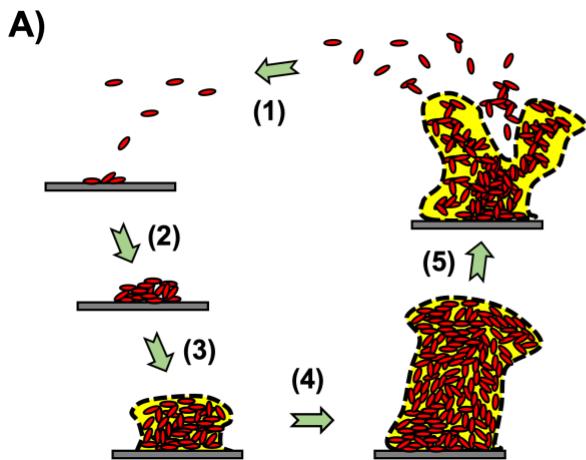
1111 Zhang, L., Gray, L., Novick, R.P., Ji, G., 2002. Transmembrane topology of AgrB, the protein involved in
1112 the post-translational modification of AgrD in *Staphylococcus aureus*. J. Biol. Chem. 277, 34736–
1113 34742. <https://doi.org/10.1074/jbc.M205367200>

1114 Zhao, X., Zhao, F., Wang, J., Zhong, N., 2017. Biofilm formation and control strategies of foodborne
1115 pathogens: food safety perspectives. RSC Adv. 7, 36670–36683. <https://doi.org/10.1039/c7ra02497e>

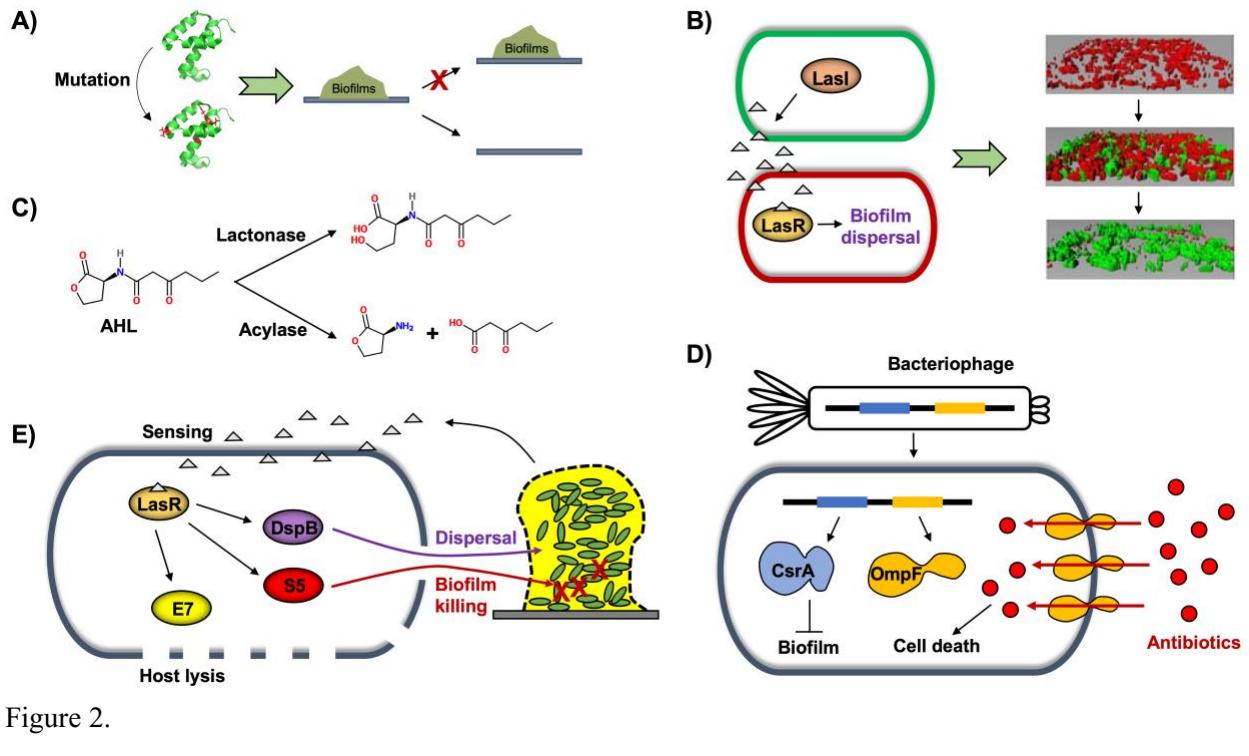
1116 Zuo, R., 2007. Biofilms: Strategies for metal corrosion inhibition employing microorganisms. Appl.
1117 Microbiol. Biotechnol. 76, 1245–1253. <https://doi.org/10.1007/s00253-007-1130-6>

1118

1119

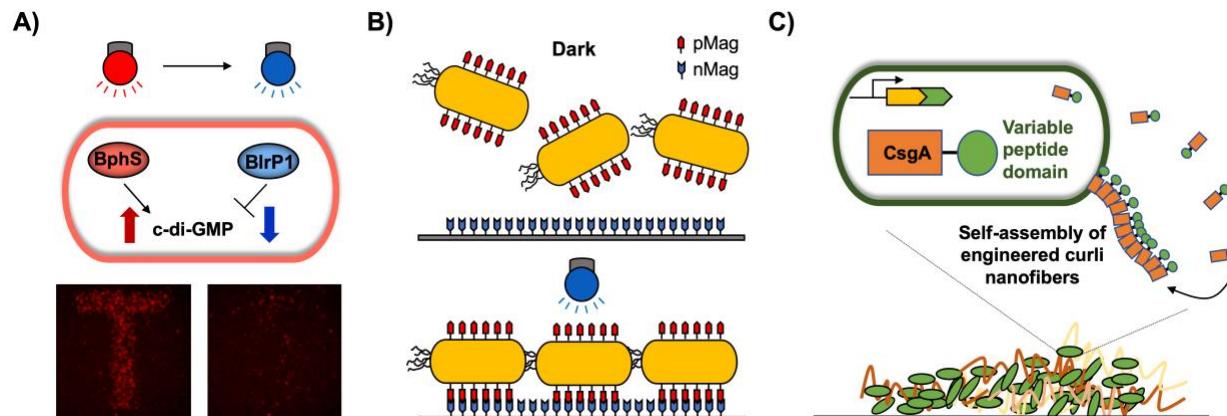




1120

1121 **FIGURE LEGENDS**
1122


1123 **Figure 1. Biofilm formation and signaling.** **A)** Biofilm developmental stages: **1)** attachment, **2)** cell-to-
1124 cell adhesion, **3)** proliferation, **4)** maturation, and **5)** dispersal. **B)** Signaling molecules involved in
1125 biofilm formation: acylhomoserine lactone (AHL), autoinducing peptide (AIP), autoinducer-2 (AI-
1126 2), cyclic di-guanosine monophosphate (c-di-GMP), indole, and nitric oxide (NO). **C)** Gram-
1127 negative quorum sensing (QS). In *V. fischeri*, LuxI synthesizes 3oC6HSL (AHL). LuxR forms a
1128 complex with AHL, and the complex activates target gene expression. **D)** Gram-positive QS. In *S.*
1129 *aureus*, AgrD is processed to form AIP. Upon sensing AIP, AgrC phosphorylates AgrA, which in
1130 turn induces RNAIII production. RNAIII activates or inhibits target gene expression.

1131 **Figure 2. Biofilm cell killing and eradication.** **A)** Protein engineering via random or site-directed
1132 mutagenesis to induce biofilm dispersal. **B)** Synthetic QS genetic circuit to enable biofilm
1133 displacement. LasI in the green cell produces AHL, and the LasR/AHL complex in the red cell
1134 induces biofilm dispersal [biofilm images from (Hong et al., 2012)]. **C)** Quorum quenching to
1135 disrupt AHL. Lactonase hydrolyzes lactone rings, and acylase cleaves acyl groups, which inhibits
1136 biofilms. **D)** Engineered bacteriophage for biofilm cell killing via enhanced antibiotic penetration
1137 along with biofilm inhibition via induction of the biofilm-inhibiting enzyme CsrA. **E)** Engineered
1138 probiotic strain to sense and kill pathogen biofilms. Colin E7 lysin (E7) disrupts the probiotic host
1139 cells, pyocin S5 (S5) kills *P. aeruginosa* in biofilms, and dispersin B (DspB) degrades the biofilm
1140 matrix.

1141 **Figure 3. Biofilm utilization for patterning and biomaterial production.** **A)** Optogenetic biofilm
1142 patterning using light-switchable c-di-GMP regulation. BphS activated by near-infrared light
1143 synthesizes c-di-GMP, while BlrP1 activated by blue light degrades c-di-GMP, resulting in
1144 biofilm formation and dispersal, respectively [biofilm images from (Huang et al., 2018)]. **B)** pMag
1145 on the microbial surface and nMag on the material surface form heterodimers with blue light. **C)**
1146 Engineered microbe produces the self-assembled curli nanofiber CsgA with a variable peptide
1147 domain, which confers new functions.



1149
1150
1151

1152
1153
1154

Figure 2.

1155
1156

Figure 3.