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Abstract. 1. Spatial synchrony, the tendency for temporal population fluctuations to
be correlated across multiple locations at regional scales, is common and contributes to
the severity of outbreaks and epidemics, but is little studied in agricultural pests.

2. This study analysed spatial synchrony from 1974 to 2008 in 16 lepidopteran
agricultural pests in Maryland, U.S.A., and investigated whether pest synchrony is driven
by interannual variability in seasonal weather and the areas planted in different crop
types.

3. Lepidopteran pests exhibited high degrees of spatial synchrony, which was driven
by environmental variation, a phenomenon known as the Moran effect. Region-wide
variation in the areas planted in major crops drove spatially synchronous abundance
fluctuations in more than half of studied species. The combination of weather and crop
composition explained large fractions of synchrony in black cutworm, corn earworm,
European corn borer, and spotted cutworm populations. Other pests, including forage
looper and variegated cutworm, displayed a high degree of spatial synchrony, but without
dependence on the tested drivers.

4. The study finding that synchronous variation in the area planted in different crop
types contributed to synchronous pest abundance fluctuations suggests that strategies to
reduce synchrony in changes in crop type across a region could reduce the severity of
pest outbreaks and enhance the stability of agricultural systems.

Key words. corn earworm, European corn borer, insect outbreak, Moran effects,
wavelet analysis.

Introduction difficult to control, e.g. if the scale of the problem overwhelms
management resources. Outbreaks of many Lepidopteran forest
pests — including gypsy moth [Lymantria dispar (L.)], forest
tent caterpillar [Malacasoma disstria (Hiibner)], and spruce
budworms [Choristoneura spp. (Lederer)] — exhibit spatial
synchrony, and examining the drivers of synchrony has become

Many pest species exhibit abundance fluctuations that are
correlated through time over large areas (@kland er al., 2005;
Liebhold et al., 2012). This phenomenon, known as spatial syn-
chrony (Liebhold et al., 2004), is in part responsible for pests’
deleterious impacts: synchronous local fluctuations reinforce
each other, producing large variation in the aggregate (Schindler
et al., 2015). Thus, synchrony may make pest outbreaks more

a major lens for understanding the mechanisms of area-wide
population fluctuations of these and many other species (Pel-
tonen et al., 2002; Haynes et al., 2009; Cooke eral., 2012;
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open questions concerning the prevalence and drivers of spatial
synchrony in these species. Efforts to determine long-term
drivers of agricultural pest population dynamics, in general,
have been hindered by a paucity of long-term studies (Ingram
et al., 2008; Gregory et al., 2009).

Classically, the predominant general cause of spatial
synchrony in population dynamics is environmental fluc-
tuation — typically, in climate and weather — that is spatially
synchronous (called ‘Moran effects’ after Moran 1953). Climate
and weather, by which we distinguish between, respectively,
long-term and short-term changes in atmospheric conditions,
have long been recognised as important factors regulating
insect populations (Andrewartha and Birch 1948), and in
recent decades concerns have emerged that climate change
may increase the frequency and severity of damaging insect
outbreaks (Cannon 1998; Logan et al., 2003; Gregory et al.,
2009; Bjorkman et al., 2011). Documented responses of insect
pest populations to climate change vary widely (Johnson et al.,
2010; Haynes et al., 2014; Ouyang et al., 2014), however,
ostensibly due in part to differences in life history and phys-
iology (Walter et al., 2018). Identifying which environmental
variables drive population fluctuations, and how, is a first step
towards predicting pest outbreaks in a changing climate.

Agricultural pest populations are exposed to widespread tem-
poral variation in the areas planted in different crop types (Lusk
2018), and though it is plausible such variations can drive spa-
tial synchrony, whether they do so is unknown. We refer to the
areas planted in different crop types in a region as ‘crop com-
position’. Insect populations are greatly affected by the quantity
and quality of forage (Wratten et al., 2007). For instance, the
developmental rates, survivorship, and fecundity of even highly
polyphagous species can be affected by host plant type (Lieb-
hold et al., 1995). While host quality is in part related to weather
(Kingsolver 1989), in agricultural systems, how much land area
is planted, and in what crop, are affected by socio-economic fac-
tors including land-use change, environmental and agricultural
policy (Kastens et al., 2017; Garrett et al., 2018), commodities
prices, and choices related to changing agricultural technologies
(Wu et al., 2004). As many socio-economic factors operate at
regional to global scales, the regional composition of crops, in
terms of areas planted, may itself exhibit spatially synchronous
fluctuations that induce synchrony in agricultural pest popula-
tions. Whether this occurs in practice has not been established.

Recent work has promoted timescale-specific approaches to
synchrony to resolve challenges associated with the different
timescales on which weather and other drivers of population
dynamics operate (Sheppard er al., 2016; Walter et al., 2017,
Anderson et al., 2019). Weather variables, for example, exhibit
interannual variation and periodic, multi-annual patterns driven
by climate oscillations such as the El Nifio Southern Oscillation
and the North Atlantic Oscillation. Conventional approaches
based on standard correlation are incapable of resolving oscilla-
tions at different timescales and may therefore fail to detect true
relationships between weather and biological variables (Shep-
pard et al., 2016; Defriez & Reuman 2017).

This study examines patterns and drivers of spatial synchrony
in 16 lepidopteran agricultural pests over 36years in Mary-
land, U.S.A. We first ask: how prevalent is spatial synchrony

among lepidopteran pest populations across Maryland, at what
timescale(s) does synchrony occur, and is synchrony episodic
or consistent through time? We then ask: are synchronous,
area-wide population fluctuations driven by temperature and
precipitation variations in winter, spring, and summer, and by
changes in the land area planted in major crop types? We exam-
ine how much synchrony is explained by these factors, whether
drivers and their explanatory power differ by timescale, and how
spatial synchrony and its drivers differ among species. This work
contributes to a larger body of research on the effects of agricul-
tural practices and climate on long-term population patterns of
agricultural pest species, and is unique in its focus on non-target
pest species and on spatial synchrony.

Materials and methods
Data

We determined abundances of 16 lepidopteran agricultural
pests from a 1973-2008 black light network initially started by
the Maryland Extension IPM programme and then later admin-
istered by the Maryland Department of Agriculture. Starting
in 1973, black light traps were deployed throughout the grow-
ing season at different farms in eight regions across the state
(Fig. 1), but some species were recorded beginning in 1984.
Traps were deployed with spatiotemporally varying intensity
from mid-April to mid-October for a total of 236 176 trapping
nights over 36 years and eight regions. The number of trapping
locations was generally highest from May through to Septem-
ber, typically peaking at six to 10 locations in a given region,
but in some regions and years traps were deployed at as many
as 15 locations. Because the number and locations of individ-
ual traps were not consistent through time, but each region
was always represented by several distinct locations and many
trapping nights throughout the growing season, we aggregated
data to the regional level. Focal taxa were identified to species
or, less commonly, genus. Focal taxa include: beet armyworm
[Spodoptera exigua (Hiibner)], black cutworm [Agrotis ipsilon
(Hufnagel)], bilobed looper [Megalographa biloba (Stephens)],
bristly cutworm [Lacinipolia renigera (Stephens)], celery looper
[Anagrapha falcifera (Kirby)], corn earworm, cabbage looper
[Trichoplusia ni (Hiibner)], dingy cutworm [Feltia jaculifera
(Guenée)], European corn borer, fall armyworm [Spodoptera
frugiperda (J.E. Smith)], forage looper [Caenurgina erechtea
(Cramer)], green cloverworm [Hypena scabra (Fabricus)], horn-
worms [Manduca spp. (Hiibner)], spotted cutworm [Xestia spp.
(Hiibner)], true armyworm [Mythimna unipunctata (Haworth)],
variegated cutworm [Peridroma saucia (Hiibner)], and yellow
striped armyworm [Spodoptera ornithogalli (Guenée)]. These
species include notable pests of corn, a number of feeding gen-
eralists that may use corn or other host plants, and species that
feed little or not at all on corn. Because sampling intensity var-
ied by region and year, we took the total number of each species
caught in each region and year and normalised it by the num-
ber of trapping nights to correct for trapping effort, producing
for each species one abundance value for each trapping region
and year.
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Fig. 1. Black light-trapping regions in Maryland, numbered 1-8.
[Colour figure can be viewed at wileyonlinelibrary.com].

‘We used PRISM climate data (Prism Climate Group 2018) to
develop time series of winter (January, February, March), spring
(April, May, June), and summer (July, August, September) tem-
perature and precipitation. Monthly data for 1973 to 2008 were
obtained as 4-km X 4-km grid cells, which were aggregated to
season by summation (precipitation) or averaging (temperature)
and averaged by trapping region. Although weather over finer
temporal intervals, e.g. monthly, is known to affect some species,
we deemed aggregating to season a reasonable compromise
between the ability to identify specific weather mechanisms and
conducting a reasonable number of statistical tests.

To quantify variability in crop composition, we obtained
data on the acreage planted in four major crops, by year
and county or agricultural district (as available) from the
United States Department of Agriculture National Agricultural
Statistics Service. When data were available at the county
level, they were aggregated by summation to the level of
trapping regions (Fig. 1). Sometimes, agricultural districts were
the finest spatial units at which crop area data were available,
but these do not match perfectly the light-trapping regions.
In these cases, crop areas were apportioned to counties in
proportion to the area of the agricultural district comprised by
that county, then aggregated by summation to trapping region,
and log,,-transformed to reduce dispersion of the data. We
used principal components analysis to reduce the crop area data
into two orthogonal variables, explaining 64% and 23% of the
variance in crop areas. The first principal components axis (PC1)
was moderately negatively correlated with the area planted in
each of the four crop types, while PC2 was positively correlated
with the areas planted in barley and corn, but negatively
correlated with the areas of soy and wheat (Methods S1).

Analyses

‘We first prepared the data to meet assumptions of our statisti-
cal procedures. We removed temporal trends in pest abundance
using generalised additive mixed effects models (GAMMs).

Crop pest spatial synchrony 3

These models extend linear mixed-effects models by replacing
linear regression coefficients with penalised regression splines
(Wood 2006). This allowed us to detect non-linear temporal
trends in pest abundance, while the mixed-effects component
allowed the y-intercept to vary by trapping region to account
for regional differences in average abundance. Specifically,
natural-log-transformed pest abundance was modelled as a func-
tion of one fixed effect, year, and one random effect of trap-
ping region on the intercept. We expected non-linear abundance
trends in at least some of our focal species given prior work
demonstrating population declines following the introduction
of transgenic, insect-resistant ‘Bacillus thuringiensis’ crops in
1996 (Dively et al., 2018). We restricted the maximum number
of degrees of freedom of the spline to k = 3 so that the GAMM
captured only general long-term trends, not oscillatory patterns
that were the focus of our synchrony analyses. Before perform-
ing the synchrony analyses, all variables had trends removed,
were Box-Cox transformed to improve normality, and scaled to
have mean = 0 and SD = 1.

Spatial synchrony in agricultural pest abundances was
assessed using wavelet phasor mean fields (WPMFs;
Sheppard et al., 2016). The WPMFs produce a time- and
timescale-specific depiction of synchrony by aggregating infor-
mation from multiple wavelet transforms (Torrence and Compo
1998). The WPMF is large when, across regions, abundance
oscillations at a given time and timescale are synchronised,
or in phase (see Fig. 2a,b for a pedagogical illustration of the
WPMF). Values of the WPMF range from 0 (independent
oscillations) to 1 (oscillations perfectly synchronised) (Shep-
pard et al., 2016). We considered spatial synchrony statistically
significant if it exceeded the 95" percentile of a distribution
of phase synchronies generated under a null hypothesis of
complete phase independence (Sheppard eral., 2013). The
surrogate distribution was generated by computing 100000
sums of N independent random unit complex numbers (called
‘phasors’), where N is the number of regions (N = 8). We used
the continuous complex Morlet wavelet transform (Torrence
and Compo 1998).

We used spatial wavelet coherences (Sheppard er al., 2016,
2017) and wavelet linear models (Sheppard er al., 2019) to
assess how weather and crop composition drive synchronous,
area-wide pest abundance fluctuations. We tested for spatial
wavelet coherence to identify major drivers of pest population
dynamics, and used wavelet linear models, in conjunction with
the wavelet Moran theorem (Sheppard et al., 2016), to determine
the percentage of spatial synchrony in pest abundances that
was explained by that combination of environmental drivers.
The environmental drivers we considered were seasonal (winter,
spring, and summer as defined earlier) total precipitation and
average temperature and crop composition, represented by the
first two principal components axes.

Spatial wavelet coherences detect drivers of synchrony by
determining whether timescale-specific oscillations in two
spatiotemporal variables have consistent phase differences and
similar variation in magnitude through time, and whether these
relationships are consistent over space (Sheppard et al., 2016).
Coherence between a biological and an environmental variable,
such as weather or crop composition, provides strong evidence
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Fig. 2. Pedagogical figure for the wavelet phasor mean field and phase relationships. (a) Time series of five populations exhibiting synchronous cycles
with 5-year periods for the first 50 time steps, and independent random fluctuations thereafter. (b) Matching the construction of the time series in (a),
the wavelet phasor mean field (WPMF) shows high and statistically significant phase synchrony at 5-year timescales during the first half of the time
series, but no consistent synchrony thereafter. The black line denotes statistical significance at the @ = 0.01 level. (c—e) Examples of in-phase (¢ = 0),
anti-phase (¢ = + 1), and phase-lagged (¢ = 0.5) relationships; phase relationships, denoted ¢, are given in fractions of z. Relationships depicted in
(c—e) would all be considered coherent, but the relationships in (d, e) would not produce high values of the WPMF because they are not in-phase.

[Colour figure can be viewed at wileyonlinelibrary.com].

that the environmental variable, or some third factor having
a close relationship to the environmental variable, drives the
biological variable (Sheppard et al., 2016). Given input data
consisting of insect abundance time series and environmental
time series corresponding to the same locations, spatial wavelet
coherence produces a test of association between the time series
as well as a phase difference describing potential temporally
lagged effects. Considered in fractions of z, the phase differ-
ence ¢p=~0 corresponds to an in-phase relationship (positive
cross-correlation), and ¢==+1 corresponds to an anti-phase
relationship (negative cross-correlation), or equivalently a
phase-shift of half the period of a sine wave. Intermediate
values of ¢ represent relationships lagged by a fraction of cycle
length. Illustrations of coherent time series with such phase
relationships are given in Fig. 2(c)—(e). The statistical signifi-
cance of spatial wavelet coherence was assessed by comparing
empirical coherences against a null hypothesis of no coherence.
Tests were performed separately for short and long timescales;
short timescales were defined as those having 2- to 4-year
period lengths, and long timescales were those having period
lengths >4 years. Additional details on significance testing are
given in Methods S2.

To determine the percentage of synchrony explained by
weather and crop composition for each pest species, we
selected environmental drivers that were coherent with pest

abundances at P<0.1, built a wavelet linear model with
selected environmental variables, and applied the wavelet Moran
theorem (Sheppard efal, 2016). We used a threshold of
P<0.1 due to the conservatism of our test (Methods S2).
Again, short and long timescales were considered separately.
Wavelet linear models extend coherence testing from exam-
ining the relationship between a pair of variables to exam-
ining effects of multiple predictors on a response variable
by finding timescale-specific, complex-valued coefficients that
maximise the coherence between a response variable and one
or more predictors (Sheppard efal., 2019). The difference
between wavelet spatial coherence and wavelet linear models
is analogous to the difference between correlation and multi-
ple linear regression. The wavelet Moran theorem (Sheppard
et al., 2016) was then applied to determine the percentage of
synchrony in the response variable explained by the model,
for both short and long timescales. As part of this proce-
dure, we also calculated ‘cross-terms’ that provide a test of
whether assumptions of the wavelet Moran theorem are suf-
ficiently met to have confidence in the result. The precise
mathematical meaning of cross-terms is explained in Shep-
pard et al. (2016). If the cross-terms were > 15% of synchrony
explained, we considered these assumptions unmet and conse-
quently do not report the percentage of synchrony explained in
these cases.
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Crop pest spatial synchrony 5

Beet armyworm Dingy cutworm Bilobed looper Spotted cutworm
0 by
~ ] © i
N~ 4 ~
—
™ ™ 4
10 3
o
o 4
1985 1995 2005 1975 1985 1995 2005 1985 1995 2005 1975 1985 1995 2005
Green cloverworm Yellow-striped armyworm Black cutworm Cabbage looper
<
~ =l ] T
4 o -
™ 4 4 0 J
1 -
~ A
0 ] o ~
< T o
= © |
S v | i =
c o 2 _
2 T
.5_ =i T T T . 4 T © A T T T T T T T T T { T T S T T I~-I.--I>A-I-’-l‘
% 1985 1995 2005 1985 1995 2005 1975 1985 1995 2005 1975 1985 1995 2005
S
": Celery looper Fall armyworm True armyworm Corn earworm
[} o |
o ™
= 4 & n |
c ™ © | ©w
® Q. -
@) = ™~
™ A | N~ o
o 4
o
- 4
- 4
—_—
o 4 o 4
T T T T T T T T T T T T T T
1975 1985 1995 2005 1975 1985 1995 2005 1975 1985 1995 2005 1975 1985 1995 2005
European corn borer Variegated cutworm Forage looper Hornworm
& <
0 | -
— o 3
w0 | ~ i
o o A
™ 4
- 4
o A Q1

T T T T T T T

1975 1985 1995 2005 1985 1995 2005

1975 1985 1995 2005 1975 1985 1995 2005

Year

Fig. 3. Temporal trends in pest abundances from generalised additive mixed models. Panels are ordered to group species with similar dynamics. Dashed

lines indicate 2 SE.

Analyses were performed in R v.3.5.1 (R Core Team 2018)
using the mGecv (Wood 2006) and wsyN (Reuman er al., 2019)
packages.

Results

Modelling possibly nonlinear temporal trends in pest abun-
dances, while mainly for the purpose of removing these
trends, revealed some noteworthy patterns. Abundance of

many lepidopteran agricultural pests in Maryland declined over
1973-2008 (Fig. 3). About half of the patterns were notably
non-linear, including some exhibiting changes in the direction
or rate of change in the mid-1990s.

All species exhibited statistically significant spatial synchrony,
but varied considerably in their patterns of synchrony (Fig. 4).
European corn borer, variegated cutworm, and yellow-striped
armyworm showed synchrony very consistently at certain
timescales, while showing asynchrony at other timescales; this
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Fig. 4. Wavelet phasor mean fields depicting time and timescale-specific spatial synchrony in pest populations. The order of panels mirrors that in
Fig. 3. The black line delineates times and timescales with statistically significant phase synchrony (P <0.01). Plots are ‘scalloped’ to omit wavelet
components that are poorly supported because they overlap the edges of the time series. [Colour figure can be viewed at wileyonlinelibrary.com].

pattern is indicative of population cycles. For example, Euro-
pean corn borer displayed strong synchrony at 5- and 10-year
timescales, as evidenced by very high and statistically signifi-
cant values of the WPMF at these timescales, which were con-
sistent over time. Beet armyworm and fall armyworm showed
strong synchrony at nearly all times and timescales, whereas for
hornworm the predominant pattern was asynchrony, with syn-
chrony occurring only episodically at certain timescales. Such
a pattern may be consistent with the occurrence of occasional

synchronising events on a background of asynchrony (Klapwijk
etal., 2018). Some species showed synchrony that appeared
to change its dominant period over time, such as cabbage
looper, for which synchrony shifted from c. 5- to c. 7-year
timescales.

Nearly all species were coherent with one or more environ-
mental variables over at least one timescale band, and weather
and crop composition in one case explained 96% of spatial
synchrony in pest abundances (Fig. 5). Taking corn earworm

© 2019 The Royal Entomological Society, Ecological Entomology, doi: 10.1111/een.12830
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Fig. 5. Spatial coherences between pest abundances and weather variables (P, precipitation; T, average temperature). For coherence relationships with
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a cycle length. Negative values indicate time-lagged positive effects of the environmental variable on pest population fluctuations, and positive values
correspond to time-lagged negative relationships. Values in the right margin give the percentage of synchrony explained by a model containing all
variables that individually had P < 0.1; no value is given if large cross-terms indicated that assumptions of our partitioning method were unmet. [Colour

figure can be viewed at wileyonlinelibrary.com].

as an example, at short timescales its abundance fluctuations
exhibited an anti-phase relationship with winter precipitation
and a phase-lagged relationship with summer temperatures.
In other words, when considering short-timescale fluctuations,
increases in winter precipitation tended to reduce corn earworm
abundances later that same year; increases in summer temper-
ature tended to increase corn earworm abundances, but in the
following year. For an example of a different type of relation-
ship, at short timescales fall armyworm had a phase-lagged rela-
tionship with summer temperature, but the positive sign on ¢
indicates a phase-lagged negative relationship; fall armyworm
abundances tended to peak approximately a year after years
with relatively low summer temperatures. Only variegated cut-
worm was not substantially coherent with any tested variables.
Environmental drivers were more commonly coherent with pest
abundance at long (>4 years; 24 coherent relationships) than
at short timescales (<4 years 13 coherent relationships), and
drivers tended to differ between short and long timescales, both
in terms of which variables tended to be more frequently coher-
ent across species, and in terms of individual species where the
same environmental variable was rarely substantially coherent
at both short and long timescales. At short timescales, sum-
mer temperature was most frequently coherent with pest abun-
dances (Fig. 5a), while at long timescales spring precipitation
and crop PC1 were most frequently coherent with pest abun-
dances (Fig. 5b). While our models explained a larger fraction of
synchrony at long than at short timescales, this can be attributed
in part to the smaller number of long-timescale oscillations in
finite-length time series.

Although we performed 256 tests and most relationships did
not receive statistical support, the number of detected relation-
ships exceeds the number expected under type 1 error rates, if
that expectation is based on independent tests. For instance,
37 tests were significant at the P <0.1 level (i.e. coherence
>90% of surrogates), whereas the expected number for 256
independent tests was 25.6; similarly, 16 tests were significant
at the P <0.05 level, whereas the expected number was 12.8.
The probabilities of getting at least this many significant tests
by chance alone, taken from a binomial distribution and again
assuming independent tests, were 0.009 and 0.14, respectively.
Many detected relationships (25 of 37) were phase-lagged, as
opposed to in-phase or anti-phase, highlighting the value of
coherence methods. Only if expected time lags were hypoth-
esised a priori or models with many different time lags were
considered could standard linear regression produce equivalent
results.

Discussion

The population dynamics of 16 lepidopteran agricultural pests
were spatially synchronous over the state of Maryland, U.S.A.,
and synchrony in these species was largely explained by Moran
effects arising from variation in weather and in the areas planted
in different major crop types. Despite all focal species exhibit-
ing spatial synchrony, patterns of synchrony differed substan-
tially among species. The dynamics of beet armyworm were
spatially synchronous over nearly all timescales and consis-
tently throughout the study period, whereas synchrony occurred

© 2019 The Royal Entomological Society, Ecological Entomology, doi: 10.1111/een.12830
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more episodically for hornworms, and, for species like Euro-
pean corn borer and variegated cutworm, synchrony was con-
sistent throughout the time series but occurred predominantly
at particular timescales. Weather and crop composition shaped
patterns of synchrony in these species, with summer tempera-
tures most commonly driving short-timescale pest abundance
fluctuations, and long-timescale abundance fluctuations most
commonly related to spring precipitation and crop composition.
Weather and crop composition explained a larger proportion of
synchrony at long timescales. Our finding that regionally syn-
chronous fluctuations in crop composition can drive spatially
synchronous crop pest abundance fluctuations appears novel and
suggests that the severity of crop pest outbreaks could be moder-
ated by managing the spatiotemporal distribution of crop types
to promote asynchrony. Similarly, recent work shows that higher
levels of crop heterogeneity enhanced biodiversity, and possibly
associated ecosystem services, like biocontrol, in an agricultural
region (Sirami et al., 2019).

The high degree of spatial synchrony exhibited by pest pop-
ulations across Maryland indicates that pest populations tended
to fluctuate in unison, at least over certain timescales that differ
by species. Because synchronous local patterns are amplified in
the area-wide total (Schindler er al., 2015), these synchronous
fluctuations can manifest as intermittent or periodic outbreaks,
particularly for relatively abundant species like corn earworm,
true armyworm, and forage looper. State-wide population fluc-
tuations of beet armyworm, celery looper, corn earworm, dingy
cutworm, and forage looper were characterised as cyclic in a sep-
arate analysis (Walter er al., 2018), and spatial synchrony proba-
bly magnifies the negative impacts of cyclic outbreaks. Although
its overall abundance declined, due in part to the introduction
of Bt corn (Bohnenblust ef al., 2013), corn earworm remained
relatively abundant throughout the study period, and its popu-
lations have become increasingly synchronous since the 1990s.
There are possible analogues with whooping cough in the U.K.,
outbreaks of which became increasingly cyclical and spatially
synchronous following introduction of a vaccine that limited the
overall incidence of the disease (Rohani et al., 1999).

Synchronous, area-wide pest abundance fluctuations were
driven in part by spring and summer weather. Winter weather
conditions played less of a role, possibly because the abun-
dances of many pests in Maryland reflect, at least in part,
long-distance dispersal from milder locales to the south (Wal-
ter et al., 2018). In-phase (positive) responses to temperature
could be explained by warm temperatures promoting additional
generations, while anti-phase (negative) responses could reflect
supra-optimal temperatures hindering development (Thompson
et al., 2017). Most often, however, relationships between pests
and weather were phase-lagged, suggesting that the biological
mechanisms involve effects on generations maturing in future
years, e.g. fecundity. Significant coherence between pest abun-
dance and climate occurred more often at long timescales (i.e.
period lengths >4 years), suggesting that long-timescale syn-
chrony may be easier to explain in terms of climate drivers
than short-timescale synchrony, but the same pattern has not
necessarily been observed in other systems (Anderson et al.,
2019; Sheppard et al., 2019). Although spring and summer
weather influenced dynamics of many pests, the variety of phase

differences and timescale-specific relationships exemplify how
species-specific ecology and physiology can underpin particular
responses to climate variability and change (Haynes et al., 2014;
Walter et al., 2018).

Although spatial synchrony was the primary focus of this
study, we observed a number of multi-decadal temporal trends
that are notable given changes in agricultural practices and tech-
nology over the study period, and the status of several studied
species as economically significant pests. Species including corn
earworm, European corn borer, forage looper, green clover-
worm, hornworm, variegated cutworm, and yellow-striped
armyworm exhibited qualitative changes in the direction or rate
of change in long-term abundance trends during the middle por-
tion of our time series. Major changes in agricultural technology
occurred concurrently, including the introduction of Bf corn and
glyphosate-resistant soybeans in the mid-1990s (Padgette et al.,
1995; Fernandez-Cornejo and Wechsler 2012). Consistent with
previous reports for the region, corn earworm and European
corn borer showed population declines attributable to Bt corn
(Dively et al., 2018). Not previously reported, populations of
forage looper also declined. Forage looper is not a major pest of
corn, but has been observed in substantial abundance on fresh
corn silks (G.P. Dively, unpublished). Alternatively, enhanced
weed control associated with glyphosate-resistant crops may
have reduced forage for this and other species.

‘We also found declines in true armyworm and black cutworm,
notable because these are significant pests of corn and other
commodities. These declines began well before the introduction
of Bt corn hybrids, but Bt toxins can limit populations of both
species (Schaafsma et al., 2007; Kullik et al., 2011; United
States Environmental Protection Agency 2013). Declines in
these species are more likely driven by significant improvements
in controlling weeds that attract ovipositing moths, a trend
towards earlier destruction of winter cover crops, and the
widespread and increasing use of neonicotinoid-treated corn
seed (Douglas and Tooker 2015).

Understanding the responses of pest populations to envi-
ronmental variation is fundamental to the prediction and
management of pest outbreaks. In particular, documenting rela-
tionships between weather and pest abundances is an important
step towards projecting changes in pest impacts accompanying
climate change. We also found that region-wide variation in
the areas planted in major crops drove spatially synchronous
abundance fluctuations in more than half of studied species. The
finding that spatially synchronous crop composition variation
can lead to synchrony in agricultural pest population dynamics
appears to be novel, and suggests that increasing the asynchrony
of changes in crop composition could reduce the regional sever-
ity of pest outbreaks. Although locally high populations may
still cause yield loss, it might be less likely that pests reach
epidemic population densities across the whole region. If
our supposition holds, increasing asynchrony would reduce
region-wide yield losses during pest outbreaks and increase
the stability of regional yields. While the weather is not, to a
meaningful degree, under the control of farmers or government
agencies whose activities influence agricultural practices, there
is some potential to control which crops are planted where and
in what quantity. While there are many considerations regarding
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whether to pursue such a strategy, future research can address
how to optimise the scale and spatial configuration of different
crop types, and quantify the expected benefits of reducing
spatial synchrony of agricultural pest populations.
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