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Abstract

All branches of ecology study relationships among and between environmental and
biological variables. However, standard approaches to studying such relationships,
based on correlation and regression, provide only some of the complex information
contained in the relationships. Other statistical approaches exist that provide a com-
plete description of relationships between variables, based on the concept of the
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copula; they are applied in finance, neuroscience and elsewhere, but rarely in ecology.
We explore the concepts that underpin copulas and the potential for those concepts to
improve our understanding of ecology. We find that informative copula structure in
dependencies between variables is common across all the environmental, species-trait,
phenological, population, community, and ecosystem functioning datasets we consid-
ered. Many datasets exhibited asymmetric tail associations, whereby two variables
were more strongly related in their left compared to right tails, or vice versa. We describe
mechanisms by which observed copula structure and tail associations can arise in
ecological data, including a Moran-like effect whereby dependence structures are
inherited from environmental variables; and asymmetric or nonlinear influences of
environments on ecological variables, such as under Liebig's law of the minimum.
We also describe consequences of copula structure for ecological phenomena, includ-
ing impacts on extinction risk, Taylor's law, and the temporal stability of ecosystem
services. By documenting the importance of a complete description of dependence
between variables, advancing conceptual frameworks, and demonstrating a powerful
approach, we encourage widespread use of copulas in ecology, which we believe
can benefit the discipline.

1. Introduction

All branches of ecology study relationships among biological vari-
ables and relationships between environmental and biological variables.
However, commonly used correlation and regression approaches to study-
ing such relationships are limited, and provide only a partial description of
the relationship. For instance, datasets showing different relationships may
have the same correlation coefficient (Fig. 1A and B). The variables of
Fig. 1A (respectively, Fig. 1B) are principally related in the left (respectively,
right) portions of their distributions, an asymmetric pattern of association
that can have ecological significance, as discussed below, but that is not
captured by correlation. Although correlation is only one way to study rela-
tionships between variables, other common metrics also provide only partial
information.

Well-developed approaches do exist, however, and are applied widely
in other fields, that provide a description of the association between two
or more variables that is mathematically provably complete (Joe, 2014;
Mai and Scherer, 2017; Nelsen, 2006). The approaches are based on the
concept of the copula. Copula approaches separate information in a bivariate
random variable into two parts: the information in the marginal distributions
(which says nothing about the association between the variables), and the
remaining information (which is solely about the association). We here
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Fig. 1 (A)—(D) Bivariate datasets showing diverse relationships between variables. Some
of these datasets nevertheless have the same Pearson (P) or Spearman (S) correlation
coefficients. (C) and (D) show normalized ranks of (A) and (B), respectively. (E) and
(F) Reflections of (C) and (D), respectively, about a vertical axis. Subscripts h and v in
the axis labels stand for “horizontal” and “vertical”.

introduce some simple concepts, based on ranks, that relate to copulas and
give a conceptual flavour of copula ideas to be introduced formally in the
“Background” section below (Section 2). Given a sample (x;,y), i=1, 2,
..., n(e.g., Fig. 1A and B), information about the structure of the association
between x and y can be separated from information contained in the mar-
ginal distributions by considering the plot of u; vs v;, where u; is the rank of
x; in the set of x; (j=1,2,...,n), divided by n+1; and v; is defined in the
same way but using the y;. The rank of the smallest element in a set is 1.
The u; and v; are called normalized ranks of the x; and y;; they relate to the
empirical cumulative distribution functions of the x; and y;, respectively.
We henceforth abbreviate “cumulative distribution function” as “cdf”.
See, for instance, Fig. 1C and D, which show the normalized ranks of
A-B. Ranking makes the marginal distributions of the component datasets
uniform, isolating the dependence structure. Dependence structure and
marginals can then be studied separately. Normalized rank plots such as
Fig. 1C and D relate to copulas in a way to be described (Section 2).
Note that Pearson correlation, even though it is the most commonly used
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measure of association, is modified by monotonic transformation of the
component variables (Appendix S1 and Fig. S1 in Supplementary material
in the online version at https://doi.org/10.1016/bs.aecr.2020.01.003), and
therefore reflects not only dependence information, but also information on
the marginals (Genest and Favre, 2007). Spearman and Kendall correlations,
being rank-based, are not influenced by monotonic transformations of the
variables. They provide information solely on the dependence between
those variables.

A main benefit of a copula approach is that it can detect associations in
the tails of distributions, and asymmetries of such associations. Tail associa-
tion (introduced formally in Section 2) is association between extreme
values of variables. If smaller values of two positively associated variables
are more strongly associated than are larger values, the variables are said
to have stronger lower- or left-tail association than right- or upper-tail asso-
ciation (Fig. 1C); and vice versa if larger values are more strongly associated
(Fig. 1D). Datasets of the same Spearman or Kendall correlation can have a
range of tail associations (Fig. S2 in Supplementary material in the online
version at https:/doi.org/10.1016/bs.aecr.2020.01.003), which can be
quantified (see sections on Background and methods for Q1 below,
Sections 2 and 4). Although copulas can be used to model the entire com-
plex dependence structure of data, we have found tail associations to be
a useful component of that structure, so tail association is a main focus
of this paper. We give four examples, below, which illustrate some of the
ecological meaning of tail associations.

The goal of this paper is to explore the potential for applications of cop-
ulas in ecology and to estimate to what extent ecological understanding may
benefit from using copulas. We provide an introduction to copula concepts
in Section 2. Readers can find additional abbreviated (Anderson et al.,
2018; Genest and Favre, 2007) and comprehensive (Joe, 2014; Mai and
Scherer, 2017; Nelsen, 2006) introductions elsewhere. Copulas have already
been used eftectively in a few studies to illuminate ecological phenomena
(Anderson et al., 2018; de Valpine et al., 2014; Popovic et al., 2019), but
such usage is still rare. Whereas Anderson et al. (2018) provide a specific
method, based on copulas, for important problems of the analysis of multi-
variate population count data, we instead advocate more broadly for the
application of copulas across ecology. Our results suggest that environmen-
tal, ecological and evolutionary processes may commonly generate complex
dependence structures, including asymmetric tail associations, and that
greater use of copulas can illuminate underlying processes. We believe
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copula approaches are among the tools all ecologists should be considering
for analysis of their data in the 21st century.

One way we may expect, a priori, a study of tail associations and copula
dependence structures to better reflect ecological relationships relates to
Liebig’s law of the minimum. Liebig’s law is the idea that growth is con-
trolled not by total resources but by the resource which is scarcest relative
to organism needs. If, for instance, the growth of a plant depends on soil
nitrogen, N, and other factors, a plot of growth rates vs soil N may look
more like Fig. 1A or C than like Fig. 1B or D, i.e., the two variables
may show left-tail association: N controls plant growth, producing a clear
relationship, only when it is limiting. This aspect of the association would
be visible in a rank-based plot, but may not be revealed by correlation.

A second reason why we may expect detailed understanding of depen-
dence structures to benefit ecological research is that prior work demon-
strated, using copulas, complex structure in the spatial dependence of
environmental variables (Goswami et al., 2018; Li et al., 2013; Serinaldi,
2008; She and Xia, 2018). An environmental variable measured through
time in two locations may show strong tail associations between the loca-
tions if intense meteorological events are also widespread, as seems fre-
quently to be the case: extreme values are associated with intense events,
so happen in both places at the same time, whereas moderate values of
the environmental variable may be associated with local phenomena, which
differ between the locations. Spatial dependence in an environmental var-
iable tends to beget spatial dependence in fluctuations of populations or
other ecosystem variables (this is called spatial synchrony) influenced by the
environmental variable. This is called the Moran effect. If asymmetric tail
associations, or other complex dependence structure, is transmitted from
environmental to ecological variables, then we would expect complex
dependence structure and tail associations to be a common feature of the
spatial synchrony of population, community, biogeochemical and other
environmentally influenced ecological variables. Synchrony attracts major
interest in ecology (Liebhold et al., 2004; Sheppard et al., 2016; Walter
et al., 2017).

A third reason why we may expect an understanding of complex depen-
dence structures and tail associations to benefit ecology is that such an
approach may help illuminate causal mechanisms between variables. If
two species, Spl and Sp2, are strong competitors, abundances of the two
species across quadrats should be negatively related, as in Fig. 1E and F.
If Sp1 is plotted on the horizontal axis and Sp2 on the vertical, then
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Fig. 1E may suggest Sp1 is the dominant competitor: when Sp1 is abundant,
Sp2 is necessarily rare because it is suppressed; whereas when Sp1 is rare, Sp2
may be abundant, or may also be relatively rare due to limiting factors
other than Spl. Alternatively, Fig. 1F may suggest Sp2 is the dominant
competitor. Other causal hypotheses may produce similar dependence
structure, and it is usually impossible to obtain complete information on
causal pathways from analyses which are fundamentally based on associa-
tions. However, examination of tail associations may be combined with bio-
logical reasoning to rule out some causal hypotheses which could not
previously be eliminated. Popovic et al. (2019) used copulas to illuminate
causal relationships between species.

A fourth reason why we may expect an understanding of tail associations
and complex dependence structures to be useful for ecology has to do with
spatially aggregated or averaged quantities. Many ecological variables of
applied importance depend on the spatial average or sum of local quantities.
For instance, regional methane and CO, fluxes are the sum of local fluxes;
and the total economic value of a fishery is the sum of local catches. We will
explore how tail associations between fluctuations of local quantities can
influence fluctuations of the spatial mean or sum, and how this may influ-
ence higher organizational levels in ecology and human concerns. To illus-
trate this idea we cite Li et al. (2013), who demonstrated that the overall
reliability of wind-generated electricity depends sensitively on details of
the dependence between wind speeds at multiple generator sites. Spatially
aggregated ecological variables may be subject to a similar effect. For
instance, if populations of a pest species in diftferent locations are all positively
associated and are also more strongly related to each other in their right
tails, then local outbreaks will tend to occur together, creating regional
epidemics. Stronger left-tail associations in a pest species, even if overall
correlation were the same, would have more benign effects.

We approached our overall goal of exploring the potential of copula
approaches for ecology by addressing the following specific questions.
(Q1) Do datasets in ecology have dependence structure distinct from that
of'a multivariate Gaussian/normal distribution (here called non-normal cop-
ula structure)? Do positively associated ecological variables show tail associ-
ations distinct from those of a normal distribution, and in particular do they
show asymmetric tail associations? Normal copula structure is assumed by
standard approaches that use multivariate normal distributions or distribu-
tions obtained by transforming the marginals of a normal distribution. So
Q1 asks whether ecological data contain dependency information distinct
from a standard or default case. (Q2) If the answer to Q1 is “yes”, then
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what are some possible causes/mechanisms of non-normal copula structure
and asymmetric tail associations in ecology? And (Q3), what are the conse-
quences of non-normal copula structure and asymmetric tail associations for
ecological understanding and applications? After Section 2, “Background on
copulas”, we address Q1 (Sections 3—5 of the paper) by analysing several
datasets, including environmental, species-trait, phenological, population,
community, and ecosystem functioning data, selected to span multiple
sub-fields and organizational levels of ecology. We address Q2 (Sections
6 and 7) using simple models. We address Q3 (Sections 8 and 9) using both
data and models. Section 10 is the Discussion. Multiple analyses are brought
to bear on each question, and these are summarized diagrammatically in
Fig. 2, which can serve as a post hoc guide to the paper. Copula approaches
have been used to great effect in neuroscience (Onken et al., 2009), bioin-
formatics (Kim et al., 2008), medical research (Emura and Chen, 2016),
direct study of environmental variables (Goswami et al., 2018; Li et al.,
2013; Serinaldi, 2008; She and Xia, 2018), and finance (Li, 2000), and have
also been used eftectively, but rarely so far, in ecology (Anderson et al., 2018;
de Valpine etal., 2014; Popovic et al., 2019). We argue that benefits of wider
use of copula descriptions of dependence in ecology will be substantial.
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2. Background on copulas

We give a briefintroduction to copulas, focusing, for simplicity, on bivar-
iate copulas and on concepts needed for the rest of the paper. We assume
familiarity with the basic language of probability distributions and random
variables. See Nelsen (2006), Genest and Favre (2007), Joe (2014), and
Mai and Scherer (2017) for general background on copulas, and see also
Anderson et al. (2018), part of which is a short introduction to copulas for
ecologists. A bivariate copula can be defined as a bivariate cdf with both mar-
gins uniform on (0, 1) (Joe (2014), p. 7). This will be the cdf of a bivariate
random variable with uniform marginals, and the terminology copula is some-
times also applied to this random vector. A foundational theorem of Sklar
(1959) (see also Mai and Scherer (2017), p. 16) says that if F is the cdf of a
random vector (X, Y), with margins Fx and Fy, then there exists a copula
C such that for all (x,y) in the Euclidean plane, F(x,y)= C(Fx{(x), Fy{(y)).
The theorem also says C is unique if Fx and Fy are continuous. Thus C
couples the bivariate cdf, F, with the cdfs of the marginals. Finally, Sklar’s
theorem says that if D is any bivariate copula and G4 and Gg are univariate
cdfs, then D(G4(x), Gg(y)) 1s a valid cdf of some bivariate random variable.
The applications of this study fall within the case in which univariate
marginal distributions have continuous, strictly monotonic cdfs, and this
case is simpler. So we henceforth make such an assumption. Table S1 in
Supplementary material in the online version at https://doi.org/10.1016/
bs.aecr.2020.01.003 provides a summary of notation.

Sklar’s theorem implies that any random vector can be constructed from
a unique copula and marginal cdfs, and, furthermore, any copula and any
univariate cdfs give rise to a random vector; so Sklar’s theorem provides a
correspondence between random vectors and pairs consisting of a copula
and two univariate cdfs, thereby making it possible to study a random
vector by studying these two constituents. Marginals contain no informa-
tion about the dependence structure of a random vector, so the copula
contains all such information—it is a complete description of the depen-
dence between variables. The univariate cdfs associated with a random
vector (X, Y) are its margins, Fx and Fy, and the associated copula is the
copula, C, guaranteed by Sklar’s theorem (and guaranteed unique,
thanks to the assumptions of continuity and monotonicity made above).
In fact, and making Sklar’s correspondence more concrete, we show
in Appendix S2 in Supplementary material in the online version at
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https://doi.org/10.1016/bs.aecr.2020.01.003 that C is the bivariate distri-
bution function of the random variable (Fx(X), Fy(Y)). Conversely, given
a copula D and univariate cdfs G4 and Gp, Sklar’s theorem guarantees
that D(G4(x), Gg(y)) is a cdf, so the random variable with this cdf is
the random variable corresponding to D, G4 and Gg under Sklar’s
correspondence. Again making Sklar’s correspondence concrete, we
show in Appendix S2 in Supplementary material in the online version
at https://doi.org/10.1016/bs.aecr.2020.01.003 that this random variable
is (G1'(U), Gg'(V)),where G;" and Gg' are the inverses of G4 and Gy
and (U, V) is the random variable with cdf D (which has uniform mar-
ginals). If' we conflate a copula with the random vector of which the copula
is the cdf, then Sklar’s correspondence is between random variables, (U, 1),
with uniform marginals and random variables, (X,Y), with arbitrary
continuous, strictly monotonic marginals. The correspondence is simply
via the application of the univariate cdfs, or their inverses: U= Fx(X),
V=FAY), X=Fx'(U), Y=F/'(").

Thus Sklar’s theorem makes it possible to construct bivariate distribu-
tions in two separate steps: by specifying the marginal distributions and
by specifying the dependence structure. Construction of several bivariate
distributions is carried out in this way in Fig. 3. The contrast between
Fig. 3C and D illustrates in particular how a bivariate distribution can be
changed, while retaining the same marginals, by changing the copula.
Fig. 3C is a bivariate normal distribution, but Fig. 3D clearly is not, although
its marginals are the same. Fig. 3D shows stronger association of the two var-
iables in the left than in the right tails. Sklar’s theorem also makes it possible
to study and model dependence separately from marginal distributions. For
instance, in a pedagogical example, Anderson et al. (2018) modelled the
dependence between abundance data for two fish species, red moki and
black angelfish, by first modelling the marginal distributions and then
modelling the dependence using Gaussian copulas (their Section 2). See
the Discussion for a few words on multivariate copulas, which can be devel-
oped in the same way as above (Anderson et al., 2018; Joe, 2014; Mai and
Scherer, 2017; Nelsen, 2006).

We introduce some standard copula families, as examples, and also
because we will fit these families to data. The bivariate normal copula
family, which consists of copulas of bivariate normal distributions, is a
one-parameter family. The parameter, p, corresponds to the correlation
of the related bivariate normal distribution, and controls the degree of
association between the variables. A normal copula with p=0.7 was already
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Fig. 3 Normal (A) and Clayton (B) copulas were combined with standard normal mar-
ginals (C, D) and gamma marginals (E, F) via Sklar's theorem to produce bivariate dis-
tributions. Note that a normal copula is distinct from a normal marginal distribution:
a normal copula is the copula of a bivariate normal distribution. See Section 2 for more
information on normal, Clayton, and other copulas. Each copula was used with both sets
of marginals and each set of marginals was used with both copulas, to demonstrate
that: both copula and marginals contribute fundamentally to the resulting distribution,
the copula contributing the information on the dependence between the variables; and
that one can select the copula and marginals independently. Bivariate distributions,
including the copulas, are depicted via their log-scale probability density functions
(pdfs), and marginals are depicted via their linear-scale pdfs. Grey dots are 50 random
samples from each distribution. The parameter 0.7 was used for the normal copula, the
parameter 2 for the Clayton copula, and shape and scale parameters 5 and 1 for the
gamma marginals. Variables u and v were used for copulas and x and y for distributions
created by pairing a copula with (non-uniform) marginals.

introduced (Fig. 3A). The formula for the copula is q)z,p(q)f](u),@f](v)),
where @' is the inverse of the cdf of a (univariate) standard normal and
®, , is the cdf of a bivariate normal distribution with mean (0, 0) and covari-
ance matrix having 1s on the diagonal and p in the off diagonal positions.
Formulas for all the copula families we use were provided by Brechmann
and Schepsmeier (2013). However, formulas for copulas are often not as
directly informative about copula properties as probability density function
(pdf) pictures; Fig. 4 has example pdfs corresponding to bivariate normal
copulas for various values of p. Note that the pdfs are symmetric around
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Fig. 4 Log-transformed pdfs (A—E) and samples (F—J) from example normal copulas. K is
Kendall correlation; p is the value of the parameter for the normal family (it is a one-
parameter family); and LT and UT are the measures of lower- and upper-tail depen-
dence, respectively (for the definitions of these, see the section on Background on
copulas, Section 2). The parameter range for the family is pc[—1,1], and lower- and
upper-tail dependence are always 0.

the diagonal line v= —u+1 (Fig. 4), so normal copulas have symmetric
associations between the two variables in the left and right tails. The
Clayton copula family, of which we already pictured an example (Fig. 3B),
is another one-parameter family. In contrast to normal copulas, Clayton
copulas have stronger left- than right-tail association. The formula is
[max(u ?+v ?—1,0)]"?, for parameter p; though this again provides
less direct intuition than do example pdfs (Fig. 5). Higher values of
the parameter, p produce copulas with higher Kendall or Spearman corre-
lation. The survival Clayton family is the symmetric opposite of the
Clayton family, showing stronger right- than left-tail association (Fig. S3
in Supplementary material in the online version at https://doi.org/10.
1016/bs.aecr.2020.01.003). The BB1 copula family is a two-parameter
family, thereby providing more flexibility: for some parameters BB1
copulas have stronger left- than right-tail association, and for others the
reverse (Fig. 6). See Nelsen (2006), Joe (2014) and Brechmann and
Schepsmeier (2013) for further information on these and other families.
Having introduced tail association conceptually and referred to it in
examples, we now need a precise definition of a measure of tail association.
We use the term tail association to describe the general idea of the strength of
association between two variables in the tails of their distributions. One way
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Fig.5 Log-transformed pdfs (A—E) and samples (F—J) from example Clayton copulas. K'is
Kendall correlation; p is the value of the parameter for the Clayton family (it is a one-
parameter family); and LT and UT are the measures of lower- and upper-tail depen-
dence, respectively (for the definitions of these, see the section on Background on cop-
ulas, Section 2). The parameter range for the family is p € (0, ), lower-tail dependence is
27" and upper-tail dependence is 0.

this is measured is called tail dependence (Joe (2014), Section 2.13; Nelsen
(20006), Section 5.4), defined here. Given a random vector (X, Y) with mar-
gins Fx, Fy and defining U= Fx(X), V'=F(Y), the upper-tail dependence
of X and Y is defined as Ay = Mliﬂr?fP[Y > Fy'(u)|X > F3'(u)] . This

equals linﬁP[U > u|V > u], which in turn equals lir?ip[U >u, Vo> )/
PV > u] = lin]17P[U > u, V> u]/(1 — u), whichshows upper-tail depen-

dence is defined symmetrically in the two variables. All the variables we con-
sider were positively associated when they were significantly associated,
so we think of positively associated variables when conceptualizing the
definitions here. Lower tail dependence is defined analogously, as Ap =
1ir8+P[Y < Fy!'(u)|X < F3'(u)] . Tail dependence is a property of (U, 1),
so depends only on the copula and not on the marginals combined with it.
It can be shown (Nelsen (2006), Section 5.4) that A; =A4,=0 for the normal
copula, A, =27 "7 and ;=0 for a Clayton copula with parameter p >0, and
Ar=0 and A;;=2"""? for a survival Clayton copula with parameter p > 0.
In Section 4 we will introduce ways tail dependence can be applied to data,
by first fitting copulas to the data. We will also introduce nonparametric
measures of tail association.
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Fig. 6 Log-transformed pdfs for example BB1 copulas. K is Kendall correlation; p; and p,
denote the two parameters of the family (it is a two-parameter family); and LT and UT
are our measures of lower- and upper-tail dependence, respectively (for the definitions
of these, see the section on Background on copulas, Section 2). The parameter ranges

for the family are p; € (0,00) and p,€[1,00), lower-tail dependence is 2~ '/(P1P2) and
upper-tail dependence is 2 —2"-.

Plots using normalized ranks were proposed in the Introduction as being
conceptually similar to copulas; we explain the connection. As stated above,
the copula associated with a random variable (X, Y) is the cdf of the random
variable (Fx(X), Fy(Y)). Given a sample (x;y,), i=1, ..., n from (X, Y), let
Fx and Fy be the empirical cdfs associated with the x; and y;, respectively.
These are step functions of x and y, respectively, that start at O for low values

of x and y and jump by 1/n at each of the data points. Therefore Fy (x,-) is the



422 Shyamolina Ghosh et al.

rank of x; in the set {x;:i=1,...,n}, divided by #, and analogously ﬁy(yj) is
the rank of y;in the set {y;:i=1, ...,n}, divided by n. For large n, Fx(x;)and
Fy(y,) approximate the cdfs Fx and Fy, respectively. But Fx(x;) equals the
normalized rank of x; times (n+ 1)/n, and likewise Fy (y;) equals the normal-
ized rank of y; times (n+ 1)/n. So the normalized rank in turn approximates
the empirical cdf'and therefore the cdf. Thus the normalized rank pairs (u;, v;)
fori=1, ..., n can be regarded as approximate samples from the random var-
iable (Fx(X), Fy(Y)), which is the random variable associated with the cop-
ula of (X, Y). The scatterplot of v; vs u; can be used to infer aspects of copula
structure (see Section 4 below).

3. Data

The datasets we used included environmental, species-trait, phenologi-
cal, population, community, and ecosystem functioning data (Table 1),
selected to span multiple fields and levels of organization within ecology.
Copula structure between atmospheric weather variables such as rainfall
or wind speed, as measured in multiple locations through time, has been
examined previously in the meteorological literature (e.g., Li et al., 2013;
Serinaldi, 2008). We therefore examined environmental variables from
the soil instead, using the Rapid Carbon Assessment database (RaCA;
Wills et al., 2014). The database comprises measurements of soil organic car-
bon and total soil nitrogen (megagrams C or N per hectare of soil surface)
from 5907 locations across the coterminous United States (Fig. S4 in
Supplementary material in the online version at https:/doi.org/10.1016/
bs.aecr.2020.01.003 for locations). Species-trait data were average species
basal metabolic rate (BMR,, KJ per hour) and body mass (grams) for 533 spe-
cies of birds (McNab, 2009) and 638 species of mammals (McNab, 2008).
These data have been much studied, but to our knowledge the copula struc-
ture of the association has not been examined. Species-trait data such as
these reflect the coevolution of the two traits. Phenological data were aphid
first-flight dates from 10 locations (Fig. S5 in Supplementary material in the
online version at https://doi.org/10.1016/bs.aecr.2020.01.003) across the
United Kingdom (UK) for 20 aphid species (Table S2 in Supplementary
material in the online version at https://doi.org/10.1016/bs.aecr.2020.01.
003), for the 35 years 1976 to 2010. These time series were computed from
the Rothamsted Insect Survey (RIS) suction-trap dataset (Bell et al., 2015;
Harrington, 2014). The first of our two population-level datasets was also
derived from the RIS suction-trap data, and comprised total counts of aphids
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trapped for the same locations, species, and years. Our second population
dataset comprised average annual plankton abundance estimates for 14 loca-
tions (Fig. S6 in Supplementary material in the online version at https://doi.
org/10.1016/bs.aecr.2020.01.003) in the North Sea and British seas for
22 taxa (Table S3 in Supplementary material in the online version at
https:/doi.org/10.1016/bs.aecr.2020.01.003) for the 56 years 1958-2013.
The locations are 2° by 2° grid cells. These data were computed from the
Continuous Plankton Recorder survey of the UK Marine Biological
Association. Community-level data, obtained from the Cedar Creek
Ecosystem Science Reserve, were plant aboveground biomass (Tilman,
2018a) and Shannon’s diversity index (computed from plant species percent
cover data (Tilman, 2018b)) for 168 plots (Tilman, 2018c), each 9m by 9m,
as sampled in the years 19962000 and 2007, each year analysed separately
(Tilman et al., 2001, 2006). Finally, ecosystem functioning data were meth-
ane (CHy) fluxes between the soil or water surface and the troposphere,
measured at 13 locations at daily to weekly intervals from September
2015 to September 2016 at the Great Miami Wetland mitigation bank in
Trotwood, Ohio (Holland et al., 1999; Jarecke et al., 2016; Smyth et al.,
2019). Each included location was measured on at least 50 dates. See
Appendix S3 in Supplementary material in the online version at https://
doi.org/10.1016/bs.aecr.2020.01.003 for additional data details.

Our environmental, species-trait, and community datasets happen to be
“bivariate” datasets in the sense that they comprise two quantities measured
at different locations or for different species (Table 1). Our phenology, pop-
ulation, and ecosystem functioning datasets are “multivariate” in that they
comprise, for each taxon, measurements through time at multiple locations;
copula structure was studied for each location pair.

4. Concepts and methods for Q1

Recall that Q1 has three parts: Do datasets in ecology have non-
normal copula structure? Do positively associated ecological variables show
tail associations distinct from those of a normal distribution? And in partic-
ular do they show asymmetric tail associations? We addressed Q1 first via a
model selection procedure in which several families of copulas were fitted to
our ecological datasets and fits were compared via the Akaike and Bayesian
Information Criteria (AIC and BIC). One of the fitted copulas was the nor-
mal copula, making possible comparisons of the degree to which the normal
vs other copula families were good descriptions of data.
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Table 1 Summary table for the data we used.

No. of
measurements
Data we used References
Soil C and N Environmental 5907 locations US Rapid Carbon

Assessment database
(RaCA),
Wills et al. (2014)

Bird body masses and

BMR

533 birds

McNab (2009)

Mammal body masses

and BMR

638 mammals

McNab (2008)

Green spruce and
other aphid species

abundances

Population

10 locations
with at least
30-yr.
timeseries for
each of 20 sp.

Rothamsted
Insect Survey

Leaf-curling

plum and other
aphid first flight

dates

Phenological

10 locations
with at least
30-yr.
timeseries for
each of 20 sp.

Rothamsted
Insect Survey

Ceratium furca and
other plankton taxa

abundances

Population

14 locations
with at least
45-yr.
timeseries for

each of 22 taxa

Continuous
Plankton Recorder
Survey

Plant diversity and
aboveground biomass

Community

168 plots

Cedar Creek
Ecosystem Science
Reserve, biodiversity
experiment e120

Methane-flux

functioning

13 locations
with at least

50 dates of data

Great Miami
Wetland
Mitigation

Bank, Smyth et al.
(2019)

Bold entries are the multivariate data, the rest are bivariate datasets (see Section 3). Basal metabolic

rate=BMR.



Copulas and their potential for ecology 425

For bivariate datasets (x;, y;) fori=1, ..., n, model selection involved sev-
eral steps. First, we produced normalized ranks u; and »; as in the
Introduction. Second, we tested the independence of the u; and v; using
the statistic \/(9n(n — 1))/(4n + 10)|z|, where 7 is Kendall’s tau for the
data. Genest and Favre (2007) argue that this statistic is approximately stan-

dard normally distributed. We used the implementation of this test in
BiCoplIndTest in the VineCopula package in R. We tested for indepen-
dence because our model selection algorithms were ineftective if data could
not be distinguished from independent data, since many copula families
include the independent copula. If independence could be rejected
(0.05 level), model selection proceeded. Third, we fit 16 bivariate copula
families (see below) to the normalized ranks via maximum likelihood.
The approach of fitting copula families to normalized ranks was rec-
ommended by Genest et al. (1995) and Shih and Louis (1995). Their esti-
mator of copula parameters, which we use, is consistent, asymptotically
normal, and fully efficient at independence (Genest et al., 1995). Genest
and Favre (2007) recommend carrying out inferences of dependence struc-
tures (which was our goal here) using normalized ranks. We used the fitting
implementation given in BiCopEst in VineCopula. Fourth, we obtained
AIC and BIC values and accompanying model weights AIC,, and BIC,,
(Burnham and Anderson, 2003) for each fitted copula. BiCopEst also
provided lower- and upper-tail dependence of the best-fitting member
of each family. AIC,, values were used to get model-averaged lower-
and upper-tail dependence values using standard model averaging formulas
(Burnham and Anderson, 2003); likewise for BIC.

Thus for each bivariate dataset, the end products of our procedure were
threefold, corresponding to the three parts of Q1 listed in the Introduction:
(A) the AIC, BIC, AIC,, and BIC,, values for each of our 16 copula families
(see below for list), including the normal family, providing an inference as to
whether the normal copula or an alternative was better supported by data;
(B) lower- and upper-tail dependence measures for each fitted copula and
model-averaged tail dependence measures, providing information on
whether, and to what extent, tail dependence differed from the tail depen-
dence of a normal copula (i.e., 0); and (C) the difference of lower- and
upper-tail dependence measures for each fitted copula and model averages
of those quantities, providing information on whether tail dependence was
asymmetric.
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Model selection methods give the relative support of several models, but
do not indicate whether any of the models are an objectively good fit. To test
that, we tested the goodness of fit of our AIC-best copula family using a boo-
tstrapping procedure of Wang and Wells (2000) and Genest et al. (2006),
implemented as BiCopGofTest in VineCopula. The procedure performed
one test based on a Cramer-von Mises statistic and another based on a
Kolmogorov-Smirnov statistic. To keep computation times reasonable, a
run using 100 bootstraps was performed. If the p-value from either test
was <0.2, tests were re-run with 1000 bootstraps.

We fit 16 bivariate copula families, exhibiting a variety of lower- and
upper-tail dependence characteristics, with bivariate datasets. The purpose
of using a large collection of families was to include a variety of alternative
dependence structures to have a robust model selection and multimodel
inference procedure. For that purpose, it is not important for the reader
to understand the details of these copulas, and, additionally, these copulas
have been described in detail elsewhere (Brechmann and Schepsmeier,
2013; Joe, 1997). So we only briefly identify each family, say a few words
about its tail dependence, and provide pictorial descriptions (Figs. 4—6; S3
and S7-S18 in Supplementary material in the online version at https://
dot.org/10.1016/bs.aecr.2020.01.003). The pictorial descriptions can
also be used to aid quick comparisons of copula families when alternative
families are being considered for future applications. We used several fam-
ilies that can exhibit positive lower-tail dependence (of strength depending
on parameters) and zero upper-tail dependence: the Clayton, survival
Gumbel, survival Joe and survival BB6 families. We used several families that
can exhibit positive upper-tail dependence (strength depends on parameters)
and zero lower-tail dependence: the survival Clayton, Gumbel, Joe and BB6
families. We used families that show zero upper- and lower-tail dependence:
the normal and Frank families. These families have pdfs symmetric about the
line v= —u+1. We also used several families that can show both upper- and
lower-tail dependence, in relative amounts depending on parameter values:
the BB1, survival BB1, BB7 and survival BB7 families. We also used the BB8
family, which shows zero lower-tail dependence, and zero upper-tail depen-
dence except for a boundary case for the parameters. And we used the
survival BB8 copula, which shows zero upper-tail dependence, and zero
lower-tail dependence except for a boundary case. “Survival” families are
rotations of the copula with the similar name by 180 degrees. See Joe
(1997) and Brechmann and Schepsmeier (2013) for details on all families.
We used the implementations provided in the VineCopula package for
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the R programming language. See Figs. 4—6; S3 and S7-S18 in
Supplementary material in the online version at https://doi.org/10.1016/
bs.aecr.2020.01.003 for visual depictions of the pdfs of these copulas and
how pdfs and tail dependence are influenced by the parameters. See
Table 2 for a summary.

For multivariate datasets, we performed the bivariate analysis for all
possible pairwise combinations of distinct locations. We carried out
pairwise bivariate analyses instead of trying to fit a multivariate copula,
for simplicity and because that approach was sufficient to answer our
research questions; but see the Discussion for a few words on multivariate
copulas. We present the number of pairs for which a non-normal copula
was the AIC-best copula, and we characterize AIC differences between the
normal and AIC-best copulas across location pairs. We also computed the
model-averaged lower- and upper-tail statistics, and differences between
these, for each pair of locations, and we characterize the distributions of
these values across location pairs.

In addition to our model selection approach, we also used a nonparamet-
ric approach, to provide greater confidence in our answers to Q1. We used
three statistics which quantify the extent to which the normalized ranks u;
and v; are related in any part of their distributions. We here describe the
statistics, with additional details in Appendix S4 in Supplementary material
in the online version at https://doi.org/10.1016/bs.aecr.2020.01.003. The
statistics are defined with positively associated variables in mind. All our
variables were positively associated when they were significantly asso-
ciated. Given two bounds 0 <[, <u, <1, define the lines u+v=2[, and
u+v=2u,,which intersect the unit square (Fig. 7). Our statistics quantify
the association between u; and v; in the region bounded by these lines.
Using [,=0 and u,<0.5 gives information about association in the left
parts of the distributions of w and v, and using u, =1 and [, > 0.5 gives infor-
mation about association in the right parts. The first statistic, a partial
Spearman correlation,

Z(ui — mean(u))(v; — mean(v))

(n— 1)4/var(u)var(v)

cory, ,, (1, v) =

, M

is the portion of the Spearman correlation of #; and v; that is attributable to
the points between the bounds. Here sample means and variances are com-
puted using all n data points, but the sum is over only the indices i for
which u;+v;>2l, and u;+v;<2u,. Larger values of the partial Spearman
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Table 2 Summary table for the 16 copula families we used (see Section 2).

Copula No. of

family parameters Tails with stronger association Reference

Normal 1 Neither (symmetric) Fig. 4

Clayton 1 Lower Fig. 5

Survival 1 Upper Fig. S3 in

Clayton Supplementary material

Gumbel 1 Upper Fig. S7 in
Supplementary material

Survival 1 Lower Fig. S8 in

Gumbel Supplementary material

Joe 1 Upper Fig. S9 in
Supplementary material

Survival 1 Lower Fig. S10 in

Joe Supplementary material

Frank 1 Neither (symmetric) Fig. S11 in
Supplementary material

BB1 2 Either (depending on params) Fig. 6

Survival 2 Either (depending on params) Fig. S12 in

BB1 Supplementary material

BB6 2 Upper Fig. $13 in
Supplementary material

Survival 2 Lower Fig. S14 in

BB6 Supplementary material

BB7 2 Either (depending on params) Fig. S15 in
Supplementary material

Survival 2 Either (depending on params) Fig. S16 in

BB7 Supplementary material

BB8 2 Upper or symmetric Fig. S17 in

(depending on params) Supplementary material
Survival 2 Lower or symmetric Fig. S18 in
BB8 (depending on params) Supplementary material

For the parameters we consider, all copula families model positive association between variables.
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Fig. 7 The partial Spearman correlation, cor, ,, (u,v), within a band can be computed
for any band (Section 4) to describe how the strength of association between u
and v varies from one part of the two distributions to another, as can the statistics
P, (u,v) and Dilub(u, v). Diagonal lines show two bands, the data in the left/lower band
showing stronger association than those in the right/upper band.

correlation indicate stronger positive association. The sum of corg o 5(u, )
and corg 5 1 (1, ) (or some other choice of cor;,,k,,,,%(u, v) for bounds I, uy, that
partition the interval (0, 1)) equals the standard Spearman correlation as long
as no points fall exactly on the bounds. We also defined a statistic Pj,,
(Appendix S4 in Supplementary material in the online version at https://
doi.org/10.1016/bs.aecr.2020.01.003), which has a similar interpretation
Our third statistic, D,Zb,
between points satisfying u;+ v;> 21, and u;+v;<2u;, and the line v=u.

to cory, is the average squared distance

Uy uy»

Unlike cory,, and P, ,, for which large values indicate strong association
between the bounds, small values of Dlzm,,,h indicate strong association.
These statistics are not estimators of the tail dependence quantities defined
previously, but rather are conceptually similar measures of associations in the
tail portions of the distributions when appropriate values of [, and u;, are
selected.

For large datasets (large n), we used [, and u; close together without
incurring undue sampling variation in our statistics, and we considered
multiple bands (/, ;) to understand how association varies across different
parts of the distributions. But for datasets with smaller n we considered
only [,=0, u,=0.5 and [,=0.5, u,=1, abbreviating cor;=corg s (I is
for “lower”) and cor,=corys; (4 is for “upper”). Likewise Pj=P s,
P,=DPys1, D,Z:Dé,o_s, Di:DaS,l. To test for asymmetry of association
in upper and lower portions of distributions, we used differences cor,— cor,,
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P,— P, and D2 — D7 for smaller datasets (note the opposite order in the last
of these); and cor,, —cory_,, 1, Py, — Pi_,, 1 and D%,,,,DJ —D(Z),,,,b with u,
close to O for large datasets. We tested our statistics in Appendix S5
(see also Figs. S19 and S20) in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003.

For bivariate datasets, we compared values of cor; ., P .. Di-m,’
corq,,,, — €ory_y, 1, Pou,— P11 and D12,,,,b,1 —D(Z),,,,b to distributions of
the same statistics computed on surrogate datasets that were produced
from the empirical data by randomizing it in a special way to have no tail
dependence (Appendix S6 in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003). The surrogate/
randomized datasets had exactly the same marginal distributions as the
empirical data and had very similar Kendall or Spearman correlation
(the surrogate algorithm had two versions, one for preserving each corre-
lation coefficient), but had normal copula structure. Thus our comparisons
tested the null hypothesis that our statistics took values on the empirical
data no different from what would have been expected if the copula
structure of the data were normal, but the data were otherwise statistically
unchanged. The comparison of one of the statistics cory ., P 4,
Di,,,h, as computed on the empirical data, to the distribution of its values
computed on surrogate datasets provides a test of whether association
between the variables in the part of the distributions specified by I, and
uy, 1s different from what would be expected from a null hypothesis of
normal copula structure. Thus the comparison addresses the first two parts
of Q1 for bivariate datasets. Significant deviations correspond to deviations
from normal copula structure. In particular, deviations using [,=0 and u,
small (say, 0.1) correspond to lower-tail associations different from that
of a normal copula; likewise, using [,=0.9 and u,=1 tests for upper-tail
associations different from a normal copula. The comparison of one of
the statistics cor,,,, —cory_,, 1, Poy,— P1—,,1 and D%—“[,,l —Dg,,,b, as com-
puted on the empirical data, to the distribution of its values on surrogate
datasets provides a test of asymmetry of tail associations. Thus this compar-
ison helps address the third part of Q1.

For multivariate datasets, we calculated Spearman and Kendall correla-
tions and cor,, cor,, P, P,, Di, D2, cor,—cor,, P,—P,, and D?— D; for
all pairs of sampling locations, and we then computed means across the
pairs for each statistic. We used a spatial resampling scheme (Appendix S7
in Supplementary material in the online version at https://doi.org/10.
1016/bs.aecr.2020.01.003) to calculate confidence intervals of these means.
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The scheme is identical to that proposed by Bjornstad and Falck (2001) and
also used by Walter et al. (2017). Code and data for this project are archived
at www.github.com/sghosh89/BIVAN.

5. Results for Q1: Ecological datasets have non-normal
copula structure and asymmetric tail associations

Copula structures were non-normal and showed asymmetric tail asso-
ciations for most, but not all datasets we examined, answering Q1 in the
affirmative. To make results easier to absorb, we present results first for
an example bivariate dataset, then in summary for all bivariate datasets, then
for an example multivariate dataset, then in summary for all multivariate
datasets.

For the soil C and N data (Section 3, Table 1, Fig. 8A), variables
were nonindependent (p=0, to within the precision available from
BiCoplIndTest in the VineCopula package). Nonindependence is also visu-
ally apparent. The Kendall correlation was 0.6. We fitted our 16 copulas to
the normalized ranks (Fig. 8E) and computed AIC and BIC weights and
corresponding lower- and upper-tail statistics for the fitted distributions
(Table 3). BB1 was the minimum-AIC copula, with AIC —6708.25,
whereas the normal copula had much higher AIC, —6333.16, answering
the first part of Q1 for these data: the data have a dependence structure
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Fig. 8 Upper panels show raw data plots for (A) logo(soil N) vs. logo(soil C) data,
(B) log;g(basal metabolic rate (BMR)) vs. log,o(body mass) for birds, (C) the same for
mammals, and (D) above-ground plant biomass vs. Shannon’s index from Cedar
Creek. Bottom panels show the corresponding normalized rank plots. See Section 3
for units used in upper panels.
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Table 3 Model fitting results for soil C and N dataset using 16 copula families: normal
(N), Frank (F), Clayton (C), survival Clayton (SC), Gumbel (G), survival Gumbel (SG), Joe (J),
survival Joe (SJ), BB1, survival BB1 (SBB1), BB6, survival BB6 (SBB6), BB7, survival BB7
(SBB7), BB8, and survival BB8 (SBBS).

Copula AIC AIC,, BIC BIC,, LT uT

BB1 —6708.25 0.82 —6694.88 0.82 0.4344 0.6151
SBB1 —6705.27 0.18 —6691.90 0.18 0.5348 0.6157
SBB7 —6688.98 0.00 —6675.61 0.00 0.6243 0.6839
BB7 —6684.60 0.00 —6671.24 0.00 0.6034 0.6829
G —6504.34 0.00 —6497.65 0.00 0.0000 0.6789
BB6 —6501.94 0.00 —6488.57 0.00 0.0000 0.6790
N —6333.16 0.00 —6326.47 0.00 0.0000 0.0000
SG —6061.93 0.00 —6055.25 0.00 0.6652 0.0000
SBB6 —6059.17 0.00 —6045.80 0.00 0.6653 0.0000
SC —5602.48 0.00 —5595.79 0.00 0.0000 0.7315
F —5599.82 0.00 —5593.14 0.00 0.0000 0.0000
BB8 —5566.65 0.00 —5553.28 0.00 0.0000 0.0000
]J —5522.63 0.00 —5515.95 0.00 0.0000 0.7425
SBBS —5506.94 0.00 —5493.57 0.00 0.0000 0.0000
C —4866.90 0.00 —4860.22 0.00 0.7018 0.0000
SJ —4793.86 0.00 —4787.18 0.00 0.7170 0.0000

Table rows are sorted by AIC. AIC,,, AIC weight; BIC,,, BIC weight; LT, the lower-tail dependence
statistic for the indicated copula family with fitted parameters; UT, the same for upper-tail dependence.

markedly distinct from a normal copula. Recall that AIC differences of
2 or 3 are considered meaningful and differences of 8 or greater are defin-
itive, so that data provide essentially no support for the higher-AIC model
in that case (Burnham and Anderson, 2003). Model-averaged lower- and
upper-tail dependence statistics were 0.453 and 0.615, respectively (AIC
weights were used for averaging). These values are distinct from what a
normal copula would give, namely, 0, helping to answer the second part
of Q1 for these data. The values also differed substantially from each
other, helping answer the third part of Q1. The numbers reflect stronger
upper- than lower-tail dependence, and this is also visible in the extreme
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upper-right and lower-left corners of the copula plot (Fig. 8E). Apparently
C and N are more strongly associated with each other in soils for which
they are both plentiful than in soils for which they are both scarce, and
C and N are more strongly associated in both tails than would be modelled
using a normal copula model or methods that assume such a model.

However, our model selection procedures do not reveal whether tail
dependence parameters are significantly different from 0 and from each
other. Furthermore, we caution that, while our model selection results
do convincingly show non-normal copula structure, model-averaged tail-
dependence statistics may have been biased because even the lowest-AIC
copula (BB1) was a poor fit (P=0 and 0.001 for the Cramer-von Mises
and Kolmogorov-Smirnov goodness-of-fit tests, respectively, to within
the precision available from BiCopGofTest). Our nonparametric results,
detailed next, provide information about significance of tail associations
and asymmetries of tail associations.

The values of cory,,, , P, and D,Zb,,,b for the soil C and N data were com-
pared to distributions of their values on 1000 Kendall- or Spearman-
preserving normal surrogates, separately in two comparisons for each of
the ranges (I, up) =(0,0.1), ..., (0.9,1) (Fig. 9). Results confirmed that tail
associations of data are stronger in both the lower and upper tails than would
be expected under a normal-copula null hypothesis (Fig. 9B—F). The values
of the statistics corg .1 — cOro.9.1, Po,0.1 — Poo,1 and D20.9,1 — D(z),oj for the soil
C and N data were also compared to distributions of their values on
surrogates (Table 4). Results confirmed that upper-tail association was sig-
nificantly stronger than lower-tail association; i.e., C and N values are more
related when high than when low. These results are consistent with the
model selection results, but go beyond them by providing information about
significance. Thus our results provide an affirmative answer to Q1 for the soil
C and N data; this answer is represented in Fig. 2 as a solid outline around
“soil C and N” in the right-most box in the middle row.

Table 5 summarizes Q1 results for the bivariate datasets, with some
details in the Appendices in Supplementary material in the online version
at https://doi.org/10.1016/bs.aecr.2020.01.003. The two variables were
significantly related for all datasets (Table 5, row 1). A non-normal copula
always emerged as the lowest-AIC copula (Table 5, row 2). The normal
copula was a poor fit compared to the lowest-AIC copula (Table 5, rows
3—4), except for Cedar Creek, for which the AIC difference between
these fits was marginal. Thus we answer the first part of Q1 in the affirma-
tive for 3 of 4 of our bivariate datasets. Often, either lower- or upper-tail
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Fig. 9 Nonparametric tests for tail association and other deviations from normal copula
structure, for soil C and N data. As described in the main text, the values of the statistics
coryy, P,u, and D7, for real data (crosses) were compared to distributions of
their values on 1000 Kendall- or Spearman-preserving normal surrogates of the data
(dark and light grey x’s show 0.025 and 0.975 quantiles), separately in two comparisons
for each of the ranges (I, up,) =(0,0.1), ..., (0.9,1). Whenever the cross was outside the
range given by the x’s, text at the top of panels indicates the number of surrogate values
the real-data value was greater than or less than. For instance, a value > N (respectively,
< N) means the value of the statistic on real data was greater than (respectively, less than)
its value on N surrogates. When the statistic was greater than 975 or less than 975 sur-
rogate values, it indicates significance (95% confidence level). When cor or P values
(respectively, D? values) were greater than surrogates, it means association in that part
of the distributions was stronger than (respectively, weaker than) expected from a
normal-copula null hypothesis.

dependence statistics differed substantially from O (Table 5, rows 7-8),
and/or these statistics diftfered from each other (Table 5, row 9), helping
to answer the second and third parts of Q1. Though again the model
selection results do not provide information on significance of these
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Table 4 Soil C and N results for nonparametric tests of whether asymmetry of tail
association was significant, compared to a normal-copula null hypothesis.

Statistic Kendall Spearman
COTpg— COTI7g <695 <696
Prs— Prg <1000 <1000
D?¢— D% <1000 <1000
The values of the listed statistics (corps— coryg=cory | —coryo 1. Prs— Prs=Poo1—Poo1, Dis—

Dig= D%_Ql — Da(u; here FS stands for “first slice” and LS for “last slice”) for real data were compared
to their values for 1000 Kendall- or Spearman-preserving normal surrogates, in separate comparisons.
A table entry <X indicates the value of the given statistic on the data was less than its value on X of
the surrogates, so entries of the form < X for X equal to 975 or above indicate that upper-tail dependence
was significantly stronger than lower-tail dependence. Results were significant only for the P and D?
statistics.

differences, and are subject to the caveat that, for some datasets, even the
lowest-AIC copula was not an objectively good fit (Table 5, rows 5 and 6),
nonparametric results (Table 5, row 10) showed that tail associations devi-
ated significantly from what would be expected from a normal-copula null
model, and were also significantly asymmetric, except for the Cedar
Creek data. See Figs. S21-S23 in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003 for analogues to
Fig. 9 for the bivariate datasets other than the soil C and N data, see
Tables S4-S6 in Supplementary material in the online version at https://
doi.org/10.1016/bs.aecr.2020.01.003 for analogues to Table 3, and see
Table S7 in Supplementary material in the online version at https://doi.
org/10.1016/bs.aecr.2020.01.003 for analogues to Table 4. The first three
datasets had stronger upper- than lower-tail dependence, and the last data-
set had the reverse, though nonsignificantly. Apparently species body
masses and metabolic rates, for both birds and mammals, are more strongly
associated with each other when both these quantities are large than when
they are small. Our generally affirmative (except for Cedar Creek), empir-
ically based answer to Q1 for the bivariate datasets is represented in Fig. 2
as solid outlines around the names of the soil C and N and bird and mam-
mal body mass vs metabolic rate datasets, in the middle row of boxes. We
did the same analyses with Cedar Creek data from other available years,
1996—1999 and 2007. For 1996 and 2007, independence of biomass and
Shannon’s index could not be rejected; for 1997-1999, results were similar
to 2000.

We present green spruce aphid abundance (Section 3; Table 1) results
as an example multivariate analysis. Independence was rejected for each
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Table 5 Summary of Q1 results for bivariate datasets.

Bird Mammal Cedar
Soil masses masses and  Creek
CandN and BMR BMR data
1. p-value, independence test 0 0 0 0
2. Minimum-AIC copula BB1 G G F
3. AIC for best copula —6708.25 —1447.36 —1854.31  —22.68
4. AIC for normal copula —6333.16 —1336.77 —1678.76  —20.42
5. p-value, Cramer-von Mises 0 0.067 0.002 0.39
goodness of fit test
6. p-value, Kolmogorov-Smirnov 0.001 0.279 0 0.67
goodness of fit test
7. Model averaged lower-tail 0.4529 0 0 0.0551
dependence
8. Model averaged upper-tail 0.6152 0.877 0.893 0.0034
dependence
9. Model averaged lower- minus  —0.1623 —0.877 —0.893 0.0517
upper-tail dependence
10. Placement of corpg—corrgin <696 <999 <993 >897

surrogate distribution (see caption)

The p-values (rows 5-6) are for the minimum-AIC copula. Model averaging used for rows 7—9 was based
on AIC weights. Row 10 shows values as in Table 4, upper right table entry. Although the result shown
in row 10 for the soil C and N data is nonsignificant, see Table 4 for significant results using the P and D?
statistics. The first 3 datasets use (,, #;) =(0,0.1) for the first slice (FS) and (0.9, 1) for the last slice (LS),
whereas (0,0.25) and (0.75, 1) were used for Cedar Creek due to fewer data for that system. Results for
Cedar Creek for the year 2000 are shown. See Table 3 for copula family abbreviations.

pair of the 10 sampling locations. Best-fitting (lowest-AIC) copulas were
non-normal for the large majority of location pairs (72 of 90 pairs), and
the AIC of the normal copula minus the minimum AIC, averaged across
location pairs, was 2.732. Whereas 2.732 would be only a marginally mean-
ingful AIC difference for a single location pair, it is more meaningful as an
average across many pairs. Relatedly, and illustrating the concept here, the
chances of getting 72 or more non-normal location pairs if the chances were
equal of getting a normal vs a non-normal result (and taking into account
that the location pair (A, B) will necessarily produce the same result as
the pair (B, A)) is low, 3.287 x 10>, The average AIC difference 2.732
was much less than the AIC difterence between —6708.25 and —6333.16
that was obtained for the soil C and N data at least in part because the soil
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C and N data were much more numerous (Table 1). These results help
answer the first part of Q1: non-normal copula structure appears to be mean-
ingfully common in these data, even if not universal. Goodness of fit tests in
every case failed to reject the hypothesis that the AIC-best copula family was
also an objectively adequate description of the data; i.e., the collection of
copula families we used was sufficiently broad to characterize these data.
Model-averaged lower- and upper-tail dependence statistics had 2.5" and
97.5™ quantiles (across location pairs) (0.123, 0.721) and (0.002, 0.41),
respectively, thereby commonly diftering from what a normal copula would
give (i.e., 0), and helping to answer the second part of Q1: these data have
greater tail dependence (lower and upper) than would be expected from a
normal-copula null hypothesis. We note however that our model selection
procedures again do not reveal whether tail-dependence parameters are sig-
nificantly difterent from 0, and we refer the reader to nonparametric results
below for that information. Model-averaged lower- minus upper-tail
dependence statistics were positive for all but a few location pairs (86 out
0£'90). The chances of getting 86 or more positive values, here, under a null
hypothesis of equal chances for positive and negative values (and again
accounting for the fact that location pairs (A, B) and (B, A) will show the
same result) was again low, 2.944 x 10~ "', Thus the spatial synchrony of
rarity in the green spruce aphid is stronger than the spatial synchrony
of outbreaks. This answers the third part of Q1.

Nonparametric statistics verified that tail associations were asymmetric
for the green spruce aphid abundance data. Mean values across all pairs of
locations of the Spearman and Kendall correlations and the statistics cory,
cor,, P, P,, D7, and D7 were positive and confidence intervals excluded
0 (Table 6). Mean values of the statistics cor;— cor,, P;— P,, and D2— D7
also were always positive and had confidence intervals that excluded 0
(Table 6).

Table 7 summarizes Q1 results for multivariate data. Results supported
the conclusions that non-normal copula structure, non-normal tail depen-
dence, and asymmetric tail associations were common, though not univer-
sal, answering Q1 in the affirmative for these data. Most location pairs were
nonindependent (Table 7, row 2). The large majority of nonindependent
location pairs had best-fitting copulas that were not the normal copula
(Table 7, row 3), and AIC values of best-fitting copulas were, on average
across location pairs, between 2.714 (Ceratium furca abundance data) and
5.764 (leat~curling plum aphid first-flight data) lower than AIC values for
the normal copula (Table 7, row 4). Best-fitting copulas were nearly always
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Table 6 Average values of statistics across all locations pairs and confidence intervals
based on spatial resampling for green spruce aphid abundance data.

2.5™ quantile Mean 97.5" quantile

Spearman 0.490 0.580 0.668
Kendall 0.351 0.428 0.505
cory 0.291 0.335 0.375
cor,, 0.195 0.250 0.307
Py 0.097 0.116 0.135
P, 0.063 0.084 0.106
D7 0.019 0.026 0.033
D, 0.030 0.039 0.047
cor;— cor,, 0.034 0.085 0.128
P—p, 0.015 0.032 0.048
D2 D? 0.005 0.013 0.020
Table 7 Summary of Q1 results for multivariate datasets.

Green

spruce Leaf-curling Ceratium

aphid plum aphid furca Methane

abundance first flight abundance flux
1. Location pairs (excluding self 90 90 182 156
comparisons)
2. Number of nonindependent 90 90 162 102
pairs
3. Number of pairs with 72 82 134 96
non-normal copula as best fit
4. Average of AIC differences 2.732 5.764 2.714 4.482
(normal AIC minus min AIC)
across location pairs
5. Number of well-fitting 90 83 160 102
location pairs
6. 25" and 97.5™ quantiles  (0.123, 0, 0.152)  (0.019, (0.004,
of model-avg. lower-tail 0.721) 0.629) 0.461)

dependence
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Table 7 Summary of Q1 results for multivariate datasets.—cont'd

Green

spruce Leaf-curling Ceratium

aphid plum aphid furca Methane

abundance first flight abundance flux
7.2.5"™ and 97.5" quantiles (0.002, (0.175, (0, 0.505) (0, 0.592)
of model-avg. upper-tail 0.41) 0.798)
dependence
8. Percent pairs showing 95.56 0 79.01 72.55
stronger lower tail dependence
9. Mean with 2.5™ and 97.5™ 0.085, —0.15, 0.077, 0.007,
quantiles of cor;— cor, across  (0.034, (—0.207, (0.031, (—0.039,
all location pairs 0.128) —0.096) 0.118) 0.05)

Rows 3-8 of the table were computed for the nonindependent pairs (row 2) only. A well-fitting location
pair (row 5) was one for which the best-fitting copula had p-values > 0.01 for both the Cramer-von Mises
and Kolmogorov-Smirnov goodness of fit tests.

considered an adequate fit (Table 7, row 5). Some of the datasets (green
spruce aphid abundance, Ceratium furca abundance, methane-flux) showed
stronger lower- than upper-tail dependence (Table 7, rows 6-8), whereas
leat-curling plum aphid first flight data showed the reverse. Thus the spatial
synchrony of rarity was stronger than that of outbreaks for green spruce
aphid and Ceratium furca abundance, for instance, whereas leaf-curling aphid
first flights were more spatially related to each other when these flights
happened late than when they happened early. All of the values in
Table 7, rows 8 deviated highly significantly from what would have
been expected under a null hypothesis of equal chances for positive and
negative values.

Asymmetry results were generally verified by nonparametric approaches,
with the exception of the methane-flux data. For instance, the 95% confi-
dence intervals of the mean over pairs of sampling locations of the statistic
corj—cor, were (—0.207,—0.096) for the leat-curling plum aphid first
flight data (Table 7, row 9), indicating greater upper-tail dependence, and
consistent with the results of Table 7, row 8. For the Ceratium furca abun-
dance data, confidence intervals were (0.031, 0.118), indicating greater
lower-tail dependence, and again consistent with the results of Table 7,
row 8. For the methane-flux data, confidence intervals were (—0.039,
0.05); the asymmetry in tail dependence revealed by the model selection
results for the methane-flux data was apparently not strong enough to also
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be revealed by the nonparametric analyses. Analogues to Table 6 are in
Tables S8-S10 in Supplementary material in the online version at https://
dot.org/10.1016/bs.aecr.2020.01.003. Our generally affirmative, empiri-
cally based answer to Q1 for the multivariate datasets is represented in
Fig. 2 as solid outlines around the names of those datasets, in the middle
row of boxes. We also carried out the same analyses for abundance
and first-flight data for the 18 aphid species for which we had data other
than the green spruce and leaf-curling plum aphids, as well as for the
21 plankton taxa for which we had abundance data other than Ceratium furca
(results not shown). Results supported the conclusion that non-normal
copula structure and tail dependence, and asymmetry of tail associations,
are common.

6. Concepts and methods for Q2

Recall that Q2 is: what are some possible causes/mechanisms of non-
normal copula structure and asymmetric tail associations in ecology? Having
demonstrated that non-normal copula structure and asymmetric tail associ-
ations are common, we addressed Q2 by exploring, using models, three
possible mechanisms for these phenomena. Our models presented are
initial explorations, only, of whether the proposed mechanisms may explain
observed patterns. As such, simple models were used. Comprehensive exp-
lorations of model parameter space and alternative model formulations
were left for future work.

The first mechanism relates to the ideas in the Introduction about
Liebig’s law of the minimum, and to nonlinear influences of environmental
variables on ecological variables. If an environmental variable influences
an ecological variable disproportionately in one of its tails, we explored
whether the ecological variable could then exhibit asymmetric tail associa-
tions across space. Let Eff) be an ecological variable measured at location
i 1=1,2) at time f. Assume the dynamics E;(f+ 1) =bE{(f) + g(ei(f)) + ad(?),
where the 9,(f) are standard-normally distributed and independent across
time and locations, a=0.2, b=0.1,—0.1, 0.5, — 0.5 in different simulations,
and the (g((f), &5(f)) were drawn, independently through time, from a bivar-
iate normal distribution with var(e;) =1 and cov(ey,€,) =0.8. Thus basic
ecological dynamics follow the very simple AR (1) formulation, influenced
by a “regional” environmental factor which is correlated across locations (g)
and by a local factor (8). The function g describes how ¢(f) influences E(f).
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We used ¢ equal to g or g, in different simulations: g,(g) equals ¢ if € <0
and 0 otherwise; ¢>(¢) equals € if €>0 and 0 otherwise. Thus g; represents
environmental effects that negatively impact populations, but only below
the threshold €=0; and g, represents effects that positively impact
populations, but only above £=0. The values of b provide a modicum of
exploration of whether ecological dynamics may also influence how com-
plex dependencies between the E(f) arise: negative b corresponds to over-
compensating dynamics and positive b to undercompensating dynamics;
larger |b] means slower return to equilibrium after a disturbance.

For each b and g;, we simulated the model for 25,000 time steps and
retained the E,(f) for the final 2500 time steps. We applied our nonparamet-
ric statistic corp o —Coryy; and our Spearman- or Kendall-preserving
normal-copula surrogate comparison methods (see Section 4) to these out-
puts to discover if the model could produce asymmetric tail associations (and
therefore non-normal copula structure) between the E(f). Because (g1, €,)
and (6, 8,) have normal copula structure (they were drawn from bivariate
normal distributions), the Moran mechanism analysed below does not
operate here.

Our second mechanism is an extension of the well-known Moran effect,
and was summarized conceptually in the Introduction. We consider a linear
model, as well as two parameterizations of a nonlinear population model
which includes density dependence of population growth. For the linear
model, let E(f) again be an ecological variable, i = 1, 2. We use AR(1)
dynamics, E;(t + 1) = BE;(t) + \/1 — fei(1), with #=0.5. The environ-
mental noises g;(f) were standard-normal random variables that were inde-
pendent for distinct times, f, but exhibited different kinds of dependence
across locations in different simulations (see below). The variable E is gen-
eral. It could represent deviations of a population density from a carrying
capacity, deviations of total plant community biomass from an average value,
flux of a biogeochemical variable such as methane, or other quantities. The
nonlinear population model was a stochastic, multi-habitat-patch version
of the Ricker model, Py(t+ 1) = P(f) exp[r(1 — P{(f)/K) + og,(f)] for i=1, 2,
using r=0.5, K=100, &(f) as above, and 6=0.1 or 6=1 in different sim-
ulations. When 6=0.1, population dynamics stay close to the carrying
capacity, K, where the model equation can be well approximated by a linear
equation, and the nonlinearities of the model therefore have limited influ-
ence on dynamics. When =1, model dynamics are strongly nonlinear
because the stochastic component of the model causes populations to stray
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far from the carrying capacity. We refer to these as the weak-noise and
strong-noise cases, though the importance of the noise here is that, when
strong, it brings the nonlinearities of the model into play.

For each of the three model setups above (the linear model and the
nonlinear model with weak and strong stochasticity), for the Clayton and
survival Clayton copula families, for each 7=0.1, 0.2, ..., 0.9, and for each
of 50 replicate simulations, we generated 5000 noise pairs (&,(f), €x(f)) from
the bivariate random variable with standard-normal marginals and with the
given copula family and the given Kendall correlation 7. We then used this
noise to drive the model, and retained both the noise and population values
for the final 500 time steps. For each simulation, the following statistics were
then computed for noises and populations: Pearson, Spearman and Kendall
correlations, cor, cor,, P, P,, Di, DZ, cor;—cor,, P,—P,, and D>— D;.
Values were plotted against 7 for noises and populations. If the hypothesis
from the Introduction was reasonable that characteristics of the copula struc-
ture of spatial dependence in an ecological variable may be inherited from
characteristics of spatial dependence in an environmental variable through a
Moran-like eftect, then plots should be similar for populations and noises.

The next mechanism we investigated is evolutionary, and pertains to
bivariate trait data across species, e.g., our bird and mammal data. This
mechanism is a hypothetical explanation for the bias toward right-tail asso-
ciation observed in those data (Fig. 8F and G). The hypothesis is that asym-
metric tail association occurs in evolutionary changes in bivariate characters,
and gives rise to asymmetric tail association between the two character values
across extant species. We simulated bivariate character evolution on an esti-
mate of the phylogeny, taken from Genoud et al. (2018), of 817 mammal
species. The root character state and change across each branch were ran-
domly chosen from matrices of one million independent draws from bivar-
iate distributions showing one of five distinct types of copula structure: (1)
extreme or (2) moderate left-tail dependence, (3) symmetric tail depen-
dence, or (4) moderate or (5) extreme right-tail dependence (Appendix
S8 in Supplementary material in the online version at https://doi.org/10.
1016/bs.aecr.2020.01.003). All distributions had standard-normal marginals
and Spearman correlation 0.875 between components, so our simulations
assess the impact of copula structure only. For each of the five copulas, mam-
malian character evolution was simulated 100 times. For each simulation,
symmetry of tail associations of the two characters across phylogeny tips
was assessed using our nonparametric statistics. We hypothesized that cases
1 and 2 above would yield stronger left- than right-tail associations in tip
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characters, and cases 4 and 5 would yield the reverse. The simulator was
written in Python and used version 4.4 of the DendroPy package
(Sukumaran and Holder, 2010).

7. Results for Q2: Moran effects and asymmetric
dependencies produce non-normal copula structure

Our model with asymmetric environmental effects produced outputs
with visually apparent asymmetry of tail associations between the ecolog-
ical variables E; in the two locations, to an extent that depended on b.
For b=0.1 (Fig. 10) and b= —0.1 (Fig. S24A and B in Supplementary
material in the online version at https://doi.org/10.1016/bs.aecr.2020.
01.003), for both ¢; and g», asymmetry of tail association was strong; for
b= %0.5, asymmetry was weaker but still apparent (Fig. S24C-F in
Supplementary material). Lower-tail (respectively, upper-tail) spatial asso-
ciations in the effects of noise (¢, respectively, g») produced lower-tail
(respectively, upper-tail) spatial associations in the ecological variable,
E;. Results using our statistic corg o1 — COrg 9 1 strongly reflected the visu-
ally apparent asymmetry (Table 8). Thus asymmetry of environmental
effects is a mechanism that may be partly responsible for non-normal
copula structure and asymmetric tail associations across space in ecological
variables: when populations or other ecological quantities are influenced
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Fig. 10 If environmental effects operate asymmetrically in their tails on ecological vari-
ables, it can result in non-normal copula structure and asymmetric tail dependence
across space in the ecological variables. Shown are the last 500 points for (A) g=g;
and (B) g=g, from simulations described in the text, b=0.1. Asymmetric tail associa-
tions are visually apparent, but were also elaborated statistically in Table 8.
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Table 8 Asymmetric sensitivity model, nonparametric statistics results.

b g Kendall Spearman
0.1 g >1000 >1000
0.1 o <1000 <1000
—0.1 g1 >1000 >1000
—0.1 o <1000 <1000
0.5 g1 >1000 >1000
0.5 o <1000 <1000
—0.5 g1 >1000 >1000
—0.5 2 <1000 <1000

Outputs of simulations from the first model detailed in Section 6 (i.e., Figs. 10 and S24 in Supplementary
material in the online version at https:/doi.org/10.1016/bs.accr.2020.01.003) were subjected to non-
parametric statistical analyses described in Section 4. The statistic cor;.s— cor, g was computed for the
output of the model with the indicated b and g, and the value was compared to 1000 values of the same
statistic computed on surrogate time series randomized to have normal copula structure (see Section 4).
A table entry <X (respectively, >X) indicates the value of the given statistic on the data was less (respec-
tively, more) than its value on X of the surrogates, so entries of the form <X (respectively, >X) for X
equal to 975 or above indicate that upper-tail (respectively, lower-tail) dependence was significantly
stronger than lower-tail (respectively, upper-tail) associations compared to a normal-copula null hypoth-
esis. “FS” stands for “first slice”” and refers to the bounds 0 to 0.1; “LS” stands for “last slice” and refers to
the bounds 0.9 to 1.

principally by low (respectively, high) values of an environmental vari-
able, one may expect left-tail (respectively, right-tail) associations across
space for the ecological variable. This result is represented in Fig. 2 as
the solid box around “Nonlinear environmental effects, Liebig’s law”
and the arrows labelled “A”. It is explained in the Discussion why the
box and some of the arrows are solid, instead of dashed, although the results
here are theoretical.

The hypothesis that characteristics of the copula structure of spatial
dependence in an ecological variable can be inherited from an environmen-
tal variable was found to be reasonable, because it held for our models—the
Moran effect seems to extend to copula structure and tail associations—
however, similarities between environmental- and ecological-variable cop-
ula structure were reduced when dynamics were strongly nonlinear. For
simulations using AR (1) models, our correlation and tail asymmetry statistics
were always similar for noise and populations (Fig. 11 for the Clayton cop-
ula, Fig. S25 in Supplementary material in the online version at https://
doi.org/10.1016/bs.aecr.2020.01.003 for the survival Clayton copula).
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Fig. 11 Comparison of correlation and tail association statistics between environmental
noise inputs and ecological-variable outputs, AR(1) model, Clayton copula. Grey and
black points give means over 50 replicate simulations of the listed statistics, grey points
are for noise inputs and black points are for model outputs. Error bars are standard
errors. p-values (triangles, right axis) are for a paired t-test of the null hypothesis that
the distributions have the same mean. For bottom panels, headers give Pearson corre-
lations for the points. The regression line through the points (solid) was similar to the
1-1 line (dashed). See Section 6 for details.
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Though there were significant differences for many statistics and simu-
lations, these were small compared to the overall tendency for larger
(respectively, smaller) values of our statistics, as applied to noise, to be paired
with larger (respectively, smaller) values of the same statistics for model
outputs. For our nonlinear model with weak noise, values of the statistics
were again quite similar for noise and model outputs (Fig. 526 for Clayton
and Fig. S27 for survival Clayton in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003). Though there were
again significant differences for many statistics and simulations, these were
again small relative to overall variation of values of the statistics. Since many
ecological models are nonlinear, this result provides the reasonable expec-
tation for a Moran-effect-like correspondence between noise and model-
output dependence structure across space for typical ecological dynamics,
as long as environmental noise is small enough that dynamics stay relatively
close to the model equilibrium. Theoretical results that hold for “weak noise”
in this sense are common in ecology. For strong noise and using our nonlinear
model, our correlation and tail-association-asymmetry statistics, generally
speaking, were approximately similar between noise and model outputs;
however, similarity was reduced, and for a few simulations, asymmetry statis-
tics had opposite signs for noise and model outputs (Figs. S28 and S29 in
Supplementary material in the online version at https://doi.org/10.1016/
bs.aecr.2020.01.003). For instance, using a Clayton copula with a large
Kendall 7, cor;—cor, was slightly positive for noise, but slightly negative
for population outputs (Fig. S28 in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003).

We repeated our analyses using the nonlinear model with r=1.3.
The deterministic one-habitat-patch Ricker model exhibits a monotonic
approach to a stable equilibrium at K when r<1 (undercompensating
dynamics, e.g., the value r=0.5 used initially), but exhibits an oscillatory
approach when r>1 (overcompensating dynamics, e.g., r=1.3). For
weak noise, similarities were again dominant between values of our
statistics on noise and population time series. For strong noise, however,
discrepancies were often glaring. Apparently noise of standard deviation 1
interacted especially strongly with model nonlinearities when the model
was in its overcompensatory regime. We repeated all analyses using the
Gumbel, survival Gumbel, Joe, and survival Joe copulas, with substan-
tially similar main conclusions (not shown).

Thus it is reasonable to hypothesize that a Moran-effect-like mechanism
may produce non-normal copula structure and asymmetric tail associations
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across space in ecological variables. This result is represented in Fig. 2 as the
dashed box around “Moran effects” and the arrows labelled “B”.

For our evolutionary model, the hypothesis was correct, for the models
we employed, that asymmetric tail association in evolutionary changes can
produce similarly asymmetric tail association between characters across
phylogeny tips. Once character evolution was simulated 100 times for each
of the dependence structures we considered for evolutionary changes, we
had 817 bivariate characters for each of 500 simulations (see Section 6).
We computed our nonparametric asymmetry statistics corg o — COLog 1,
Pyog2—Pyg1, and D‘S.SJ — DS,OQ for each simulation output and produced
a histogram for each statistic and for each dependence structure (Fig. 12).
Results showed that asymmetries of tail associations in evolutionary changes
were associated with similar asymmetries of tail associations in extant char-
acters. Thus we cannot reject the possibility that this is a proximate mech-
anism behind observed asymmetric tail associations in our bird and mammal
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Fig. 12 Three measures of asymmetry of tail associations (corgp,—corpg:, A—E;
Po,02—Pog F-J; Dﬁ_m fDélo,z, K—0) between two characters, across extant species,
were computed for each of 100 simulations of mammalian character evolution for each
of five types of tail dependence between evolutionary changes in the characters
(extreme left-tail dependence, A, F, K; moderate left-tail dependence, B, G, L; symmetry
of tail dependence, C, H, M; moderate right-tail dependence, D, |, N; and extreme right-
tail dependence, E, J, O). See Section 6 for details. The number above each panel indi-
cates how many statistics out of 100 were less than or equal to 0. Values substantially
lower (respectively, higher) than 50 indicate greater left (respectively, right) tail-
dependence between characters.
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data. This result is represented in Fig. 2 as the dashed box around “If char-
acter evolution has copula structure” and the arrow labelled “D”. This topic
is revisited in the Discussion, as is the box “Asymmetric species interactions”
and the arrow labelled “C” in Fig. 2.

8. Concepts and methods for Q3

Recall that Q3 is: what are the consequences of non-normal copula
structure and asymmetric tail associations for ecological understanding
and applications? We addressed Q3 by exploring, using both data and
models, three hypothesized consequences. As for Q2, the models we used
are intended as initial explorations, only. Therefore only simple models are
used, and comprehensive explorations of the sensitivity of results to model
structure and parameters are left for future work.

The hypothesis was presented in the Introduction that the distribution
(through time) of a spatially averaged quantity should be influenced by
dependencies between the local quantities being averaged, including their
copula structure and tail associations. To make this hypothesis more precise,
suppose an ecological variable E;(f) is measured at locations i=1, ..., Nand
times t=1, ..., T, and the spatial mean ) ;E;(f)/N is of interest. The E(1)
could be, for instance, local abundances of a pest or exploited species, orlocal
fluxes of a greenhouse gas. If E; and E; are associated primarily in their right
tails for most location pairs i and j, then exceptionally large values tend to
occur at the same time in most locations. We hypothesize that this can
increase the skewness of the distribution of the spatial mean. Similarly,
left-tail associations between local variables should decrease skewness.
Strong positive skewness of the spatial-mean time series corresponds to
“spikiness” of that time series, i.e., occasional very large values, which cor-
responds to instability through time. The spatial-mean time series and its
skewness may be quantities of principal importance for pest or resource
abundance, for which extreme values (spikes) in the spatial mean may have
large eftects.

We tested the above hypothesis using our multivariate datasets (Table 1).
For each dataset we calculated the spatial mean time series, and then the
skewness through time of that mean. Then, for each dataset, we compared
the value obtained to a distribution of values of the same quantity for each of
10,000 surrogate datasets. Surrogate datasets were produced by randomizing
the empirical data in a special way to have the copula structure of a
multivariate-normal distribution, but to retain exactly the same distributions
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of values for each sampling location as the original data (Appendix S9 in
Supplementary material in the online version at https://doi.org/10.1016/
bs.aecr.2020.01.003). Surrogates also had very similar Spearman correlations
between pairs of sampling locations as the data. Our comparisons therefore
tested the null hypothesis that the skewness of the spatial mean took values
on the empirical data no different from what one would expect if the
copula structure of the data were multivariate normal (i.e., the same copula
as a multivariate normal distribution), but the data were otherwise statisti-
cally unchanged. Significant differences indicate that non-normal copula
structure in the data contributed to the skewness of the spatial mean time
series, 1.e., to its instability and “spikiness” through time.

For green spruce aphid abundance data, C. furca abundance data, and
methane-flux data, because these datasets exhibited stronger lower- than
upper-tail associations (Table 7), we compared empirical and surrogate
skewness values via a one-tailed test in the left tail: the p-value was the frac-
tion of surrogate skewnesses less than the skewness for the empirical data.
The test examines whether stronger lower-tail associations between local
time series caused the spatial average to have significantly lower skewness
than would have been expected with symmetric tail associations. For
leat-curling plum aphid data, because that dataset exhibited stronger
upper- than lower-tail associations (Table 7), we did the analogous one-
tailed test in the right tail. The test examines whether upper-tail associations
caused the spatial average to have significantly higher skewness than would
have been expected with symmetric tail associations.

We also examined a hypothesis that asymmetric tail associations across
space of an environmental variable can influence the extinction risk of a
metapopulation. We hypothesized that environmental noises exhibiting
greater left-tail associations across habitat patches would cause higher
metapopulation extinction risks because then very bad years for the com-
ponent populations occur simultaneously in many patches, reducing
rescue effects. Here we assume, for simplicity, that low values of the
environmental variable are “bad” for the populations and high values
are “good”. We tested the reasonableness of this hypothesis using a

metapopulation extension of the Lewontin-Cohen model, 5([ +1) =

Dﬂ(t)ﬁ(t), where the i component of the length-N vector ﬁ(t) represents
population density in the i habitat patch at time . The N x N matrix (1)
was diagonal with i diagonal entry exp(r+&(1)). Here ris a growth rate;
we used r=0. The g(f) represent environmental noises. They were
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standard-normally distributed, were independent through time, and
showed the same spatial correlations for every simulation, but were made
to exhibit stronger right- or left-tail associations between patches in difter-
ent simulations (Appendix S10 in Supplementary material in the online ver-
sion at https:/doi.org/10.1016/bs.aecr.2020.01.003). The N x N matrix D
was a dispersal matrix modelling local or global dispersal at rate d, in differ-
ent simulations (Appendix S10 in Supplementary material in the online
version at https://doi.org/10.1016/bs.aecr.2020.01.003). After each step,
if the density in a patch was <1, it was set to 0. We simulated the model
10,000 times for each combination of parameters, starting from p, =50 in
each patch, and calculated extinction risk after 25 time steps.

Finally, and pursuing ideas from Reuman et al. (2017), we tested
whether the copula structure of the dependences between population vari-
ables measured in different locations has consequences for the spatial version
of Taylor’s law. Taylor’s law is a commonly observed and widely studied
(Cohen et al., 2013; Reuman et al., 2017; Taylor, 1961; Taylor et al.,
1988; Xu et al., 2016) empirical pattern that relates the variances of groups,
g, of population measurements to the means of the groups via a power
law, v,=ax mg, or equivalently, log(v,) =log(a)+ b X log(m,). Here b is
called the Taylor’s law exponent or slope, and log(a) is the Taylor’s law inter-
cept. There are several versions of Taylor’s law. For spatial Taylor’s law,
given population density or abundance data x,(f) measured in locations
i=1,..., Nand times =1, ..., T} a group ¢ consists of all the measurements
xi(f), i=1, ..., Nmade in different locations at the same time. So means m

£

and variances v, are computed across space. We refer to the matrix with

x(f) in the r%w and the i column as a population matrix. We consider
that Taylor’s law holds true for a dataset if the log(v,) vs log(m,) scatter plot
for the dataset shows a linear, homoskedastic pattern. Taylor’s law has
been verified empirically for hundreds of taxa and has been applied in
numerous fields including fisheries management, estimation of species
persistence times, and agriculture (Cohen and Xu, 2015; Reuman et al.,
2017), so the question of whether copula structure of spatial dependence
influences Taylor’s law may have applied significance.

To explore the influence of copula structure and tail associations on spa-
tial Taylor’s law, we carried out a series of simulations that generated sets
of population matrices that had distinct copula structure between locations
but that were otherwise statistically similar. For k=1, ..., 1000 and X rep-
resenting a Clayton, normal, Frank, or a survival Clayton copula family, we
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XK \vith the following properties:

generated N X n population matrices m
(1) for any given values of j and k, the values {mﬁf”"):tzl, ..., N} were
exactly the same, as unordered sets, for all X, i.e., the same actual population
values were used for location j in simulation k, regardless of X; (2) for any
given k, and j; and j, such that j; # j», the Spearman correlations (computed
through time) cor,(mg-(l’k), mffz’k)) were the same, to within sampling
variation, i.e., correlations through time of populations in two locations
were the same, up to sampling variation, regardless of X; (3) the copula
for the dependence between mgf’k) and mg-i’k) was from the family X. We used
N=50 and n=25. Details of how these matrices were generated are in
Appendices S11 and S12 in Supplementary material in the online version
at https://doi.org/10.1016/bs.aecr.2020.01.003. Thus for each k, the popu-
lation matrices m™® for X taking the values Clayton, normal, Frank, and sur-
vival Clayton were statistically similar except for the copula structure
between locations, which was X. Thus comparing how the log(v,) vs log(m,)
relationship may manifest differently for m™ for different values of X con-
stitutes a test of the influence of copula structure on Taylor’s law. We
selected X equal to the Clayton, normal, Frank, and survival Clayton cop-
ulas to explore a range of tail association patterns.

A variety of Taylor’s law statistics were computed for each population
matrix m©R, First, the N =50 spatial means, m,, and variances, v, were
computed, and log(v,) vs log(m,) plots were considered. Linearity of the
log(v,) vs. log(im,) relationship was tested for each simulation by comparing
the linear regression through these 50 points to a quadratic alternative via an
F-test, producing a p-value result. If these p-values were uniformly distrib-
uted across the unit interval for the 1000 replicate simulations which were
generated for X, it supported the linearity assumption of Taylor’s law for X;
whereas if they were clustered toward smaller values the test tended to
reject that assumption. We also tested, for each simulation, the assumption
of Taylor’s law that the log(v,) vs. log(m,) plot was homoskedastic: we
regressed the absolute residuals of the linear regression of log(v,) vs. log(m,)
against the predictions of that regression. A significant p-value result of
this test indicates heteroskedasticity. For each simulation we also computed
the root mean squared error of log(v,) vs. log(im,) data from the linear reg-
ression of log(v,) vs. log(im,), as well as the intercept and slope of the linear
regression. Finally we recorded the quadratic coefficient of the regression of
log(v,) against log(m,) and (log(nrzf\,))z, and the mean curvature of the

quadratic regression equation across the values log(m,). The distributions
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of all these statistics across the 1000 replicate simulations were compared
for X the Clayton, normal, Frank, and survival Clayton copulas, to deter-
mine if copula structure influences Taylor’s law.

9. Results for Q3: Tail dependence influences skewness
of the spatial average, extinction risk, and
Taylor’s law

Empirical results were consistent with the hypothesis that the skew-
ness of a spatial-average time series is influenced by tail associations bet-
ween the local quantities being averaged. For datasets that exhibited
highly asymmetric tail associations in earlier analyses (green spruce aphid
abundance data had stronger lower-tail association, and, respectively, leaf-
curling plum aphid first flight data had stronger upper-tail association,
Table 7), skewness of the spatial average was less than (respectively, greater
than) a significant fraction of surrogate skewness values (Fig. 13A and B). For
datasets with moderately stronger lower than upper-tail dependence
(Ceratium furca abundance and methane data), skewness of the spatial average
showed a non-significant or marginally significant tendency toward being
less than surrogate skewnesses (Fig. 13C and D). Thus copula structure
and asymmetric tail associations are important for spatially averaged quan-
tities and can influence the temporal stability of those quantities. This
result is represented in Fig. 2 as the solid box around “Instability/skewness
of mean or total time series” and the solid arrows labelled “X”.

Consistent with our extinction risk hypothesis, left-tail-associated envi-
ronmental fluctuations increased metapopulation extinction risk for the spa-
tial Lewontin-Cohen model, for N=5 and N=25 habitat patches, and for
local and global dispersal (Fig. 14). This result is represented in Fig. 2 as the
dashed box around “Extinction risk” and the dashed arrow labelled “Y™.

Also consistent with hypothesis, copula structure had a substantial effect
on Taylor’s law for the models we considered. Taylor’s law was strongly
influenced, and was often even invalidated in its assumptions of lin-
earity and homoskedasticity, by non-normal copula structure. For normal
copula structure (i.e., for simulations that gave normal-copula dependence
between populations in different locations), p-values for the linearity
and homoskedasticity tests were roughly uniformly distributed across
replicate simulations and Taylor’s law appeared visually to be a reasonable
approximation of the log(v,) vs log(m,) relationship (Fig. 15B, E and F).
Furthermore, quadratic coefficients and curvature values were close to 0
(Fig. 15] and K), and root mean squared errors from the linear regression
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Fig. 13 Skewness of spatially averaged green spruce aphid abundance (A), leaf-curling
plum aphid first flight dates (B), Ceratium furca abundance (C), and methane-flux
(D) time series compared to a multivariate normal-copula null hypothesis. Black dots
are empirical skewnesses; see text and Appendix S9 in Supplementary material in
the online version at https:/doi.org/10.1016/bs.aecr.2020.01.003 for details of the null
hypothesis. Results show a tendency for skewness of the spatial average to be affected
as hypothesized by asymmetric tail associations.

were relatively small (Fig. 15G). But linearity or homoskedasticity were
violated more frequently for non-normal copula structure (Fig. 15A, C,
D-F); quadratic coefficients and curvatures were frequently non-zero
(Fig. 15]J and K); and root mean squared errors from the linear regression
were much higher (Fig. 15G). Slopes and intercepts of the linear regres-
sion were also strongly affected by copula structure (Fig. 15H and I),
though some of the effect here was because linear regressions do not
always adequately represent the log(v,) vs log(m,) relationship when copula
structure was not normal. Thus our results substantiated the hypothesis,
at least for the models we used, that Taylor’s law can be influenced by cop-
ula structure and asymmetric tail associations. This is represented in Fig. 2
by the arrow labelled “Z”.
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Fig. 14 Extinction risk for the metapopulation extension of the Lewontin-Cohen model,

after 25 time steps, was higher for environmental noise with stronger left-tail association

across space. Dispersal was local (A, B) or global (C, D), with dispersal rate d (Appendix

S10 in Supplementary material in the online version at https:/doi.org/10.1016/bs.aecr.

2020.01.003). Simulations used N patches for N=5 (A, C) and N=25 (B, D).

10. Discussion

We showed that non-normal copula structure and asymmetric tail asso-
ciations are common across multiple sub-disciplines in ecology, although
these facets of data are only occasionally accounted for (Anderson et al.,
2018; de Valpine et al., 2014; Popovic et al., 2019). We hypothesized
mechanisms that may cause non-normal copula structures and asymmetric
tail associations; we discuss below how commonly some of our mechanisms
may operate. We also demonstrated important consequences of non-
normal copula structure and asymmetric tail associations for ecology. For
instance, the skewness of a spatial-average time series is influenced by asym-
metric tail associations between its constituent time series: predominantly
right-tail-associated local time series can lead to “spiky” spatially averaged
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Fig. 15 Spatial Taylor’s law results. Log(spatial variance) vs. log(spatial mean) relation-
ships for 1000 simulations over 50 time steps for 25 locations using Clayton (A), normal
(B), Frank (C), and survival Clayton (D) copula structures between locations. Results from
all 1000 simulations were plotted on the same axes for each panel, but two example
simulations are shown in solid and hollow black circles to help assess to what extent
variation on the plots was between simulations or within simulations. For each simula-
tion, we tested the linearity (E) and homoskedasticity (F) of the log(variance) vs.
log(mean) plot for that simulation, and quantified the root mean squared error of points
from the linear regression line (G). We also calculated the linear regression intercept
(H) and slope (I), the quadratic term of a quadratic regression through the points on
the log(variance) vs. log(mean) plot (J), and the curvature of that quadratic regression
(K). Distributions of values across all 1000 simulations are displayed. Spearman-
preserving surrogates were used, though results using Kendall-preserving surrogates
were similar. See Section 8 and Appendices S11 and S12 in Supplementary material
in the online version at https:/doi.org/10.1016/bs.aecr.2020.01.003 for details.

time series, with large outbreaks; and predominantly left-tail-associated local
time series can lead to spatially averaged time series showing accentuated
“crashes”. Thus tail associations could have implications for pests and
exploited species. Extinction risk and Taylor’s law can also be altered by
tail association patterns across space. In our view, our results make it rea-
sonable to suggest that a more comprehensive understanding of many eco-
logical phenomena may be possible if a complete copula characterization
of associations between variables is employed. Copula statistics are well
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developed (Joe, 2014; Mai and Scherer, 2017; Nelsen, 2006), and have
been introduced in accessible formats (Anderson et al., 2018; Genest and
Favre, 2007). Furthermore, open-source computer implementations exist
(e.g., the copula and VineCopula packages in R). Ecologists can apply these
tools immediately. We created several interrelated randomization proce-
dures (Appendices S6, S9, S12 in Supplementary material in the online
version at https:/doi.org/10.1016/bs.aecr.2020.01.003) that built upon
existing copula methods.

The approaches we demonstrated should apply equally well to data from
tropical or temperate ecosystems. There is no reason to expect that non-
normal copula structure and asymmetric tail associations should be special
properties of datasets from temperate regions. The mechanisms we proposed
of non-normal copula structure and asymmetric tail associations seem
equally likely to apply anywhere. For instance, the Moran eftect, which
underpins one of our proposed mechanisms (Fig. 2, B), is a standard mech-
anism that occurs whenever environmental variables influence populations.
And Liebig’s law and nonlinear environmental influences on ecosystems,
which underpin another one of our mechanisms (Fig. 2, A), are widely dem-
onstrated phenomena.

Our first proposed causal mechanism (Fig. 2, A) may well operate com-
monly, for two reasons. First, Liebig’s law and the idea of limiting nutrients
are dominant paradigms in ecology, and many studies have documented
nonlinear or threshold influences of environmental variables on ecological
quantities. Second, fluctuations in environmental variables through time
are very commonly correlated across space. Because these factors, which
are the essential ingredients of the mechanism, are common, it is reasonable
to hypothesize that the mechanism may operate commonly and may be a
dominant cause of asymmetric tail associations and non-normal copula
structure of ecological dependencies across space. We provide further sup-
port for the mechanism in our discussion of green spruce aphids and winter
temperature below.

There are also reasons to hypothesize that our Moran mechanism
(Fig. 2, B) may operate commonly: Moran effects are common (Defriez
and Reuman, 2017a, 2017b; Liebhold et al., 2004; Sheppard et al.,
2016), and non-normal copula structures and asymmetric tail associations
are often found in environmental variables. If intense meteorological
events are also widespread, then environmental variables associated with
these events should take extreme values simultaneously across large spatial
areas, producing tail associations in measurements made through time at
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different locations. Non-extreme values may instead be associated with
local phenomena, and therefore may be less correlated across large areas.
Serinaldi (2008) examined the spatial dependence of rainfall in Central
Italy. Gumbel or Student 2-copulas were candidates for modelling de-
pendence, and neither of these is a normal copula. A long-term study
(1950—2014) in the Loess Plateau of China (She and Xia, 2018) showed
that a Gumbel copula effectively modelled the spatial dependence of
drought variables. The Gumbel copula has asymmetric tail association.
Bivariate copula analysis was also used in forecasting the co-occurrence
of extreme events (flood or drought) over the North Sikkim Himalayas
using spatial datasets (Goswami et al., 2018).

We suggested in the Introduction that asymmetric competitive relation-
ships between species could yield asymmetric tail associations between
abundance measurements for the species. This is another theoretical mech-
anism for non-normal copula structure and asymmetric tail associations,
represented in Fig. 2 by the box “Asymmetric species interactions” and
the arrow labelled “C”. It could be tested by analysing copulas of abun-
dances of competing species, sampled across space or time. We note
that, whereas all the datasets we studied here have been positively associ-
ated when they were significantly associated, for negatively associated vari-
ables such as abundances of competing species, the definitions of left- and
right-tail association no longer apply, strictly speaking: the left tail of
one distribution corresponds to the right tail of the other. One must
be careful with terminology, but it is still possible to study asymmetries
of association.

Our simulations of character evolution suggest the hypothesis that
changes through evolutionary time in bird and mammal BMR and body
size may exhibit greater right- than left-tail association, contrary to stan-
dard normality assumptions of character evolution models. This is a
hypothesis only, because the greater right-tail association shown in
Fig. 8F and G could have come about in another, unknown way rather
than via the mechanism we suggested which implicated asymmetric tail
associations in evolutionary change. Our simulations show that asymmet-
ric tail associations in evolutionary changes are sufficient, but may not
be necessary, to produce the observed asymmetric tail associations in char-
acters of extant species. For instance (see below, and Appendix S13
and Fig. S30 in Supplementary material in the online version at https://
doi.org/10.1016/bs.aecr.2020.01.003), systematically missing data can
also produce tail dependence and may have influenced results for the
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BMR-body mass datasets. Even if the hypothesized evolutionary mecha-
nism (Fig. 2, D) is correct, our results only replace one question, i.e.,
why do we see greater right- than left-tail association between BMR
and body mass, with another, i.e., why might we see greater right- than
left-tail association in evolutionary changes in these traits?

Performing statistical tests for associations between continuous traits
across different species was a primary motivating example of phylogenetic
comparative methods. For example, Felsenstein’s method of phylogene-
tically independent contrasts (Felsenstein, 1985) is currently the second
most-cited paper in the history of The American Naturalist journal
(Huey et al., 2019). Frustratingly, the field still lacks a dependable procedure
for dealing with branch lengths, which are a crucial input to the method.
Ideally, the branch lengths used to correct for phylogenetic effects would
represent the expected amounts of change for the characters that are being
analysed. Because researchers almost never have a reliable method for pro-
viding such branch lengths, most researchers rely on ultrametric trees—
those for which the duration of the branch in time can be treated as a proxy
for the branch length. Frequently these branch lengths are transformed to
assess sensitivity to different assumptions about the degree of phylogenetic
inertia displayed by the traits under study (Harmon, 2018; Ives, 2018).
Even if one were able to simply use a time-based set of branch lengths, assig-
ning dates to nodes in phylogenies is difficult. DNA sequence data can pro-
vide estimates of branch lengths, but these estimates are dependent on the
adequacy of models which correct sequences for multiple substitutions
occurring at the same location. Biases in estimating the evolutionary distance
can affect downstream analyses (Phillips, 2009). Additionally, changes in
the rate of molecular evolution make the estimation of dates difficult
(Heath and Moore, 2014) even when branch lengths in time are accurately
estimated.

Without reliable branch length estimates, it is difficult to interpret
the significance of the magnitude of changes in traits across a tree.
Developing tests of association based on copula structure may possibly lead
the way to more robust methods for studying associations when we lack
defensible estimates of branch lengths. We note that our phylogenetic ana-
lyses here consisted merely of simulations to assess whether interesting
copula structure in a simple evolutionary process could leave a detectable
signal on the trait data for extant species. Substantial work remains to be
done before we have a copula-based method for analysing data on a
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phylogenetic tree. But the nonparametric nature of approaches based solely
on data ranks, as many of our methods are, may be a promising avenue for
avoiding inaccuracies that arise via the highly structured model assump-
tions implicit in the method of phylogenetically independent contrasts
and related methods.

Additionally, character evolution was simulated using one random draw
from the relevant matrix per phylogeny branch. This was principally because
branch lengths are often hugely uncertain. It branch lengths were well
known, alternative simulation strategies may include selecting one draw
from the matrix of evolutionary changes per unit time, or selecting one
draw for the whole branch but rescaling the variances of the selected char-
acter changes according to the length of the branch. These choices amount
to the same thing for normal copula structure, but not otherwise. Modelling
choices such as these may have influenced our results. Additional research
seems warranted testing the realism of our hypothesized mechanism and
simulations.

Relationships between BMR and body mass relate to a trade-oft bet-
ween mass-specific BMR (BMR per unit body mass) and body mass itself.
Copulas probably interrelate with life-history trade-off theory in additional
ways beyond what we demonstrated. For instance, it is well known that
energy allocation to a life function, F (e.g., reproduction) will reduce the
energy that can be allocated to other functions, Gy, G, G5 (e.g., growth,
predation avoidance). This is the principle of allocation. But F can trade
off against any or all of the G, Therefore, for large F, approaching
absolute limitations, there may be a strong association between F and Gy,
for instance. For small F, there may be little association because resources
not allocated to F can instead be allocated to any combination of the G,
This constitutes asymmetric tail association between F and Gy. Winemiller
and Rose (1992) described a three-way trade-oft in fishes between age of
reproductive maturity, juvenile survivorship, and fecundity. The trade-oft
should, in theory, produce a tight association between age of maturity and
fecundity for fishes with low age of maturity, but little such association for
later-maturing fishes because those species may invest the resources not
invested in maturing quickly into either fecundity or juvenile survival.
These ideas suggest that copulas may be useful for studying multidimensional
life-history trade-ofts. But applications will require careful attention to the
possible consequences of biased sampling: if the degree of completeness of
a dataset is associated with one or more of the characters, then statistical
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artefacts can bias conclusions (Appendix S13 and Fig. S30 in Supplementary
material in the online version at https://doi.org/10.1016/bs.aecr.2020.
01.003). Multidimensional copulas may also be the appropriate copula
approach to studying multidimensional trade-ofts. We used only bivariate
analyses in this study solely for simplicity. But statistical theory on multidi-
mensional copulas is also well developed (Joe, 2014; Mai and Scherer,
2017; Nelsen, 2006), and open-source computer implementations exist for
multivariate as well as bivariate copula methods (e.g., the VineCopula pack-
age for R). Such approaches may be a useful next step in life-history theory.

Additional mechanisms of non-normal copula structure and asymmetric
tail associations probably also operate. For instance, measurement error may
modify copula structure. Our models investigating potential causes of
copula structure were intentionally simple in other respects, too, not inc-
luding factors such as delayed density dependence, dispersal, population
stage structure, trophic interactions, etc.; and we did not comprehensively
explore parameter space for our models. We re-emphasize that fuller explo-
rations, in future work, of some of our models and of variant models may
be informative. We hope by enumerating a few potential mechanisms
of copula structure we will inspire additional research on the potentially
numerous mechanisms that may operate in diverse datasets, and their relative
importance under different circumstances.

We also elaborated potential consequences of copula structure for eco-
logical phenomena and understanding. Our results showed that the skew-
ness of the spatial average of local time series is influenced by their tail
associations. But the same logic should also apply to any collection of
time series, whether associated with locations in space or not. Another
potential application is time series of abundances of all species from a single
community, e.g., all plants in a quadrat surveyed repeatedly over time.
A large literature has focused on synchrony vs compensatory dynamics
between such time series, and the influence of interspecific relationships
on the variability of community properties such as total biomass (e.g.,
Doak et al. (1998), Tilman (1999), Tilman et al. (2006), Gonzalez and
Loreau (2009)). Typically, variability of community biomass is measured
with the coefficient of variation, but skewness may also be of interest
because it can help characterize “spikiness” through time. Future work
on copula structure of interspecific relationships in communities and its
implications for community variability seems likely to be valuable.

Although we demonstrated that tail associations between environmental
variables can influence extinction risk, substantial work remains to determine
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the importance of this effect. First, we used a non-density-dependent
model. Do similar results pertain when density dependence is involved?
Second, we considered metapopulation extinction risk, but the large field
of population viability analysis (PVA) via stochastic matrix modelling
(Caswell, 2000; Morris and Doak, 2002) uses a framework in which a sin-
gle population’s vital rates (e.g., life-stage-specific fecundity and survival
rates) are considered to vary stochastically through time due to environ-
mental variation. Do relationships between different vital rates exhibit
asymmetric tail associations, and do tail associations influence extinction
risk in this context? Finally, is the copula structure of environmental vari-
ables or vital rates changing through time, and, if so, how do such changes
influence extinction risks? Climate change is known to amplify the factors
that lead to extreme weather events (Hansen et al., 2012) and hence may
alter spatial tail associations for weather variables.

Our hypotheses and results cover the presence, causes, and consequences
of non-normal copula structure and asymmetric tail associations in ecolog-
ical systems (Fig. 2), but this was done using a variety of datasets and models.
We here take a closer look at the green spruce aphid, because it simulta-
neously illustrates causes and consequences within one system. Green spruce
aphid abundance, as measured in the data we use, is strongly positively asso-
ciated with the temperature of the previous winter (Sheppard et al. (2016),
their Supplementary Fig. 6). Winter temperature for year t was here taken
to be an average for December of year t— 1 through March of year ¢, was
available for the locations of aphid sampling, and was preprocessed in the
same way as Sheppard et al. (2016). For each of our 10 sampling locations,
we therefore examined the copula of winter temperature and aphid abun-
dance time series for the location, finding stronger left- than right-tail
associations in 7 of the 8 locations for which independence of winter tem-
perature and aphid abundance could be rejected, according to the data spe-
cific to the location (Table 9). Apparently winter temperature has an
asymmetric influence on aphid abundance in that cold winters generally
produce low abundances but warm winters often do not yield higher
abundances than moderate winters. One of our hypothesized mechanisms
(Fig. 2, A), which our modelling results supported (Section 7), therefore
suggests that spatial dependence between green spruce aphid counts in
different locations should show stronger left- than right-tail associations.
This is exactly what was observed (Table 7), providing empirical evidence
supporting the mechanism (this is why the box around “Nonlinear environ-
mental effects, Liebig’s law” and some of the arrows labelled “A” are solid



Table9 Summary results for analysis of copulas for winter temperature vs green spruce aphid abundance for each of the 10 sampling locations, using the
same model selection and nonparametric methods detailed in Section 4.

Model-avg.
Best-fit LT minus

Site copula Best-fit AIC Normal AIC p,CvM p,KS Model-avg. LT Model-avg. UT UT cor,—cor, P—P, D2-Df
2 C —10.35 —8.19 0.860 0.830 0.373 0.019 0.354 0.152 0.046 0.024
3 SJ —18.79 —14.85 0.520 0.750 0.529 0.003 0.526 0.165 0.079 0.027
4 C —25.48 —17.39 0.520  0.230 0.703 0.001 0.702 0.206 0.080 0.030
5 C —9.37 —7.26 0.640 0.340 0.393 0.022 0.371 0.187 0.073 0.034
6 F —22.13 —18.95 0.810  0.410 0.262 0.212 0.050 —0.038 —0.024 —0.006
7 C —21.56 —19.96 0.320  0.480 0.564 0.028 0.536 0.055 0.023 0.007
8 SJ —7.33 —3.72 0.131 0.079  0.427 0.012 0.415 0.147 0.047 0.016
9 NA NA NA NA NA NA NA NA NA NA NA
10 SJ —8.21 —4.91 0.222  0.149 0.446 0.010 0.436 0.123 0.047 0.015
11 NA NA NA NA NA NA NA NA NA NA NA

The column labelled p, CvM is the p-value result for the goodness of fit test using the Cramer-von Mises statistic. The column labelled p, KS is the p-value result for the goodness of fit
test using the Kolmogorov-Smirnov statistic. Entries with an NA are because model selection and other statistics were only employed for copulas for which independence was rejected
(5% significance level).
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instead of dashed in Fig. 2). The consequences of such tail dependence for
the skewness of spatially averaged aphid counts was described previously
(Fig. 13A). Thus the asymmetric influence of winter temperature ulti-
mately causes spatially averaged aphid abundance time series to have
lower skewness (i.e., less spikiness, and greater stability through time) than
they would otherwise. It seems likely that asymmetric influence of winter
temperature on populations may be a common phenomenon, so effects
such as we have documented for green spruce aphid may be common.
We carried out most of our analyses on data ranks, u; and v;, for good
reasons mentioned in Sections 1, 2 and 4 and reviewed here; but under some
circumstances it may also be appropriate to use techniques which parallel
our nonparametric statistics but that use unranked data, x;, y;. As mentioned
previously, Genest and Favre (2007) and others recommend carrying out
inferences about dependence structures (which was our goal) using normal-
ized ranks, stating explicitly that “statistical inference concerning depen-
dence structures should always be based on ranks”. The reason for this is
that measures of dependence which use unranked data conflate information
about the marginal distributions of variables with information about the
association between variables. For instance, suppose the true population
densities p; , and p,, of two species of fish in a lake in year f are unknown,
but are assessed using catch per unit effort (CPUE), a standard approach in
fisheries science (Zale et al., 2013). The CPUE measurements, which we
denote ¢, and ¢, may be differently correlated through time than the
true densities would be, if they were known, if the function f relating p; ,
and ¢, is nonlinear and if Pearson correlation is used. The function f mod-
ifies the marginal distributions, which modifies measures such as Pearson cor-
relation that conflate dependence and marginal information. Rank-based
measures such as Spearman or Kendall correlation, or any of our copula
approaches, will be unaffected by nonlinear monotonic functions such as f.
The same difficulty will pertain in any case for which a measurement of
an ecological quantity is a nonlinear index of the true quantity of interest.
Nevertheless, if one is certain that measurements are linearly related to
the true quantities being measured, statistics based on unranked data may
be more appropriate under some circumstances, in part because ecological
mechanisms which produce relationships between variables are influenced
not only by ranks but also by the relative-size information in the unranked
data. Judgements of what statistics are appropriate depend, of course, on the
purpose of the analysis. The goal of this study was to study dependence in
isolation, so we used ranks. If one is interested in tail associations using
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unranked data, a partial Pearson correlation can be developed straightfor-
wardly, by replacing u and v in Eq. 1 by x and y, but still computing the
sum in that equation over data points with ranks u; and v; constrained by
the bounds u;+v;>2l, and u;+v;<2u;,. This would result in a different
approach to tail associations that would conflate dependence and marginal
information but that may also have its own utility for some applications.

Non-copula methods may be useful under some circumstances for
exploring asymmetries of tail association, but copula approaches have the-
oretical and practical advantages. It was suggested to us that asymmetries
of tail association can also be explored using a regression model with
heteroskedastic error term, y=mx+b+e(x). Whereas this approach seems
capable of yielding insight for some datasets, it implicitly assumes a partic-
ular causal relationship between x and y, an untenable assumption for
many applications. Furthermore, no equivalent of Sklar’s theorem exists
under this approach, so information on marginal distributions cannot be
separated from association information, and the two types of information
will both influence regression results. Sklar’s theorem means that the cop-
ula associated with two variables contains all and only the information
about the association. Such statements of mathematical completeness will
not be available for other methods.

Data requirements for copula methods will vary depending on multiple
factors, but our results show that requirements are not beyond what is com-
mon in ecology. With copula methods as with any statistical analysis, the
data required to detect an effect or a phenomenon depends on the strength
of the eftect. For instance, detection of mild asymmetry of tail association
will require more data than detection of strong asymmetry. Different copula
or copula-related methods will also require different amounts of data.
For instance, our nonparametric methods such as the partial Spearman cor-
relation should be effective with datasets only slightly bigger than typical
guidelines for standard correlation methods; whereas our model-selection
approaches may be most effective with more data. Some of our datasets
were large, but others were much smaller, e.g., aphid datasets comprised
30 points, and our analyses still provided robust results. Thus many copula
methods will be suitable for datasets of sizes that are common in ecology.
Partial Spearman correlation seems particularly widely applicable.

Copula methods are numerous, and go well beyond the cases we have
considered in this introductory paper. We hope our work helps inspire
applications of copulas in ecology both of and beyond the specific tools
we employed. For instance, multivariate copulas are useful for studying
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relationships between multiple interacting variables, and have been used in
finance to model tail risk for portfolio optimization problems (Czado, 2019;
Joe and Kurowicka, 2011). Analogous ecological applications exist that may
be amenable to the same approach, e.g., ecosystem functioning variables
such as total primary productivity or carbon flux are the sum of the contri-
butions of multiple species in the same way that the value of an investment
portfolio is the sum of the values of its constituent assets. Ecologists may
likewise be interested in managing the risk that an ecosystem functioning
variable will take an extreme value. As another example, we assumed for
this paper that univariate marginal distributions have continuous, strictly
monotonic cdfs. This was for simplicity and because the simpler approach
was sufficient for our research questions. But count data in ecology have
been analysed with approaches not making this assumption (Anderson
et al., 2018).
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