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Abstract—Understanding multiparty human interaction dy-
namics is a challenging problem involving multiple data modal-
ities and complex ordered interactions between multiple people.
We propose a unified framework that integrates synchronized
video, audio, and text streams from four people to capture the
interaction dynamics in natural group meetings. We focus on
estimating the dynamic social role of the meeting participants,
i.e., Protagonist, Neutral, Supporter, or Gatekeeper. Our key
innovation is to incorporate both co-occurrence features and
successive occurrence features in thin time windows to better de-
scribe the behavior of a target participant and his/her responses
from others, using a multi-stream recurrent neural network.
We evaluate our algorithm on the widely-used AMI corpus and
achieve state-of-the-art accuracy of 78% for automatic dynamic
social role detection. We further investigate the importance of
different video and audio features for estimating social roles.

Index Terms—Deep learning, multimodal features, sensor fu-
sion, human conversation analysis, social signal processing.

I. INTRODUCTION

UTOMATIC human conversation analysis has received

continuous attention in the field of social signal pro-
cessing, opening new avenues for algorithms to be able to
understand aspects of group discussion such as intention,
mood, personality, leadership, dominance, and persuasiveness
[1]-[8]. Multiparty conversation consists of complex, layered
visual, audio, and language signals that mutually affect the
participants in complex ways. We are particularly interested
in estimating the emergent social functional role of each
individual in the group, categorized into protagonist, supporter,
neutral, gatekeeper [9], which has direct implications for
participants’ leadership, contribution, and productivity. The
relationships between participants and their social roles change
as the conversation unfolds, making the analysis more chal-
lenging.

Key behavior cues extracted from visual, audio, and lan-
guage data have strong correlations with meaningful social
signals. For example, in the language domain, the occurrence
of words like “great”, “yes”, or “bad” convey the sentiment
and attitude of the speaker [10], [11]. In the visual domain,
gaze behavior is closely related to emotion, personality, and the
status of the individual in the group. For example, people per-
ceived as leaders tend to give visual attention more frequently
to other participants [12], people with more frequent mutual
gaze interactions tend to have higher emotional intelligence
[13], and people who smile more often are more likely to score
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Scenario Person Behavior cues

Effect 1: Different orders of the same action pairs can reflect different attitudes.

A Speaking
! B Smiling > Frowning
) A Speaking
B Frowning -> Smiling
Effect 2: Different listeners' responses can affect the speaker’s behavior differently.
A Nodding head
3 B Speaking in low voice -> Speaking in a confident tone
A Attention focused elsewhere
4 B Speaking in high voice -> Speaking in a halting way
Effect 3: Different speakers have different responses based on listeners' behavior.
A Smiling - Frowning
> B Speaking -> Speaking fasterin a tense tone
6 A Smiling - Frowning
B Speaking -> Speaking slower with more eye contact

Fig. 1: Three complex scenarios of human interaction that can
be captured in our framework.

highly in Extraversion [14]. Non-verbal audio features such as
prosodic metrics, turn-taking frequency, and silence have also
been found to be valuable in analyzing human personality,
persuasiveness, and social status in the group [1], [13].

One major drawback to conventional analysis in this area is
that multiple feature modalities are typically (1) computed on
an entire-meeting basis, and (2) fused by simply concatenating
into one feature vector for correlation or prediction, with
little consideration for the temporal dependencies of different
behavior cues. This fails to capture important multiparty
dynamics. For example, the first row of Figure 1 shows a
situation in which the frequency and categories of behavior
cues of a listener (Person B) are the same while Person A
is speaking. However, the different orders of the same actions
actually reflect different attitudes (i.e., in scenario 2 the listener
conveys a more positive attitude compared to scenario 1). In
the other rows of Table 1, we illustrate that different responses
from a listener can change the way a given speaker reacts,
or conversely that the same listener response can provoke
different responses in different speakers. Clearly, aggregating
data on a per-meeting basis would lose these critical temporal
dependencies.

In this paper, we build upon the rich set of interdependent,
multimodal features that have been shown to be related
with key social signals. However, instead of naively fusing
frequency-based multimodal features for social signal analysis,
we model the sequential order of behavior cues within the
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Fig. 2: An illustration of multimodal event streams from multiple people in a group conversation. Each person has three data
tracks including text/language (T), visual (V), and audio (A). Within each track, we automatically extract key events such as
visual focus of attention given to one participant, large motion intensity, or loud/fast audio.

multiple tracks, temporally fusing the extracted features in a
timeline that allows us to better describe the co-occurrences
and successive occurrences of different cues. We believe this
provides a better basis for studying how a person’s behavior
and social status are dynamically shaped by the responses
received from his/her conversation partners.

In particular, we propose a unified end-to-end framework
to encode human interaction dynamics and automatically
estimate social roles in a four-person group meeting sce-
nario. As illustrated in Figure 2, group conversation involves
multiple behaviors from multiple people; categorizing these
cues into visual, audio, and text/language modalities results
in 12 simultaneous tracks. These tracks are the input for our
double-pyramid-shaped deep learning network. This consists
of a multi-stack temporal information loading module for
individuals® visual, audio, and language data and a frame-
level temporal fusion module for intermediate results extracted
from multiperson data. These are followed by a group-level
interaction dynamics encoder for generating a representation
of the four participants’ behavior during the meeting, and
a quadruple branch with fully connected layers for jointly
estimating the four participants’ social roles. This network
allows us to explore interpersonal and intermodality effects in
group discussion. The key contributions of our work include:

o Comprehensive temporal modelling. We model the
interaction order in a multimodal multiparty meeting,
considering the timing, speed, and interleaving of co-
occurrences and successive occurrences of multiple social
behavioral cues.

« Interaction-based group behavior analysis. When in-
vestigating the social role of the target subject, we con-

sider both the behavior of the subject him/herself and
the response from others interacting with him/her, which
helps us to more accurately estimate the dynamics of the
social roles.

« Unified, extensible framework. We develop an end-to-
end framework using a meeting representation encoder
for integrating behavior cues with temporal dependencies
for multiperson data. While we study the problem of
social role estimation in this paper, the framework would
be directly extensible to other social signal analysis
such as meeting highlight detection, meeting sentiment
analysis, and emergent leadership/dominant contributor
detection.

o Interpretable model. We visualize the variable-level
importance of the trained model to interpret important
features, providing a way to select the most relevant
feature sets for future study.

To the best of our knowledge, this is the first attempt to
design a unified framework for frame-level temporal fusion of
multimodal data, jointly learning about multiple participants
and their mutual effects on each other in group conversation.
We evaluate our model on the widely-used AMI corpus
[15] and demonstrate that we achieve better accuracy than
competing state-of-the-art algorithms.

II. RELATED WORK
A. Features for behavior analysis

Many multimodal features have been proposed for auto-
matic group behavior analysis. Frequently used features in
the vision domain include visual focus of attention (VFOA)
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estimated from head pose and eye gaze [12], [13], [16], body
movement [6] estimated by motion energy images (MEI) and
motion history images (MHI) [17], and facial expressions
encoded by the Facial Action Coding System [18], [19]. Based
on facial muscle movements or basic facial expression classes
like smiling or laughter [20], texture features extracted from
the face region have also been used to estimate apparent
personality traits [21] for a job screening process.

In the audio domain, prosodic features to describe tone,
stress, or thythm including pitch, energy, zero-crossing rate,
and mel frequency cepstral coefficients (MFCC) [1], [13], as
well as structural features including binary speaking status and
speaking length [1], [22], have been proposed. In the language
domain, the occurrences of key semantic words like “great”
or “yes” are counted using Linguistic Inquiry and Word Count
(LIWC) [22], and word embedding models are applied to
convert the spoken words into a multi-dimensional vector [23].

Typically, meeting-wide features are computed in a sta-
tistical form based on per-frame cues, e.g., the mean and
standard deviation of the average motion intensity during the
meeting [2], [3], the percentage of time that large motion is
observed [1], [6], the percentage of time that the target subject
is looking at or being looked at by a group member [16], or
the percentage of time that two group members have mutual
gaze interaction [12], [13]. These aggregated features are then
used in further correlation analyses and/or prediction models,
e.g., to estimate personality traits or emergent leadership.

B. Social signal estimation algorithms

Given a set of meaningful multimodal features, various
machine learning algorithms have been developed for auto-
matic behavior analysis and social signal prediction. Sanchez-
Cortes et al. [6] used the statistics of head/body motion
and binary speaking status during a meeting along with
audio/visual features to infer the emergent leader in group
meeting using Support Vector Machines (SVMs) and the
iterative classification approach (ICA). Staiano et al. [16]
computed acoustic features and VFOA features at each video
frame and applied Naive Bayes, Hidden Markov Models, and
SVMs to predict the personality traits of the group members.
In our group’s previous work [12], [13], we applied Pearson
correlation analysis and linear prediction to uncover the rela-
tionship between individual features and emergent leadership,
personality, and contribution. We also considered the timing
of the occurrences between participants’ body, hand, and face
movements for personality trait prediction [24]. Several end-
to-end convolutional neural networks (CNNs) have also been
developed for specific estimation purposes including a deep
residual network for first impression analysis based on videos
[25] and an ensemble regression framework for analyzing
personality traits in single-person short video sequences [26].

Our work differs from these existing approaches in that
instead of using frequency-based feature measurements, we
perform a temporal fusion of the multimodal features to better
model the feature dynamics over time, enabling us to take
informative interpersonal interactions into consideration.

C. Multimodal fusion algorithms

Various fusion methods have been proposed to integrate
multiple modalities. With respect to the level of the fusion
layer, the early fusion method was proposed for feature-
level combination [27]-[29], in which different modalities
are combined into a single feature vector before being fed
into any learning model. This approach is able to maintain
the concurrence and correlation between different dimensions
of the features, although problems may arise if the features
in different modalities have different sampling rates or are
hard to synchronize. Late fusion methods were proposed for
decision-level combination [30]—[33], in which an individual
classifier for each modality is trained and the final prediction
is determined by the average or majority vote of all the
individual classifiers. Late fusion can be more flexible in terms
of the selection of the specific individual prediction model for
each modality compared with early fusion, but it could lose
important interaction information in the early stages. Hybrid
fusion [34]-[36] is designed to combine the benefits of the
two mechanisms, in which multiple fusion layers are designed
and entangled to obtain the final prediction. Besides direct
feature concatenation in early fusion or score combination
in late fusion, learning-based methods for intermediate-level
fusion have been proposed [37], [38]. In particular, multiple
kernel learning [38] has been used to investigate which kernel
function is better for modeling the inter-modality interaction.
A neural network fusion layer [39] is designed for taking
hidden representation features in two or three modalities as
input and learning a fusion model for generating a joint
representation.

In terms of aggregation strategies when feeding the multiple
inputs to the neural network fusion layer, concatenating the
intermediate features [40] is one of the most common methods.
This provides a way to exploit the dependencies between
different dimensions of the intermediate features and allows
flexibility in the selection of the optimal neural network
architecture. While concatenation can lead to extremely large
vectors, Ortega et al. [41] proposed additive aggregation
schemes for multiple modalities and then trained a neural
network fusion model on top of the summation. Vielzeuf et
al. [42] proposed that the combination of a classifier trained
on unimodal features and a classifier trained on the weighted
sum of hidden representations in different modalities can
boost performance. Similarly, a multiplicative method [39] was
proposed to help reduce the model size while maintaining the
important correlations between different modalities.

In our work, we focus on neural network-based fusion meth-
ods for multiple modality integration and explore different
aggregation strategies for the modalities to be fed into the
neural network.

III. SOCIAL ROLE ANNOTATION IN THE AMI CORPUS

We conduct our research on the AMI corpus [15], in which
participants have a natural group discussion about a new
design project and are recorded by multiple sensors. Figure
3 shows a snapshot of one meeting in the AMI corpus. Four
participants sitting on two sides of the table were given a topic
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to discuss, and each individual was recorded by a frontal-
facing camera and a headset microphone.

Fig. 3: In the AMI corpus, four participants sitting on two sides
of a table were given a group discussion topic and recorded by
individual frontal-facing cameras and headset microphones.

According to the annotation by Sapru and Bourlard [22],
while the social role of each individual varies throughout
the meeting, it can be modeled as constant during a thin
meeting slice. In their annotation, 59 meetings with an average
length of 0.57 hours were selected. Each meeting was cut
into several thin slices and 37.7% of the data was annotated
for dynamic social roles. In every meeting slice, each of the
four participants was classified into a social role based on the
following definition:

Protagonist: A participant who takes the floor and leads
the discussion.

Neutral: A participant who acts as a listener and accepts
others’ ideas passively.

Gatekeeper: A participant who encourages communication
and acts as a mediator.

Supporter: A participant who acts in a cooperative way and
provides support to others’ ideas.

Attacker: A participant who deflates others’ status.

Different participants in a meeting slice can have the same
social role. The annotated data contains 1714 meeting slices in
total with an average length of 27.16 seconds and a maximum
length of 51.04 seconds. The meeting slice length distribution
is illustrated in Table I.

TABLE I: Lengths of the thin AMI corpus meeting slices
containing social role annotation by Sapru and Bourlard [22].

Slice length (seconds) | Counts (percentage)
0-10 0.7%
10-20 0.9%
20-30 73.9%
30-40 16.5%
40-50 5.0%
50-60 3.0%

IV. PROPOSED APPROACH

As shown in Figure 4, our proposed approach consists of a
set of multimodal feature descriptors and a double-pyramid-
shaped network. The network contains modules for multi-stack
information loading and alignment, temporal fusion, encoding
group-level interaction dynamics, and deciding individuals’
social roles. In the following sections we describe the different
modules in more technical detail.

A. Multimodal feature descriptors

As shown in Figure 5, instead of feeding raw image or audio
data into the framework, we use a set of off-the-shelf feature
descriptors that have been shown to be closely related to social
behaviors.

1) Visual features: For each video frame, we consider 4
different dimensions of visual features including facial expres-
sions described by facial action units, head pose and eye gaze
angles, visual focus of attention (VFOA), body movement, and
physical facial appearance.

Facial expressions. We use the OpenFace toolkit [43] to
compute the intensity value ranging from 1 to 5 for 17 action
units such as inner brow raiser, cheek raiser, nose wrinkler,
lip corner puller, or lid tightener.

Head pose and eye gaze behavior. We compute the head
pose roll, pitch and yaw angles and the eye gaze direction in
azimuth and elevation with respect to the individual recording
camera using OpenFace, resulting in a 5-dimensional vector
for each video frame. The angle vector is then fed into our
previously proposed VFOA estimation model [13] trained on
the AMI corpus to identify the visual target for each participant
in the group. The possible targets can be “group member
straight ahead”, “group member to the left/right”, or “group
member in the diagonal direction”, as well as non-person
object classes including “table”, “slide screen”, “whiteboard”
and “other”.

Body movement. We calculate the motion intensity and
the number of independently moving parts for each participant
based on the motion template MEI [44], [45] over a short time
window. The motion intensity and the number of moving parts
are normalized by their maximum value during the meeting to
eliminate the effects of environmental factors, thus reflecting
the degree of movement relative only to the current meeting.

Physical facial appearance. We extract appearance-based
facial features using OpenFace, consisting of 34 non-rigid
shape parameters and the scale, rotation, and translation values
based on the point distribution model (PDM).

The visual feature set for each participant is computed at
every video frame and concatenated into a 65-dimensional
feature vector. We use Vj; to denote the visual feature set
of participant p € {1,2,3,4} at the i-th video frame of the
meeting slice.

2) Non-verbal audio features: We measure the loudness,
noisiness, brightness, timbre, pitch and rhythm of the sound
signals. We also use an audio signal analysis toolkit [46]
to extract short-term metrics for additional audio features
including zero-crossing rate, energy, entropy of energy, spec-
tral centroid, spectral spread, spectral entropy, spectral flux,
spectral rolloff, MFCCs, Chroma coefficients and the standard
deviation of Chroma.

When computing the audio features, the window size is
set to be 50 milliseconds and the window step is set to be
40 milliseconds, resulting in 25 sets of features per second,
which exactly aligns with the video frame sampling rate
of the AMI corpus. Concatenated with the binary speaking
status “speaking” or “silent” at the current video frame, we
compute a 35-dimensional audio feature set A,; for participant
p € {1,2,3,4} at the i-th video frame of the meeting slice.
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Fig. 4: Our framework contains a set of feature descriptors and a double-pyramid-shaped deep learning network that includes
modules for multi-stack information loading and alignment, temporal description, encoding group interaction, and determining

individuals’ social roles.

3) Language content embedding: We apply the GloVe word
embedding model with a vocabulary size of 1.2M trained on
Twitter data [47] to convert each word in the group discussion
transcript into a 100-dimensional word vector. For each
vectorized word W, we record the start time ¢y and end time
t1 and the corresponding start video frame index ny and end
video frame index n, for further alignment with visual and
audio features. We convert contractions into multiple words
and split the corresponding time window equally for the
resulting multiple words. For example, the word we’ll with
time window [ng,n1] is converted into we with time window
[no, (”OQil)] and will with time window [(”L;”), ny]. There
are several unknown words in the AMI transcripts with no
sentiment or attitude meaning such as button or wheel; we
assign the average value of all the vectors in the GloVe model
as their text vector.

B. Multi-stream data alignment and loading module

Different modalities have different sampling rates. In par-
ticular, the audio and visual feature sets are extracted at a
frame rate of 25 frames per second while the language content
is more sparse. We align the sparse text vector to the dense
audio/visual ones by duplicating it during the appropriate time
window. Specifically, suppose that from video frame ng to

mﬁ
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Fig. 5: A set of feature descriptors are used to extract video
and audio features, and to convert each word in the transcript
into a vector.

ny participant p is speaking the word W. To align the text
vector W with the audio and visual feature sets, we copy
the vector W from ng to ny resulting in a text feature set
T, = W,i € {ng,n1} for participant p € {1,2,3,4} at the
i-th video frame of the meeting slice.

In this way, we extract aligned visual, audio, and text feature
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Fig. 6: Multimodal features are aligned based on the video frame sampling rate.

sets at 25 frames per second, which are then aligned with the
annotation output label for the thin meeting slice.

The seating arrangement in a group meeting can also reflect
and affect the social status and relationship between group
members [48], and the VFOA class in the visual feature
set is also relative to seat position. Thus, we encode each
participant’s spatial position in the data loading module in the
order lower right person, upper left person, lower left person,
upper right person.

For each meeting slice, we thus populate the data loading
module with 12 tracks of feature sets in a specific seat order
for further fusion and analysis. The whole process is illustrated
in Figure 6.

C. Multiparty interaction representation learning module

After the multiple tracks of feature data are loaded into
the temporal and multiparty fusion modules, we perform three
levels of temporal feature fusion to learn a joint representation
for multiparty interaction cues as described below.

Intra-modality temporal fusion. Within one track x? of the
data stream, we apply bi-directional long short term memory
(LSTM) [49], [50] units to encode the individual temporal
information for behavior cues. Taking the visual track of one
participant as an example, in the forward direction, the visual
feature ! at timestamp ¢ consists of facial expression e?, head
pose and eye gaze behavior g, movement m’, and physical
shape appearance s.

o’ =[e',g',m', s'] (D

The input gate i* at timestamp ¢ is determined by the current
input feature vector ' and the past hidden state h!~1!:

i = o (Wi[h'™1 2"+ b)) )

where W; is the weight matrix, b; is the bias vector, and o is
the non-linear activation function. For the backward direction,
the states are updated using the same equations with reversed
inputs.

The multiple dimensions of the visual track are mixed
at this step by being multiplied by the weight matrix W;,

thus capturing the co-occurrences for different dimensions in
the visual modality, e.g., having large body movement while
looking at others.

The forget gate f; is determined by the current input feature
x' and the past hidden state h*~! with weight matrix W} and
bias vector by:

fi=o(Wh'™t 2 +by) 3)

The combination of the input feature =¥ and the information
from past hidden state h‘~! are multiplied by the weight
matrix W, and added to the bias vector b., and fed into a
tanh function to get a new candidate cell Ct:

C = tanh(We[ht ™1, z!] + be) 4)

Next, the new state cell C* is updated base~d on the old state
cell C*~! and the new candidate state cell C*:

Cl=frxC" +it«C (5)

Finally, the hidden state at the current timestamp ¢ is
computed based on the new state cell C* and the output gate
o' determined by the weight matrix W, and bias vector b,.

o' = o (W,[h'™ ", 2" + b,) 6)
ht = o % tanh C* @)

In this way, the output hidden units for timestamp ¢ are
dependent on the information of timestamp ¢t—1, thus encoding
the historical information along the timeline and enabling us
to capture successive occurrences across multiple dimensions
within one modality, e.g., smiling after head nodding.

Inter-modality feature fusion. For the visual, audio and
text tracks of a single participant, in the time window [1,¢],
we aggregate the intermediate results Vip,,,, Atp,.,, Ttn,., Of
the hidden units in the forward direction as well as the hidden
states Vip,.,, Abhy., s Toh,,, in the backward direction after the
bi-directional LSTM layers via channel concatenation and then
feed them into the neural network fusion module to encode
inter-modality information for each person.

Figure 7 shows the inter-modality dependency capturing
mechanism using the neural network. In this way, multiple
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feature modalities during time window [1,t] are fused, thus
capturing the mutual effects of different tracks, e.g., saying
“Great!” with an excited tone while giving visual attention to
others and head nodding, or showing lip corner depressor after
saying “Really” with a disagreeable tone.

Temporal Neural Network
descriptor fusion module
ok Ne P
t > LST™M 3
tk 7 ° @
i . sTM — ‘@ Joint multimodal
tk 1 I :' representation
tk \ L
t > ISTM  — .
T e

V-Track A-Track T-Track

Fig. 7: Neural network-based inter-modality fusion.

Inter-personal feature fusion. Similarly, we include inter-
personal effects in the concatenated layer and combine them
into the neural network fusion model for joint consideration.
Hidden states after the LSTM layer in all visual, audio,
and text tracks among the four participants are mixed and
fed into the batch normalization layer, followed by a set of
fully connected layers to obtain the encoded representation
vector x for the four participants’ dynamic interaction cues.
Specifically, we use K to denote the input to the neural
network encoder, and the joint representation x is computed
as

xX=0 ((W")tH" + b") (8)

where H'!,1 € {1,2,...,n} represents the intermediate result
in one fully connected layer in the neural network

Hl - ((Wl—l)tHl—l + bl—l) (9)

H™ = o (W72 172 40172 (10)

H =0 (WK +b')
t (10
= o (W) [y, Ko, K, K] + 01
where
Ky = Vingar Atnrs Tho

Vihioes Abhy s Tohy o]
pe{l,2,3,4}

12)

Therefore, through learning the mutual effects with the neu-
ral network, we are able to capture inter-personal dependencies
during the group meeting, e.g., while person 1 is speaking,
person 2 is smiling at first, but as the speech continues, person
2 seems to become confused with visual attention given to
the paper on the table and brow going lower. Person 1 then
changes her speaking speed to be slower and her tone becomes
softer.

D. Decision-level branching module

Based on the encoded interaction dynamics vector, we then
design a quadruple branching module for more dedicated
inference for each person. The meeting dynamics represen-
tation vector is fed into individual fully connected layers in
each branch. A one-hot label for the four possible social role
classes for each participant is constructed. To jointly predict
the dynamic social role for the four participants in the group,
we use the cross-entropy loss for each branch in the network,
and our final loss function is defined as the sum of losses on
all four participant branches:

4 4 4
L(Y7 Y) = ZL:D = Z <_ Zyo,CZOQ(Qo,C)> (13)

p=1 c=1

where ¢ € 0,1, 2,3 is the class index, o is the sample index,
Yo,c 18 the binary ground truth indicator for sample o to be in
class ¢, and g, . is the predicted probability for sample o to
be in class c.

E. Network Structure and Implementation Details

Figure 8 illustrates the details of our network structure.
Two LSTM layers are designed for each of the visual, audio,
and text tracks; the input dimensions for the LSTM layers
are 65, 35, and 100, which correspond to the input feature
dimension for each modality of data. The aggregated multi-
modal multiperson data is then fed into fully connected layer
to encode the meeting representation vector containing the
information about multiparty interaction dynamics. Each of
the quadruple branches consists of 4 fully connected layers
with a ReLu activation function for non-linearity modeling.
Cross-entropy loss is applied for each of the branches and
the Adam optimizer is applied to minimize the loss function
during the training process.

During training, we select the batch size to be 56, the initial
learning rate to be 0.0001 with a decay factor of 0.1, and the
drop out rate to be 0.5. The model is trained on an Nvidia
RTX 2080 Ti machine and it takes about 1.5 hours for one
round of the training process to converge.

V. EXPERIMENTAL RESULTS

We evaluated our algorithm on 59 annotated meetings in
the AMI corpus. Since the meeting is conducted in a group
discussion scenario, as suggested in [22], we filter out the
slices with the role annotation of Attacker, which account
for less than 1% of the data, and use the rest of the data
for training and evaluation. Following the same train/test data
splitting scheme in [22], we do a K-fold validation to test
the effectiveness of our network with K = 22. We randomly
partition all of the meetings into 22 groups. During this
process, we strictly follow the rule that the same participant
is never in both the training and testing set at the same time,
and that thin slices belonging to the same meeting will never
be in both the training and testing set at the same time.

Within each round of validation, we select one group as the
testing set and the remaining 21 groups as the training set.
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Fig. 8: Multiple tracks of feature data are fed into the LSTM units for temporal dependency extraction and fused together to
obtain a unified representation vector. A quadruple branch is designed for jointly estimating individuals’ social roles.

We run the validation for 22 rounds and compute the average
value of the testing set accuracy in the 22 rounds as the final
testing accuracy.

We compute both the F-measure and overall accuracy
for our social role classification results. Specifically, for
each meeting slice, the predicted result is denoted by
{914, J2i, U3i, Yai } and the ground truth label is denoted by
{Y1i, Y2, Y3i, Yai - The accuracy for validation round % is
calculated as

Acey, =

- (14)

AN —4 .

Z Zszl(yrsi = yrsi)
4

i=1

where ¢ € [1, N] is the index for the meeting slice, N is the

total number of slices in the testing set, and s is the index of

the participant in the group conversation. The F-measure of

role r for validation round k is calculated as

Precision * Recall

F,=2 15
4§ * Precision + Recall (15)
The final average accuracy for K-fold validation is
K
A
AcCinal = k=1 Acck (16)

K

A. Feature Importance Analysis

We first explore the importance of the features within each
track. Following the procedure in [51], [52], we block out
different dimensions of the variables and evaluate the change
in the loss function. For each feature dimension to be blocked
out, we perturb the original value with additive white Gaussian
noise, apply the original model to the perturbed feature set,
and compute the prediction loss. A larger change in the loss
function means that an important variable has been blinded
out. Specifically, the original input to the network ¥ contains
the multimodal feature X for each of the participants p €
{0,1,2,3}, where X = [Xg, X1, ..., X37] contains 38 different
features including 25 visual features, 12 audio features, and 1
text feature. The original prediction for input X is

Y =9(X) 17

For the m!M feature to be blocked out, the variance of the
additive white Gaussian noise ¢,,, for variable X,,, is modeled
as

o? = (as)? (18)

where s is the maximum amplitude of X,, and o = 0.1 in
our experiment.
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Fig. 9: Feature importance heatmaps created by blocking out individual dimensions.
The prediction for the perturbed input X = For the audio feature set, we observe that MFCC coefficients
(X0, X1,y (X + €m)y Xint1, oy X37] i have the largest importance, indicating that the rthythm of the
- - speech plays a crucial role in social interaction signaling.
Y = ¥(X) (19)  The entropy of energy also has a large weight, indicating
. . that the loudness of the speech helps shape social functional
The importance score for the m™ feature is defined as p p p . .
roles to some degree. The flag for whether the participant is
¢(m)=|L(Y,Y) = L(Y,Y)| (20) speaking also has a reasonably high weight, which is in line

Since there is no semantic meaning to the individual dimen-
sions of the 40-dimensional physical appearance/deformation
parameters or the 100-dimensional embedded word vector, the
blocking-out strategy is not applied for them here.

For the 22-fold validation, we calculate the loss changes on
the 22 different testing sets and average them to get the final
feature importance score for each variable. We then visualize
these importances in the heatmaps shown in Figure 9, in which
the color depth indicates the level of importance.

We observe that among the visual features, VFOA plays
an important role in recognizing social interaction dynam-
ics, which corroborates the existing literature that VFOA
has strong correlations with personality traits and perceived
leadership score [13]. Among the facial action units, “Lid-
Tightener”, “Lip-Tightener”, “Lip-stretcher”, and “Lip-Corner-
Depressor” are the most important. The number of inde-
pendently moving parts is more important than the overall
movement intensity. The head yaw has the largest importance
across the eye gaze and head behavior.

with existing findings [1], [22] that metrics related to speaking
status such as speaking length and interruptions are closely
related to group behavior. For the spectral dimension of the
audio signal, spectral entropy and spectral rolloff are more
important, indicating that the brightness of the speaker’s voice
can also affect the social interaction status.

B. Network Structure Analysis

We now further investigate the effectiveness of our model
architecture by removing the intra-modality fusion, inter-
modality fusion, or inter-personal feature fusion structures
so that the multimodal multi-feature and multiparty co-
occurrences oOr successive-occurrences cannot be captured in
the baseline models. The details are as follows:

SMM: Single features, multiple tracks, and multiple partic-
ipants. This baseline is designed to verify the importance of
the intra-modality co-occurrence mechanism. For each of the
visual and audio tracks, there is only a single feature within
that track. Based on the analysis in the previous section about
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the importance of subfeatures in the visual and audio tracks,
the visual track only contains the action units features and
the audio track only contains the MFCC features. We do not
remove any features in the text track since it only contains the
GloVe word embedding features for the transcript.

MSM: multiple features, single track, and multiple partici-
pants. To verify the importance of fusion among the multiple
modalities, we constructed a baseline without inter-modality
co-occurrences. The input variable for each participant only
contains a single track, either visual (MSM-V), audio (MSM-
A) or text (MSM-T).

MDM: multiple features, double tracks, and multiple partic-
ipants. We further investigate whether each pair of modalities
could be enough for representing interaction cues and whether
there are any redundant modalities for social role estimation.
This baseline involves limited inter-modality co-occurrences
for any two tracks including audio-visual (A+V), audio-text
(A+T) or visual-text (V+T).

MMS: Multiple features, multiple tracks, and single par-
ticipant. For this baseline, we consider the participants in the
same conversation separately. That is, the interaction between
participants is ignored and we predict each user’s social role
using their own single-user behavior.

Figure 10 shows the K-fold validation results for the
comparisons. Our proposed model is denoted by MMM,
representing the full model with multiple features, multiple
tracks and multiple participants. First, the comparison of our
proposed model (MMM) with the baseline models SMM,
MSM, MDM, and MMS shows that the prediction accuracy
is decreased when we remove the fusion mechanism from our
model, indicating that full joint consideration of modalities
and co-occurrences is effective and important for social role
prediction.

We note that the model with a single text track (MSM-T)
achieves much higher accuracy than the model with single
visual track (MSM-V) or a single audio track (MSM-A),
showing that the transcript can reveal more information about
social role relationships between group members. Addition-
ally, the combination of audio and visual tracks (MDM-A+V)
has better performance than the audio or visual track alone,
indicating that while they have similar prediction accuracies,
the two modalities provide complementary information.

The full triple-track model (MMM) surpasses all the double-
track models, indicating that the combination of the visual,
text and audio modalities is necessary for providing com-
prehensive interaction cues for the task. The single feature
model (SMM) shows that co-occurrent or successive-occurrent
features within a single track can be useful for describing
complex behavior patterns. Furthermore, the single-participant
model (MMS) can only reach 67% accuracy. while integrating
behaviors and interactions between multiple group members
improves the accuracy to 78%. This reflects the intuitive idea
that one’s social role is affected by others’ behavior and
responses.

C. Effectiveness of Quadruple-Branching Structure

We further verify whether the quadruple branching module
on top of the joint representation vector is necessary to model

0.8 q
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Fig. 10: Comparing the full model against various baselines
with aspects removed.

the social roles of the four participants. Specifically, we feed
the meeting dynamics representation vector into one set of
neural network layers to predict a multi-output vector and use
the cross-entropy loss for the unified classification task on 4
participants. We found that the quadruple branching module
achieved an accuracy of 78% while the multi-output approach
only achieved an accuracy of 73%.

D. Comparison with End-to-End Deep Learning

We next implemented two deep learning methods to in-
vestigate whether top-performing end-to-end models in video
classification could achieve better results on our task compared
with our structure, which learns a deep learning model on top
of well-defined features.

C3D: Convolutional 3D network [53]. This baseline utilizes
a 3D convolution module to help preserve temporal informa-
tion between consecutive frames. Spatio-temporal features are
extracted that capture human appearance, human action, and
human-object interaction. We uniformly sample each input
video to generate a set of images that represent the video
clip compactly. The image set is then fed into 8 convolutional
layers with 5 pooling layers and 2 fully connected layers to
get the final classification result.

3DRes: 3D Residual network [54]. This baseline employs
residual blocks on a convolutional 3D network containing
5 convolutional layers and 1 fully connected layer. Similar
to C3D, the original video slice is uniform sampled to get
a set of images with fixed length. From the second to the
fifth convolutional module, shortcut connections are created
by residual networks to bypass the signal at the top of the
module, and the signals are summed from the top to the tail.

Since the C3D and 3DRes models require an abstraction
parameter [, the length of the set of images for representing
the original video clip, we vary this parameter and compare
the best-obtained results with our proposed model (MMM).
According to the results reported in Table II, despite their good
performance on large-scale action classification, the C3D and
R3D models performed quite poorly on social role prediction.
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This is understandable since these two models take a set of
images as input instead of considering features during the
whole video clip. Crucial moments for the formation of the
social roles are likely left out, and critical information from
the audio and text modalities is never considered.

TABLE II: Comparisons with C3D and 3DRes.

Model Accuracy
C3D 0.18
3DRes 0.09
MSM-V 0.50
MMM 0.78

We noticed that while increasing the number of images
for video clip representation does improve the accuracy, this
approach is limited since the input vector is fed into the 3D
convolutional layer, requiring a huge number of parameters
to be learned. Additionally, unlike the relatively unambiguous
labels in action classification, social roles are far more subtle
and difficult to infer by visual features only, which we showed
earlier by looking at the poor accuracy of the baseline model
MSM-V.

E. Classification Accuracy Analysis

We next compare the performance of our model with the
reported accuracy in the existing literature.

Mboost: Multiclass Boosting. Sapru et al. reported results
on a subset of the AMI corpus containing 5 meetings using
a multiclass boosting algorithm [55]. One-level decision trees
are utilized as weak learners using a feature set consisting of
prosodic, turn-based structural, and lexical features.

DBN: Dynamic Bayesian models. Vinciarelli et al. em-
ployed dynamic Bayesian models [56] on the same subset used
in [55]. Dependencies between social role and speaker turn-
taking patterns, prosody features, and speaking turn duration
are integrated into the dynamic Bayesian network whose
parameters are estimated using maximum likelihood.

HCRFs: Hidden conditional random fields. The state-of-
the-art result for social role classification was reported by
Sapru et al. [22] using hidden conditional random fields.
This model includes features from both long-term (around 30
seconds) and short-term (around 2 seconds) windows. During
the long-term window, acoustic features and structural features
including total speech time, total number of turns, and statistics
like maximum, minimum, or standard deviation value of those
numbers are extracted in conjunction with linguistic features
for language style representation. The prediction for the social
role is determined by both the relationship between the role
and the observed features and the role transition probability
between adjacent meeting slices. Parameters are estimated by
maximizing the conditional log likelihood of the role sequence.

Table III shows our K —fold validation results. We improve
the total accuracy from the state-of-the-art result 74% [22]
to 78%, demonstrating the effectiveness of our model. Ad-
ditionally, since the existing approaches only consider clip-
level statistics instead of the frame-level interaction cues in our
proposed model, the comparison indicates that temporal inter-
action dynamics and mutual effects across multiple modalities
are important.

One difficulty with the dataset is that the class distribution is
unbalanced [22], The Neutral and Supporter roles comprise the
majority of the labels (49% and 28%), while the Gatekeeper
and Protagonist roles account for fewer labels (14% and 9%).
Our model’s 0.63 F-score for Protagonist demonstrates that
in addition to the overall high accuracy, our model is able
to correctly identify the small amount of data with this class
label.

We note that our F-scores on the Supporter and Gatekeeper
roles are lower than HCRFs. We hypothesize that the differ-
ence in performance on these two classes is due to the type of
features used by the HCRF method, specifically the Linguistic
Inquiry and Word Count (LIWC) features [57], [58] for
text analysis that include more subjective and psychological
aspects of words. These aspects might be more relevant to the
Supporter and Gatekeeper roles, which have a more emotional
component than the Protagonist and Neutral roles. We also
observed that the Gatekeeper and Supporter roles are less
likely to change slice-to-slice, making them easier to predict.

FE. Strategies for Multimodal Fusion

In our proposed model, intermediate features produced from
the bi-directional LSTM layer for different modalities are
aggregated via channel concatenation and then fed into a set of
neural network layers to learn a joint meeting dynamics rep-
resentation. Specifically, the intermediate result after the first
fully connected layer when learning the joint representation
H' is computed as

H=o ((W)'K+0") @1)
where K is the aggregated intermediate features.

Here, we further explore other options for aggregation that
could improve the performance or reduce the model size
compared with concatenation. The details are as follows:

ADD: Proposed NN-based fusion + Additive aggregation.
For this baseline model, outputs from the bi-directional LSTM
layer are summed up and the neural network fusion module
is trained to learn a meeting dynamics vector. The aggregated
intermediate feature set for each participant p is described as:

_ thlzt + Afhlzt + Tfhlzt
%hht + Abhl:t + Tbhl:t

Strategy S; in Figure 11 shows the additive fusion mech-
anism. The joint representation vector is then fed into the
same quadruple branching module for individual social role
prediction.

MULT: Proposed NN-based fusion + Multiplicative ag-
gregation. Multiplicative aggregation is applied to the neural
network-based fusion layer for inter-modality feature inte-
gration. Element-wise multiplication is performed across the
hidden units for the three modalities. Strategy Ss in Figure 11
shows the multiplicative fusion mechanism.

K, (22)

|\ Vinia * Agny * Tenyy

K. —
Voo * Abhy.y * Tohy.,

p

(23)

TextADD: Proposed NN-based fusion + Text-assisted ad-
ditive aggregation. According to the experimental results in
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TABLE III: K-fold validation on the AMI corpus for social role detection

Per-role F-measure

Model Accuracy
Protagonist ~ Supporter  Neutral ~ Gatekeeper
Mboost [55] 0.74 0.62 0.46 0.37 66%
DBNs [56] — — — — 68%
HCRFs [22] 0.62 0.79 0.75 0.64 74%
Proposed 0.63 0.71 0.89 0.60 78 %
Neural Network fusion module
S,: MULT
t+k
t —> LSTM - ® ® =
t-k
t+k / __,  Joint multimodal
t —  LSTM representation
t-k
+ + =
t+k
t — LSTM — et
t-k
S3:TextADD

Fig. 11: Neural network-based inter-modality fusion using various aggregation strategies.

Section V-A, the text track contains more information than
the audio or visual tracks. Since additive aggregation can lose
some delicate information in the individual tracks, inspired
by the work in [59], we construct a baseline model in which
the intermediate features in the three modality tracks are first
summed and then concatenated with the text track features
before feeding into the information fusion layer. Therefore,
the rich information in the text track can assist the aggregated
features via addition as well as reducing the model size com-
pared with full channel concatenation. Strategy Ss in Figure
11 shows the text-assisted fusion mechanism. Specifically, the
aggregated intermediate feature set K, for each paricipant p
can be computed as:

Vinie + Apnae + Trnos,
‘/bhlzt + Abhl:t, + Tbhl:t

Trhy.,
Toh,.,

K,

p:

(24)

Table IV shows the comparison results for different aggrega-
tion strategies. Since both the additive (ADD) and multiplica-
tive (MULT) methods are compressing the signals across mul-
tiple modalities, aggregating intermediate features via channel
concatenation (CONCAT) maintains the dependencies to a
greater degree, and our proposed method achieves the highest
classification accuracy. While CONCAT also has the largest
model size at 39.8MB, ADD has almost half the model size
while maintaining a good prediction performance of 77%
accuracy. Despite our hypothesis, text assisted channel con-

catenation (TextADD) did not show significant improvement,
achieving 75% prediction accuracy.

TABLE IV: Analysis of aggregation strategy in neural
network-based multimodal fusion.

Model Accuracy | Model size
ADD 0.77 20.3MB
MULT 0.73 20.3MB
TextADD 0.75 21.6MB
CONCAT 0.78 39.8MB

VI. DISCUSSION AND FUTURE WORK

We designed a unified framework for multiparty group
conversation dynamics to jointly estimate the dynamic social
role of four participants. We exploited the temporal informa-
tion across multiple modalities of the individual feature data
and the mutual effects across inter-personal feature data. We
evaluated our algorithm on the AMI group meeting corpus and
achieved better accuracy than the competing state-of-the-art.

In the short term, it would be worthwhile to integrate LIWC
features [57] into our text analysis framework in addition to the
GloVe word embedding, with the hope that the more psycho-
logical categories would have more bearing on interpersonal
dynamics and interesting relationships to gestures or facial
expressions in the video. In addition, it would be worthwhile
to explore more complex methods for intermodality feature
fusion. While the strategies in Section V-F generally treated
the modalities as independent streams, clearly the text and
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audio streams are more correlated with each other than either
is with video, and relationships between the streams may occur
across several seconds [48], [60]. While the LSTM in our
framework implicitly captures these time-offset relationships,
it may be interesting to find ways to explicitly associate video
events with key textual or non-verbal events (e.g., gestures that
may lead or lag the statement of a key idea) and give these
events additional weight.

One promising future direction is to extend this framework
to recognize highlights of the meeting in the temporal domain,
e.g., identifying the crucial moment at which the social func-
tional statuses of participants in the group are formed/changed,
or at which point an insightful idea is proposed that plays a
major role in shaping the group. Existing work on multimodal
highlight detection is mainly done in the context of sports
events, such as Joshi et al. [61] in which crowd cheer,
commentator excitement, and player celebration are detected
and a combined excitement score is used for determining the
important moments in golf games. Xiong et al. [62] proposed
an unsupervised approach for sports highlight detection in
which video duration is used as a latent signal and features
from short video clips are combined with features in long
videos for optimized inference. The challenge in detecting
highlights in a meeting scenario is that the context information
from the environment is limited, and the highlights in the
group discussion task are more complex and latent than in
a sports game.

In our scenario, identifying meeting highlights could help
us to detect “keypoints” in the temporal domain, supporting
automatic meeting summarization or abstract generation. It
would be interesting to develop a model for generating a
representation vector that encodes all the important interaction
dynamics for the thin slices of group discussion. This “feature
descriptor” for the multiparty meeting slice could then be
applied to different social dimension predictions including the
joint estimation of leadership scores, perceived contribution,
dominance, or Big-Five personality traits.
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