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ABSTRACT
Climate prediction is a very challenging problem. Many institutes
around the world try to predict climate variables by building climate
models called General Circulation Models (GCMs), which are based
onmathematical equations that describe the physical processes. The
prediction abilities of different GCMs may vary dramatically across
different regions and time. Motivated by the need of identifying
which GCMs are more useful for a particular region and time, we
introduce a clustering model combining Dirichlet Process (DP)
mixture of sparse linear regression with Markov Random Fields
(MRFs). This model incorporates DP to automatically determine the
number of clusters, imposes MRF constraints to guarantee spatio-
temporal smoothness, and selects a subset of GCMs that are useful
for prediction within each spatio-temporal cluster with a spike-and-
slab prior. We derive an effective Gibbs sampling method for this
model. Experimental results are provided for both synthetic and
real-world climate data.
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1 INTRODUCTION
The impact of climate change is becoming more and more promi-
nent. As a result, extreme weather events such as droughts, floods,
heat waves, snow storms and hurricanes, are causing more and
more damages to human society. This calls for an effective way to
predict the impact of climate change in the future to forecast natural
hazards and minimize damages. One way to achieve prediction is to
build climate models based on physics and mathematics to simulate
the dynamics of the atmosphere and produce predictive climate
variables such as temperature, precipitation and so on. During past
decades, climate models have been developed to forecast weather
in days, weeks or months [27, 28].
General Circulation Models (GCMs) are climate models that sim-
ulate climate processes over ocean and/or atmosphere. As GCMs
can simulate climate variables over a long time period (hundreds of
years) and over the whole globe under different climate conditions
(such as different carbon dioxide emission level scenarios), they
have served as important tools to analyze climate change. GCMs
can provide a reasonable prediction of climate change in a large
scale (global scale) [14], and have advantages in simulating circula-
tion patterns and long time projections [8, 32].
However, GCMs have some weaknesses. It is difficult to calibrate
the simulated variables with observed variables. A tiny difference
in boundary condition or initialization may cause a large differ-
ence in outcomes [19] due to the “butterfly effect”. As a result, the
GCM simulated data often do not agree with the observed data,
sometimes even very far away. Thus it’s not practical to use just
one GCM. There are many GCMs developed by different research
institutes, each with different models, boundary conditions and
initialization, and therefore, with different specialties. While GCMs
have consensus on large scale long time trend of climate change,
they have discrepancies in smaller scales. Specifically, some GCMs
maybe more accurate in some regions or time periods, but less accu-
rate in others. To deal with this problem, existing work often divide
the studied area into several regions and then deal with the regions
and then do the regression within each region [13, 20, 34]. But this
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division may be incorrect or improper. Besides, they assume that
within each region, the relation between GCMs and observation is
time invariant, which is questionable.
Motivated by the problem associated with GCMs above, we propose
a method that combines Markov Random Fields (MRF), Dirichlet
Process (DP) and spike-and-slab prior to predict precipitation based
on the provided GCMs predictors. Our proposed model can auto-
matically divide the spatio-temporal data into clusters based on the
specialties of GCMs, automatically determine the number of clus-
ters, and discover the most relevant GCMs that used for prediction
in each cluster. The main advantage of our method over existing
multi-GCM methods lies in three aspects. First, we don’t have to
manually divide the studied areas into several regions, instead we
let the data speak for themselves. Second, we extend the spatial di-
vision (clustering) into spatio-temporal division (clustering), which
can deal with time variant relation within regions. Third, unlike
some clustering methods such as k-means that performs cluster-
ing based on just observation, our method performs the clustering
based on the relation of GCM and observation, which is suitable
for the problem we want to solve and more accurate. The climate
is a dynamic system which changes over time. Two different lo-
cations may have different situations in the past but evolve to a
similar situation in the future, or vice versa. Our proposed scheme
of spatio-temporal clustering can handle this problem.
The rest of the paper is organized as follows: Section 2 presents an
overview of the related work. In Section 3, we summarize our contri-
butions. The building blocks of our model are introduced in Section
4. We describe our model in Section 5 and perform experiments
and analysis in Section 6. Section 7 gives the conclusion.

2 RELATED WORK
There exist some statistical approaches and machine learning ap-
proaches that analyze GCMs for various purposes [2, 12, 13, 20,
22, 24, 25, 34]. O’Gorman and Dwyer [24] explored the implication
of incorporating machine learning approaches in climate models.
Smith et al. [34] proposed a Bayesian method to combine different
GCMs and analyzed the uncertainty of climate model projections of
temperature. Kumar et al. [20] compared the trend and variability of
Coupled Model Intercomparison Project (a collaborative framework
for studying GCMs) Phase 3 (CMIP3) and CMIP5 data by pairwise
and multi-model comparisons for 11 models. Greene et al. [13] stud-
ied the regional temperature change projections using Bayesian
linear model of multiple GCMs. O’Gorman and Schneider [25] ana-
lyzed the change of precipitation extremes using multiple models
in CMIP3. Gonçalves et al. [12] proposed a multitask learning based
method called Multi-task Sparse Structure Learning (MSSL) which
regards each location as a task and estimate the sparse task param-
eters matrix and task relationship structure using L1 regularization.
Bahadori et al. [2] formulated the spatio-temporal data as tensors
and imposed low rank regularization and spatial Laplacian regular-
ization on the tensor to account for shared structures in variables.
There exist some methods to combine multiple GCMs [2, 12, 34];
however, none address learning spatio-temporal clusters. Further-
more, our approach also simultaneously identifies which GCMs are
more useful for each cluster.
We are inspired by the success of applying MRF and DP in the

analysis of time series and spatial data. Basu et al. [3] used Hidden
MRF in semi-supervised clustering to incorporate domain expert
knowledge. Orbanz and Buhmann [26] proposed a method com-
bining MRF and DP to impose spatial smoothness constraints in
image segmentation and to automatically determine the number of
segments. The method did not involve temporal constraint which
needs a careful design together with spatial constraint. Ross and Dy
[33] used MRF to represent must-link and cannot-link constraints
in a disease subtyping problem. They also used DP to learn po-
tentially meaningful disease trajectories in a nonparametric way.
But it must specify pair-wise constraint for must-link and cannot-
link data points. This maybe impossible or improper in the climate
field. More recently, Prendes et al. [29] introduced a model based
on DP combined with MRF to detect changes between heteroge-
neous images. There also exist time switching models [4, 5, 10]
using Markov models. However, none of these models could simul-
taneously perform spatial and temporal clustering. Although [16]
clustered data in both space and time by proposing a method called
Multivariate Spatio-Temporal Clustering, it essentially just applied
k-means in the data space. In addition, our model also incorporates
the spike-and-slab technique, which is a Bayesian variable selection
technique that has been widely used to select variables or features
and render sparsity [11, 23].

2.1 Contributions
In this paper we propose a novel model to cluster spatio-temporal
data using MRF combined with DP and a spike-and-slab prior. The
contributions of our work are: (1) Our model is able to automat-
ically determine the number of clusters in a nonparametric way
by embedding DP. (2) The model incorporates spatial and tem-
poral constraints through MRF, which can be flexible to embed
domain knowledge and induce smoothness both in space and time.
(3) The weight vector of the linear regression within each clus-
ter has a sparse pattern due to spike-and-slab prior, therefore the
model can identify the most relevant features for each cluster. (4)
We designed an energy function for the MRF to simultaneously
incorporate spatial and temporal constraints. (5) We derive a Gibbs
sampling method for this model. (6) We apply the model to learn
spatio-temporal clusters of GCMs for predicting precipitation, and
the results show efficacy of the model and provide new insights on
GCMs for climate prediction.

3 BACKGROUND
In this section we will briefly introduce the three main building
blocks of our model, i .e ., Markov Random Field (MRF), Dirichlet
Process (in the view of the Chinese Restaurant Process(CRP)), and
spike-and-slab prior for variable selection.

3.1 Markov Random Field
In the graph representation, MRF is an undirected graph consisting
of a set of nodes and edges that satisfy the Markov property [30].
The nodes represent the random variables, while the edges repre-
sent dependencies between the random variables. Two nodes are
called neighbours if they have an edge between them. One property
of MRF is that a variable is conditionally independent of all other
variables given all its neighbours. Let us denote S to be the set of
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all random variables in the MRF,

S = {sn |n = 1, 2, ...,N } (1)

according to the Hammersley-Clifford theorem [21], an MRF can be
equivalently characterized by a Gibbs distribution. The probability
distribution is

p(S) =
1
Z
exp

{
−
∑
c ∈C

H (Sc )
}

(2)

where Z is a normalization constant called the partition function,
and C is the set of all cliques. A clique c is defined as a subset of
nodes in the MRF where every pair of distinct nodes are neighbours.
H (Sc ) is the energy function or cost function over clique c ∈ C. The
form of H (Sc ) depends on the local configuration on clique c .

3.2 Dirichlet Process via the Chinese
Restaurant Process

There are several alternative approaches to view Dirichlet Process,
including the Pólya urn scheme, the stick-breaking process and the
Chinese Restaurant Process (CRP) [1]. Here we use CRP to explain
DP.
Imagine a process in which customers go into a Chinese restaurant
with an infinite number of tables, which are labeled as 1, 2, ...,k, ...
according to the order they are occupied. Each table represents
a cluster and each customer represents a data point. A customer
sitting at a table means that the data point is assigned to the cluster.
A new customer can either choose an empty table with probabil-
ity proportional to a constant scalar α or an occupied table with
probability proportional to the number of people that are already
sitting at that table. Let Kn be the number of occupied tables (the
existing clusters) just before the n-th customer arrives, and let sn
be the label of the table at which the n-th customer will sit at (i .e .,
sn is the cluster label of the n-th data point xn ), then the probability
of n-th customer to choose table k (i .e ., the probability of xn to be
in the cluster k) is:

p(sn |s1, · · · , sn−1) =


∑Kn
k=1

nk
n−1+α δk (sn ) sn ∈ {1, · · · ,Kn }

α
n−1+α sn = Kn + 1︸ ︷︷ ︸

new cluster

(3)

where nk is the number of data points already in cluster k , we have
n − 1 = ∑Kn

k=1 nk , and

δk (sn ) =

{
1 sn = k,

0 sn ̸= k,
k ∈ {1, 2, . . . ,Kn }. (4)

The CRP exhibits a clustering effect. A new customer is more likely
to choose a table which many customers have already sitting at.
Thus the data will automatically form several clusters.

3.3 Spike-and-Slab
In a linear regression model y = xw + ϵ , where x ∈ RD , y ∈ R,
w ∈ RD and ϵ ∈ R are predictor, target, weight and noise variables,
respectively. The spike-and-slab prior assumes that each element
wd of the weight vectorw comes from a mixture of two Gaussian
distributions with 0 means and small/large variances (called “spike”
and “slab”, respectively). We represent whether each elementwd
is sampled from either “spike” or “slab” component with a latent

binary indicator vector z = [z1, · · · , zd , · · · , zD ]T . We assign each
element of this vector zd ∈ {0, 1} a prior of Bernoulli distribution
and

p(z) =
D∏
d=1

p
zd
d (1 − pd )1−zd (5)

where pd is defined as pd = p(zd = 1) = 1 −p(zd = 0). Given zd , the
distribution ofwd is defined as

wd |zd ∼ (1 − zd )N (0,τ 2d ) + zdN (0, c2dτ
2
d ) (6)

whereN (0,τ 2d ) andN (0, c2dτ
2
d ) are Gaussian distributions (the “spike”

and “slab”, respectively). τd is small such that, if zd = 0, thenwd is
likely to be so small that it can be regarded as 0; and cd is large such
that cdτd would not be too small andwd is non-zero if zd = 1. The
formula (6) can be reformulated in a multivariate form as follows:

w |z ∼ N (0,ΛzRΛz ) (7)

where R is the prior correlation matrix, and Λz is a diagonal matrix,
Λz = diaд[cz11 τ1, · · · , c

zd
d τd , · · · , c

zD
D τD ].

4 OUR FORMULATION
In this section we will describe our model. We assume that the
spatio-temporal data can be divided into several clusters (the num-
ber of clusters is unknown beforehand), within each cluster there
is a sparse linear relationship between the independent valuables
and the dependent valuables. Specifically speaking, the relation-
ships between the GCMs and the observations can vary in different
locations and time. Some GCMs maybe more accurate in some
regions and/or time periods, but less accurate in others. Those
spatio-temporal spots with the same relationships form a cluster.
We want to find out the clusters and fit a sparse linear regression
model for each cluster. In this way we can understand which GCMs
are more responsible for a spatio-temporal cluster and get a bet-
ter prediction. Our model uses DP to automatically determine the
number of clusters in a nonparametric way [37]. We incorporate
the MRF in our model to impose spatio-temporal constraints for
the data points. We also use spike-and-slab prior to attain sparsity
for regression weights in each cluster. We use the spike-and-slab
prior instead of L1 or L2 norm regularization to induce sparsity
because it facilitates the sampling method we use for inference.
The original GCM outputs and observational data are tensors with
dimensions of longitude, latitude and time. We transform them into
design matrixX and target vector Y , respectively. Besides, we keep
the location and time information to be used in the MRF constraint.
Let X = [x1, . . . ,xn , . . . ,xN ]T be the N × D design matrix where
N and D are the number of data points and dimensions of features
(number of GCMs), respectively. Each element of X is a GCM out-
put variable in a particular space and time. To simplify notation, we
will include the linear regression bias term (i .e ., constant 1s) into
the first column of X . Let Y = [y1, . . . ,yn . . . ,yN ]T be the N × 1
target vector corresponding to the design matrix. Each element of
Y is an observational variable. Given X and Y and location and
time information, our goal is to find out the cluster latent labels S ,
the weightsW and latent feature indicator Z as defined below.
Let S = [s1, . . . , sn , . . . , sN ]T be the N × 1 cluster label vector with
elements sn being one of an integer from 1 to ∞, indicating which
cluster the n-th data point belongs to. Since we don’t know the
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Figure 1: Graphical model representation of the model. The
shaded nodes are observed variables while the blank nodes
are unobserved variables. The arrows represent dependen-
cies and the rectangular plates mean replica with number
of times at the bottom-right corner.

number of clusters K beforehand, we utilize a nonparametric prior,
where K is unbounded and allowed to be any value up to infinity.
Given data, a finite K will be automatically learned. S has a prior of
a DP mixture model combined with a spatio-temporal MRF such
that, the model can automatically determine the number of clusters
in a nonparametric way by the DP, while it can also incorporate
empirical spatio-temporal constraints by the MRF.
LetW = [w1, . . . ,wk , . . . ,w∞]T be the ∞ × D regression weight
matrix, where each rowwT

k is a 1 × D weight vector for the cluster
k . We suppose that each wT

k is independently generated from a
spike-and-slab prior.
Let Z = [z1, . . . ,zk , . . . ,z∞]T be a binary indicator matrix whose
row zTk = [zk1, · · · , zkd , · · · , zkD ] indicates whether a “spike” or
“slab” prior is assigned to each element inwk . If zkd = 0, thenwkd
is regarded as 0, meaning that the d-th feature does not contribute
to the k-th cluster.
The graphical model of our formulation can be illustrated in Figure
1. Having defined these variables above, the joint distribution of
our model is:

p(Y,W , S,Z |X ) = p(Z )p(W |Z )p(S)p(Y |W , S,X ) (8)

4.1 Formulation Decomposition
In this section we provide detailed expressions for the components
of our joint model in Equation (8).

4.1.1 Priors. In order to get sparsity, we use the spike-and-slab
prior introduced in Section 3.3 to induce the priors of Z andW in
our model.
Latent Feature Indicator Z . Assuming zk is independent of each
other, the prior for Z is the product of the prior for all zk . From
Equation (5) we get

p(Z ) =
∞∏
k=1

p(zk ) =
∞∏
k=1

D∏
d=1

p
zkd
kd (1 − pkd )1−zkd (9)

where pkd is chosen according to the probability that this feature
should be included, larger pkd means more features will be selected.
We set pkd = 0.5 for all k and d , which means we don’t have a prior
preference over inclusion or exclusion of a GCM.
Regression WeightsW . The prior for weight matrixW given Z
is the product of the priors for the weight vectors of each cluster,
following Equation (7) and setting R = I (setting R to be an identity

matrix means we assume components in wk are independent of
each other to simplify the model), we get

p(W |Z ) =
∞∏
k=1

p(wk |zk ) =
∞∏
k=1

N (wk |0,Σ0k ) (10)

Σ0k = ΛzkΛzk (11)

Λzk = diaд[czk11 τ1, . . . , c
zkd
d τd , . . . , c

zkD
D τD ] (12)

where cd and τd are hyperparameters that control the sparsity for
weights and as pointed out in Section 3.3 on spike-and-slab, τd
should be set small so that if zd = 0 then wd will likely be small
and be regarded as 0; and cd is set large such that cdτd will not be
too small andwd is non-zero. In our experiment for simplicity we
set cd = 10.0 and τd = 0.01, which works well; alternatively, one
may learn these hyperparameters via cross-validation or empirical
Bayes.
Latent Cluster Label S . The prior for S consists of two compo-
nents and it can be written as follows:

p(S) = p1(S)p2(S) (13)

where p1(S) and p2(S) are the CRP term and the MRF term, respec-
tively. The CRP term is given as:

p1(S) =
N∏
n=1

p1(sn |S1:n−1) (14)

where p1(sn |S1:n−1) is the probability that the n-th data point be-
longs to cluster sn given the cluster labels of all data points before
it, and is given in Equation (3). This CRP term will help to automat-
ically decide the number of clusters due to its clustering effect.
The MRF term uses the pairwise constraints to incorporates spa-
tially and temporally smoothness for the clustering pattern of the
data points. From Equation (2) we have

p2(S) =
1
Z2

exp
{
−

∑
(i, j )∈C

H (si , sj )
}

(15)

where Z2 is a normalization constant, and C is the set of two con-
nected data points, i .e .,C = {(i, j)|i and j are connected (neighbours)}.
We define the neighbors of a data point as the data points that are
spatially and temporally next to it. H (·) can be viewed as a cost
function which penalizes cluster inconsistency among neighbours.
We penalize more for points that are closer in space and time. This
enforces the clusters to be smooth both spatially and temporally.

H (si , sj ) =

{
0 si ̸= sj

−ρexp(−βdi j − γ li j ) si = sj
(16)

where β ,γ and ρ are scaling factors for space, time and composition,
respectively. di j and li j are the geological distance and time lag
between data points i and j, respectively. The values of ρ, β and
γ are chosen by cross-validation for simplicity, with the details
described in Section 5.
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4.1.2 Likelihood. The linear regressionmodel for a data point (x ,y)
is y = wT x + ϵ wherew is one of {w1, . . . ,wk , . . .}, depending on
which cluster the data point belongs to. Assuming that ϵ ∼ N (0,σ 2),
where σ is a parameter to be estimated, the linear regression above
is equivalent to y ∼ N (y |wT x ,σ 2). Although different clusters can
have different noise variances, for simplicity we assume all clusters
share the same noise variance σ 2. We choose the value of σ 2 by
cross-validation. The overall likelihood is

p(Y |W , S,X ) =
N∏
n=1

∞∏
k=1

[
N (yn |wT

k xn ,σ
2)
]1(sn=k )

(17)

where the label expression 1(sn = k) = 1 if sn = k ; and 1(sn = k) = 0
if sn ̸= k .

4.1.3 Joint Distribution. Substituting Equations (9), (10), (13) (14),
(15) and (17) to Equation (8), we get the joint distribution of our
model as:

p(Y,W , S,Z |X )
=p(Z )p(W |Z )p(S)p(Y |W , S,X )

=
∞∏
k=1

D∏
d=1

p
zkd
kd (1 − pkd )1−zkd

∞∏
k=1

N (wk |0,Σ0k )
N∏
n=1

p1(sn |S1:n−1)

1
Z2

exp
{
−

∑
(i, j )∈C

H (si , sj )
} N∏
n=1

∞∏
k=1

[
N (yn |wT

k xn ,σ
2)
]1(sn=k )

(18)

4.2 Gibbs Sampling
We use a Markov Chain Monte Carlo (MCMC) sampling method
for inference. In particular we use Gibbs Sampling [7] where we
alternatively sample each parameter given all other parameters.
It is suitable for our model because conditional distributions of
all parameters are available in a simple form. In the following we
will give the conditional distributions for S ,W and Z . Due to page
limitations, here we omit the derivation details and provide the
conditional distributions directly.
Conditional Distribution for S. The conditional distribution for
each element sn in S with n = 1, · · · ,N is:

p(sn = k |Y,W ,X, S (−n)) ∝


n(−n)
k

N−1+α Bk sn = k ∈ {1, · · · ,Kn }
α

N−1+αCk sn = Kn + 1︸ ︷︷ ︸
new cluster

(19)

where S (−n) = {s1, · · · , sn−1, sn+1, · · · , sN }, and n(−n)k is the number
of data points in the k-th cluster excluding the n-th data point, and

Bk = 1√
2πσ

exp
{
−

∑
(i, j )∈C

H (si , sj ) − 1
2σ 2 (yn −wT

k xn )
2
}

(20)

Ck = 1√
2πσ

|Σ |1/2

|Σ0k |1/2
exp

{
− 1

2 (
y2
n
σ 2 − w̄T Σ−1w̄)

}
(21)

where w̄ = yn
σ 2 Σxn , Σ−1 = Σ−10k + 1

σ 2 xnx
T
n , and Σ0k and H (si , sj ) are

in Equations (11) and (16), respectively. When updating sn , it will
take on one of the existing cluster labels (i.e., 1, 2, · · · ,Kn ) more
likely than taking on a new cluster label (Kn + 1) since n(−n)k Bk is
likely to be larger than αCk , thus forming clusters.
Conditional Distribution forW. The conditional distribution for

W can be expressed as follows:

p(W |Y, S,X ) =
∞∏
k=1

N (wk |w̄k ,Σk ) (22)

where w̄k = Σkbk ,bk = 1
σ 2

∑N
n=1 ynxn andΣ−1k = Σ−10k +

1
σ 2

∑N
n=1 1(sn =

k)xnxTn .
Conditional Distribution for Z. The conditional distribution for
each element zkd is a Bernoulli distribution given the other ele-
ments z(−d )k = {zk1, · · · , zk (d−1), zk (d+1), · · · , zkD } and regression
weightswk .

p(zkd = 1|wk ,z
(−d )
k ) =

ak
ak + bk

(23)

where bk = p(wk |z
(−d )
k , zkd = 0)(1 − pkd ), ak = p(wk |z

(−d )
k , zkd =

1)pkd , and p(wk |zk ) is given in Equation (7).
The Gibbs sampling procedure involves two steps:
Step 1: Initialize S with a random integer vector,W with a random
matrix whose elements are drawn from a normal distribution, and
Z with an all-one vector.
Step 2: Alternatively sample S ,W and Z from their conditional
distributions (Equations (22),(23) and (19)) until the Markov Chain
has reached its stationary distribution.We use the tail sample values
as our estimation.

5 EXPERIMENTS
In this section we perform experiments on both synthetic and
real world data sets. To maintain causality we always keep the
chronological ordering of the data points for the DP ordering, which
means that the states of the data points in "earlier" time will be
updated first while the states of the data points in "later" time will
be updated after its predecessors.

5.1 Synthetic Data
We first test on synthetic data to verify that our model can learn
the known underlying spatio-temporal clusters and features. The
synthetic data are constructed as follows: we created six different
predictor tensors X1,X2, . . . ,X6 analogous to GCM outputs, and
one target tensor Y analogous to observations. The dimensions
of each tensor are 24 × 4 × 36, where the three dimensions can be
regarded as longitude, latitude and month, respectively. We assume
the grid resolution is 1 degree by 1 degree (∼ 100km by 100km
geometrically). Each element ofXm (m = 1, · · · , 6) is independently
and identically generated from N (0.0, 5.0).
We divide the tensors into three clusters of equal size along the lon-
gitude dimension. Within each cluster, the element of Y is a sparse
linear combination of the corresponding elements of Xm . We use
sparse weights such that only a few features are relevant in each
cluster. Specifically,w1 = [1, 0, 0, 0, 0, 0]T ,w2 = [0, 0.5, 0.5, 0, 0, 0]T
andw3 = [0, 0, 0, 0.3, 0.3, 0.4]T . Then we merge the predictor ten-
sors together and rearrange the two tensors into 3456 × 6 predictor
matrix X and 3456 × 1 target matrix Y . We also keep the location
and neighbourhood information of each data point to be used in
MRF. We use the first 30 months as training data and the last 6
months as the test data, that is, 2880 training data and 576 test data.
Two metrics are used to evaluate the performance of the model on
the synthetic data set. One is the Root-Mean-Square Error (RMSE)
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Table 1: Results on synthetic data. K is the number of clus-
ters. See text for the definition of NMI. Bold numbers repre-
sent best performance.

methods K RMSE NMI

kmeans+OLS

1 0.826 0.000
2 1.089 0.011
3 0.969 0.011
4 1.048 0.021
5 1.056 0.023

kmeans+Lasso

1 0.826 0.000
2 1.096 0.009
3 0.984 0.011
4 1.062 0.021
5 1.071 0.024

MSSL - 0.066 -
our method 3 0.063 0.9841

of the test data, and the other is the Normalized Mutual Information
(NMI) [36]. Suppose we have Ntest number of test data points, the

RMSE is calculated as RMSE =
√

1
Ntest

∑Ntest
n=1 (yn − ŷn )2 where yn

and ŷn are the ground-truth value and the predicted value of the
n-th test data point, respectively. The NMI is calculated as follows:
let Strue represent the ground truth cluster labels and S be the
cluster labels determined by our model for all the data points, then
NMI = He (Strue )−He (Strue |S )√

He (Strue )He (S )
, where He (Strue ) and He (S) are the

entropy of Strue and S , respectively. The value of NMI is between
0 and 1 inclusively, and a larger value means a better consistancy
between the two clustering assignments.
We apply our model on the synthetic data with parameter σ = 0.05
and compare it with k-means methods and the MSSL method [12].
The results are shown in Table 1 and Figure 2. k-means is not able
to find out the true clusters and performs worse with high RMSE.
This is expected because k-means cluster the data only by using
the dependent valuable (i.e., Y ) while the ground truth clusters
are based on the relationship between the independent and depen-
dent valuables (i.e., X and Y ), therefore k-means cannot capture
the clustering patterns. While both MSSL and our model have low
RMSE, our model can learn the true clusters. Within each cluster
we recover the relevant features correctly. The results confirm that
our method is able to discover the correct clusters as reflected by
high NMI values.

5.2 Real World Data
We test whether our model can predict precipitation, which is very
important yet very challenging in climate analysis. We downloaded
18 GCMs data sets of CMIP5 from the National Aeronautics and
Space Administration (NASA) database [9] 1. Each GCM data set
contains a three dimensional tensor (i.e., latitude, longitude and
time) Xm (m = 1, · · · , 18) of monthly mean precipitation in space
and time simulated by different climate research institutes. The

1https://nex.nasa.gov/nex/resources/348/, last accessed May 2019

Figure 2: Clustering results of synthetic data. Top: ground
truth. Bottom: results of our model. Better view in color.

Table 2: GCM names and their corresponding indices in the
feature vector

index GCM name index GCM name
1 giss-e2-h-cc 10 cnrm-cm5
2 access1-0 11 cesm1-cam5
3 canesm2 12 inmcm4
4 hadcm3 13 bcc-csm1-1-m
5 fgoals-g2 14 mri-cgcm3
6 csiro-mk3-6-0 15 miroc5
7 noresm1-m 16 bnu-esm
8 mpi-esm-lr 17 ccsm4
9 fio-esm 18 ipsl-cm5a-lr

resolution for the grid is 1 degree by 1 degree (∼100km by 100km
geometrically). The indices and the GCM names are shown in Table
2. For the target variable, we use the reanalysis data set by the Uni-
versity of Delaware from the National Oceanic and Atmospheric
Administration (NOAA) [38]. The reanalysis data combine sparse
on-site observation with other sources such as remote sensing and
satellite images to produce high resolution data which are often
used to represent the true observations. The raw data contains a
three dimensional tensorY of monthly mean precipitation in space
and time.
We focus our model on the monthly mean precipitation over the
continental United States (latitude from 25.5N to 49.5N by 1 degree,
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(a) March 2002 (Spring) (b) June 2002 (Summer)

(c) September 2002 (Autumn) (d) December 2002 (Winter)

Figure 3: Clustering results for different time and seasons. The four clusters colored in cyan, green, yellow and orange are denoted as cluster
1, cluster 2, cluster 3 and cluster 4, respectively. The areas in blue color are areas that we don’t have observational data. Please view in color
version.

longitude from 235.5E to 292.5E by 1 degree) for 72 consecutive
months, from January 1997 to December 2002. The original data
are tensors with dimensions longitude, latitude and month. We first
preprocess the data to align the grids between the predictor and the
target, then merge and rearrange the tensors to the design matrix
and the target vector in the same way as for the synthetic data. As
a result, we get a predictor design matrix X of N × D and a target
vector Y of N × 1. Specifically, N = 72864 and D = 19.
We select our parameters {β,γ , ρ,σ ,α } by using 5-fold cross- val-
idation. The first 60 months are divided into 5 folds sequentially
(1st to 36th month, 7th to 42nd month, · · ·, 25th to 60th month).
Each fold contains 36 months including 30 months for training and
6 months for validating. The training set has enough number of
months to cover the potential effect of seasonality. The optimal
parameters are selected based on the average performance of the 5
folds, i .e ., the parameters that corresponds to the minimum average
RMSE on validation data of the 5 folds are regarded as the optimal
parameters. The optimal parameters chosen are β = 0.01, γ = 0.01,
ρ = 8.0, σ = 0.05, α = 0.01. After that, we re-train the model on
all the first 60 months data and test it on the remaining 12 months
data using the optimal parameters.
For the real world data, we do not have the ground truth cluster
labels. We compare our model with three other methods. Two of
them are based on k-means, which is a standard method used in
climate science [15, 16, 35]. The first one is the baseline method
in which we first apply k-means to Y to get the clusters and then
fit each cluster with Ordinary Least Squares (OLS) regression. The
second one is the same as the baseline except that we use Lasso
regression instead of OLS regression in order to also select the
features (GCMs) in each cluster. The third method is the Multi-task

Sparse Structure Learning (MSSL) method [12] which regards each
location as a task and estimate the sparse task parameters matrix
and task relationship structure using L1 regularization. All methods
use the same training and testing procedures and select optimal
parameters by cross-validation. To keep the results manageable,
we choose the hyperparameters that result in a small number of
clusters, and only the most discernible regions will be clustered
into different clusters. In the experiment, there are four clusters
discovered by our model.
The results of comparing our model with other methods are shown
in Table 3. K is the number of clusters which is manually set in
k-means but learned automatically in our model. R2 is the coeffi-
cient of determination, which is the proportion of variance in the
target that can be explained by the predictor. It is a measure of
how well the data are fitted to the regression line and the larger
the value the better. The R2 gain is the gain compared to the value
of R2 of the k-means+OLS with K=1. The MSSL regards each loca-
tion as a task and does not do clustering. From the table we can
see that our method has the smallest RMSE and largest R2 among
the three methods. Furthermore, k-means is not able to discover
meaningful clusters and its performance degrades as K increases.
The reason is the same with that of synthetic data. Here k-means
cluster the spatio-temporal data only by using observed precipi-
tation (i.e.,Y ), which is not enough for capturing the relationship
between the GCMs simulated precipitation and the observed pre-
cipitation. The reason why MSSL performs even worse than the
k-means+OLS/Lasso on the real data maybe that MSSL assumes
that all data points belonging to the same location are in the same
task, which maybe incorrect. Because the climate system is a time
varying system, the relationships between GCMs and observation
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Table 3: Comparision between our method and others

methods K RMSE R2 R2 gain (%)

kmeans+OLS

1 0.8149 0.3359 baseline
2 0.8461 0.2841 -15.43
3 0.8972 0.1950 -41.94
4 0.8828 0.2207 -34.31
5 0.9316 0.1321 -60.67

kmeans+Lasso

1 0.8116 0.3413 1.60
2 0.8456 0.2850 -15.17
3 0.8983 0.1931 -42.53
4 0.8842 0.2182 -35.05
5 0.9329 0.1297 -61.39

MSSL − 0.8716 0.2403 −28.46
our method 4 0.7811 0.3900 16.06

will change over time. And that is why we need to introduce a
spatio-temporal clustering method instead of just spatial clustering
method. Our method cluster the spatio-temporal data based on the
relationships between GCMs and observed precipitation and can
discover better clustering patterns and achieve better prediction
performance. Figure 3 shows the clustering results for four differ-
ent months over the continental United States. The clusters are
spatially smooth with nearby locations being assigned to the same
cluster. The results are partially consistent with the Köppen climate
classification system [17, 18], which is one of the most widely used
climate classification system. For example, in Figure 3(a), the cluster
in the orange color is around the Great Lakes area, where the ter-
rain and evaporation characteristics are different from other areas.
These Great Lakes cause a phenomenon called Lake Effect which
affects the precipitation [6]. This area is regarded as type Dfb in the
Köppen system [17]. In Figure 3(b)-(d) the cluster in the green color
is the Central Valley in California that has a Mediterranean climate,
which is dry during the summer and damp in winter. According
to Köppen [17] and Köppen et al. [18], this area has a climate type
Csa which is unique in the US. For the cluster in yellow color, a
large portion of it lies in the downstream area of the Mississippi
River where it is very rich in both waters and vegetation, which
distinguishes itself from other areas in the US.
We also discover some teleconnections among far away regions.
For example, in Figure 3(c)-(d), the northeastern corner and the
northwestern corner have the same cluster (yellow), which is in-
teresting considering that they are both coastal areas in the north.
Further research is needed to study the teleconnections.
Comparing Figure 3(a)-(d), we can see that the cluster pattern has
some continuity in the temporal aspect, but also evolves as time
goes by. For example, cluster in the green color appeared since June
2002, while clusters in the yellow and orange emerged and then
shrunk again in the northwestern corner of the US.
Figure 4 shows the regression weights for the clusters. Each row
represents a weight vector for one cluster. The horizontal axis is
the index number of the weight vector (the first index is for the
bias term), the vertical axis is the value for each element of the
weight vector, an absence means the element is 0 and thus the
corresponding GCM has no contribution to the observation in the
cluster. From the figure, we can see that the weights exhibit some
sparsity in each cluster, meaning that for a specific cluster, some

Figure 4: Regression weights of clusters for real world data
– precipitation prediction. There are 4 rows, each represents
a weight vector for a cluster. From top to bottom are the
weights for cluster 1, cluster 2, cluster 3 and cluster 4.

GCMs are not important while others are more useful in predicting
the observational precipitation, as expected.

6 CONCLUSION
We introduce a novel method to cluster spatio-temporal data and
perform sparse regression within each cluster. This method incor-
porates spatio-temporal constraints by Markov Random Field, au-
tomatically learns the number of clusters in a nonparametric way
through Dirichlet Process, and selects features using spike-and-
slab prior. We apply our method on both synthetic and real-world
GCM precipitation data and show that we outperform compet-
ing methods in terms of prediction performance. We further learn
interesting clusters and which GCMs are important within each
spatio-temporal cluster. The reason behind this may be an inter-
esting topic for climatologists. The results on precipitation data
is partially consistent with the widely used Köppen climate clas-
sification system. The learned clusters agree with the terrain and
geological characteristics such as forests, lakes and valleys. Fur-
thermore, we also discover teleconnections and cluster evolution
through time. These results provide new insights to the data.
There are several possible directions for future work. One can
extend the model to be fully Bayesian, adding priors to the hyperpa-
rameters. In this work we focus on monthly mean precipitation of
the continental United State. In order to get a more comprehensive
understanding, this can be extended to a larger scale with more
computational resources such as high performance computers. Also,
with the success of deep learning in many fields, the climate science
community has embraced deep learning approaches in recent years;
for example Reichstein et al. [32] and Rasp et al. [31]. In our ongo-
ing research, we are exploring ways to reformulate the problem
using deep learning approaches.
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