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Physics-guided probabilistic 
modeling of extreme precipitation 
under climate change
Evan Kodra1, Udit Bhatia2 ✉, Snigdhansu Chatterjee3, Stone Chen1 & Auroop Ratan Ganguly1,4

Earth System Models (ESMs) are the state of the art for projecting the effects of climate change. 
However, longstanding uncertainties in their ability to simulate regional and local precipitation 
extremes and related processes inhibit decision making. Existing state-of-the art approaches for 
uncertainty quantification use Bayesian methods to weight ESMs based on a balance of historical 
skills and future consensus. Here we propose an empirical Bayesian model that extends an existing 
skill and consensus based weighting framework and examine the hypothesis that nontrivial, physics-
guided measures of ESM skill can help produce reliable probabilistic characterization of climate 
extremes. Specifically, the model leverages knowledge of physical relationships between temperature, 
atmospheric moisture capacity, and extreme precipitation intensity to iteratively weight and combine 
ESMs and estimate probability distributions of return levels. Out-of-sample validation suggests that the 
proposed Bayesian method, which incorporates physics-guidance, has the potential to derive reliable 
precipitation projections, although caveats remain and the gain is not uniform across all cases.

Probabilistic projections of precipitation under climate variability and change are necessary to inform water 
resources planning and management, design and operations of hydraulic infrastructures, and the nexus of water 
with food and energy1–3. Uncertainty assessments associated with predictive insights on precipitation extremes 
are particularly important for flood resilience and risk assessments4,5. The primary sources of uncertainties in 
future climate projections at stakeholder-relevant scales include our inability to project greenhouse gas emissions 
conditioned on social and technological change, gaps in our understanding of climate science as reflected in 
computer models and their parameters, natural or intrinsic variability of the climate system, and challenges in 
translating or downscaling larger-scale climate model simulations to the higher resolutions useful for stakehold-
ers6,7. Emission trajectories are interpreted as what-if decision scenarios and as projections rather than predic-
tions, and ensembles of model runs based on multiple such trajectories attempt to capture the range of variability 
in this context. While it is difficult to cast this variability in traditional probabilistic settings, prior literature has 
examined this variability in great detail. Intrinsic or natural climate variability is assumed to be captured through 
initial condition ensembles (for given model and forcing), and may be best characterized through nonlinear 
dynamical measures. While a probabilistic description may be possible, uncertainty characterization for systems 
that are sensitive to initial conditions is an ongoing research area8. Uncertainties in the downscaling process 
are challenging to characterize as well. Owing to computational resource requirements, dynamical downscaling 
approaches typically cannot even consider the range of plausible projections encapsulated in earth system model 
ensembles9. Meanwhile, statistical downscaling cannot readily consider uncertainties derived from assuming 
data-driven function mappings that may need to change as regional or global climates change in the future. 
While uncertainty quantification in downscaling may still be attempted10,11, as a matter of practice, uncertainty 
assessments are not yet disseminated with downscaled data products. A primary technical inhibitor is often the 
difficulty in comparing a climate resilience or adaptation investment’s cost to its estimated benefit (often reduced 
risk in economic terms). Without robust uncertainty bounds around physical climate risk projections, stakehold-
ers are ill-equipped to confidently assess the net present value of an investment in terms of avoided worst case 
consequences.

While all of these areas relate to comprehensive uncertainty characterization in the context of translating earth 
system model simulations to credible stakeholder-relevant information, and require significant advances in the 
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state-of-the-art and best practice, the focus of this manuscript is on characterizing gaps in the physics through 
model-based simulations.

Based on an implicit assumption that the range of parametric and structural variations embedded in climate 
models may capture the range of physically plausible behavior12,13, multiple model ensembles are used to charac-
terize the variability among models and for associated uncertainty assessment. In a desire to balance two compet-
ing views, one that argues that historical skills of model simulations based on comparisons with observations is 
a valid indicator of future behavior, and another that suggests that given expected changes in the earth’s radiative 
balance model consensus is a better indicator14, recent research has examined the principled ways to consider 
both skills and consensus in a Bayesian framework15–19. The hypothesis that known physics-based relations that 
may or may not be well captured in earth system models, as well as observed and simulated data-driven multi-
variate dependence structures may improve this aspect of model assessment and probabilistic modeling has been 
suggested20. Here we examine this hypothesis in the context of climate model-driven probabilistic modeling of 
future precipitation extremes, based on temperature dependence. While we do not consider the full range of tem-
perature scaling based on Clausius-Clapeyron and convective processes21–23, we do consider a specific case study. 
Our findings may lead to more effective uncertainty characterization, as well as better understanding of model 
strengths and the applicability of scientific understanding beyond what may be captured in models to improve 
uncertainties.

Skill, consensus, and physics-guided climate model weighting
The most common and practical approach for probabilistic climate modeling involves exploiting archived ensem-
bles of ESM runs to estimate probability distributions of climate change. Several methodologies for creating such 
ensembles have been proposed that essentially focus on skill- and consensus-based weighting of the ensemble 
members. Skill refers to the ability of an ESM to replicate historical climate observations, while consensus relates 
on their agreement with their peers about the future14. This approach was formalized for regional average tem-
perature and precipitation in a Bayesian framework15,16. It was then extended in several studies to accommodate 
bivariate relationships between averages of climate variables17 and to support efficient probabilistic modeling 
across multiple geographic regions simultaneously18. To date, most of these studies have only supported averages 
of climate variables. An exception is a recent study that applies this framework to high quantiles of precipitation19. 
Specifically, it applies a modified version of the framework to the 95th percentile of precipitation depth on wet days.

Literature has pointed out the difficulty of measuring the “skill” of an ESM12,13,24,25, despite a multitude of 
attempts to do so26–28. Furthermore, in many cases common skill metrics such as root mean squared error26 tend 
to not lead to systematic differences in terms of model projections27,28; that is, a “better model” often does not say 
anything different about the future than a “bad” model. Several notable studies, however, suggest that skill metrics 
designed to capture whether an ESM is simulating a non-trivial physical process can lead to clearer insights about 
anthropogenic attribution29 or reduced future uncertainty23,30,31. From this, we can synthesize a hypothesis that 
non-trivial, physics-guided measures of skill may be more useful indicators of ESM reliability. This hypothesis 
is tested formally via the Bayesian model proposed in the current study, using precipitation extremes as a case.

Physics of precipitation extremes
Precipitation extremes are in many cases expected to increase in intensity, duration, and/or frequency as a func-
tion of climate change given theory21,22,32, evidence from observations33, and ESM projections34,35. At a global 
scale this can be explained by the Clausius Clapeyron (CC) equation34,36, which shows that under ideal condi-
tions, atmospheric moisture capacity increases in a warming climate.

The August-Roche-Magnus formula37 provides an empirically derived approximation in ideal conditions 
(between −40 and 50 degrees Celsius and over a plane surface of water):
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where es is saturation vapor pressure (i.e., atmospheric moisture holding capacity) in hPa and T is temperature in 
Celsius. Moisture condenses to precipitable water when atmospheric moisture holding capacity is reached.

On average, this implies a shift in the distribution of the intensity of precipitation events: larger es(T) values 
imply longer duration between condensation and thus precipitation events. When heavy precipitation events do 
occur, they are expected to increase in intensity owing to increased atmospheric moisture content. Moreover38,39, 
revealed that super CC scaling (typically of order of 1.5–2 times than CC scaling) is primarily due to response of 
convection to increase in near-surface humidity, while other atmospheric conditions remain constant. Ultimately, 
in aggregate, increasing temperatures under climate change translates to increased capacity for drought risk with 
simultaneous increased potential for extreme precipitation and flood risk40. At a global average scale, it has been 
estimated that atmospheric moisture capacity increases by 7% per degree Celsius36; this is often referred to as CC 
scaling.

Generally it would be difficult to assess an ESM’s ability to simulate the dynamical processes (upward vertical 
wind velocities) that partially drive extreme precipitation since observational data for those processes are usually 
not even available. In contrast, in many regions of the world, high quality observations for both temperature and 
precipitation do exist.

Hence, in this study, we leverage this knowledge with the following hypothesis: a skillful ESM should be able 
to successfully replicate not only the observed marginal distribution of extreme precipitation but also its observed 
dependence (whether the relationship is positive, inverse, or lack thereof) on contemporaneous air temperature at 
a regional scale. The complexity of the relationship between air temperature and extreme precipitation41 as well as 
the relative regional dominance of dynamical processes21,22,42–44 inhibits straightforward CC based extrapolation. 
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This further supports the potential utility in modeling the relationship between temperature and extreme precip-
itation at a regional scale. In other words, rather than imposing CC scaling or any specific magnitude of scaling, 
we allow the Bayesian model to learn the specific regional dependence between daily extreme precipitation and 
same-day temperature. For this study, we restrict the type of temperature-precipitation dependence to a linear 
type with unknown direction and magnitude. We do so while acknowledging that in many cases that dependence 
structure could be of other forms (monotonic but nonlinear, non-monotonic, etc.) based on the above physics 
discussion. Future studies could seek to extend the way the following proposed model measures that dependence.

Methods
The data and preprocessing steps.  An ensemble of 15 ESMs from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) archive is used in this study. For the years 1950–1999, historical ESM runs are used (SI 
Table 1 and SI Table 2). For the years 2065–2089, runs from the greenhouse gas scenario RCP8.5 are used. The 
model presented shortly is run for all 18 continental U.S. Hydrologic Unit 2 (HU2) watersheds provided by the 
United States Geological Survey’s Watershed Boundary Dataset (USGS WBD)45. We include the metadata on the 
ESMs and watersheds used in the supplementary material.

USGS WBD HU2 shape files are used to identify grid cells that belong to each watershed (SI Table 3). In each 
watershed and for each ESM, preprocessing is conducted as follows. For each month and year, we find the day 
with the maximum total precipitation depth over the entire watershed. Then, for that same day, precipitation and 
temperature are extracted at each grid cell for that day and then averaged over grid cells in the watershed. We refer 
to those watershed-averaged precipitation values as block maxima, i.e., maximum values of precipitation over 
discrete temporal blocks, in accordance with extreme value analysis literature46. For each month separately, those 
block maxima are then sorted in ascending order and treated as return levels. Sorting block maxima in ascending 
order helps alleviate the fact that ESMs are likely to be out of phase with each other and observations. This idea 
has been utilized in statistical downscaling; with asynchronous regression approaches, the order statistics of 
observations are regressed on the order statistics of an ESM to create transfer functions that can be carried for-
ward to future ESM simulations47. Surface (2-meter) air temperature averaged over the same days as the block 
maxima are extracted and re-sorted according to precipitation ordering, as well. Observational precipitation 
maxima and surface air temperature are extracted from a higher resolution ( )1

16
 degree gridded observational 

data product48 for the years 1950–1999 and are preprocessed in the same manner as the ESMs.
We denote P as return levels/depths of precipitation and T as temperature averaged over the same day in the 

same location. The subscript k indexes observational datasets (there is only one observational dataset used in this 
study, but the Bayesian model allows for more than one); m ∈ [1, …, M = 12] indexes season (calendar month in 
this study), q ∈ [1, …, Q = 25] indexes the ranks of the return levels (i.e., indexes return periods) from smallest to 
largest from a historical climatology; q′ ∈ [1, …, Q′ = 25] the same but for the future climatology; j indexes ESM 
datasets.

Let Zj,m = log(Pj,m,q=1), i.e., for any ESM dataset j (or k for observations), the smallest value of the precipitation 
is transformed with a natural log. Then, for larger return levels q ∈ [2, …, Q], we let Uj,m,q = log(Pj,m,q − Pj,m,q−1), 
i.e., the logged difference between adjacent return levels. We note that while using logged difference, which essen-
tially models a quantile process as a random walk with log-normal increments, is slightly unusual; we decided 
on using this framework primarily for computational convenience. This preprocessing is done for three separate 
climatologies: 1950–1974, 1975–1999, and 2065–2089. For the historical period we use the data from 1950–1974 
for model estimation and the data from 1975–1999 to validate our prediction. Then using the information based 
on such model fitting over a historical data period and an optimized model fitted to the data from 1975–1999, we 
project probabilistic precipitation extremes scenarios in 2065–2089.

The bayesian ensemble model.  We leverage the Bayesian skill and consensus-based framework discussed 
earlier15–19 as the mechanical foundation for our model. Through a Markov Chain Monte Carlo (MCMC) process, 
ESM projections of return levels are iteratively weighted and averaged according to (1) their skill as measured 
by their similarity to observational return levels and (2) their consensus with projections. Skill is formulated to 
explicitly evaluate whether the return levels from ESMs depend on temperature in the same way that they do in 
observations. SI Tables 4 and 5 summarizes all the notations used in this research.

First, the smallest of the return levels are assumed to follow Gaussian data models:

~Z N C( , ( ) ), (2)k m m k k,
1τ σ −

σ+ −Z N C CBIAS( , ), (3)j m m j j,
1~

Z N C CBIAS( , ( ) ) (4)j m m j j,
1~ θσ′ ′ + .−

Here, the unknowns Cm and ′C m are seasonal parameters that can be estimated given that there are multiple 
models and observational datasets. CBIASj is a bias term for ESM j that is assumed to be constant over time 
regimes. The parameter σj is a scalar weight for each ESM. Finally, θ is a future variance scaling parameter that 
modulates the importance of consensus in the determination of weights and also allows for a different magnitude 
of uncertainty in the future climatological regime20. Similar to models from past studies15,16,18, the weight param-
eter σk is estimated from observational data as the inverse of the sample variance of the smallest block maxima 
(q = 1) over all M seasons.

https://doi.org/10.1038/s41598-020-67088-1


4Scientific Reports |        (2020) 10:10299  | https://doi.org/10.1038/s41598-020-67088-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Define the variable δj,m,q = Tj,m,q − Tj,m,q−1 for any ESM j (or observational dataset k). Similar to past related 
studies15,16,18, we fix the parameter ε−k q,

1 as follows: first, separately for each season m, we fit a simple linear regres-
sion of ∈ …Uk m q Q, , [2, , ] on δ ∈ …k m q Q, , [2, , ]. We save the residuals from each of these regressions. Then, for each order 
statistic q, we calculate the sample variance of the residuals for using q all seasons m ∈ [1, …, M] Using these, we 
define the data model for values of Uw,m,q and ′ ′U w m q, , , for q ∈ [2, …, Q] and q′ ∈ [2, …, Q′].

U N( , ( ) ), (5)k m q m q m k m q k k q, , , , , ,
1γ φ δ τ ε+ −~

U N( , ( ) ), (6)j m q m q j m m j m q j q, , , , , , ,
1γ α φ δ ε+ + −~

γ α φ δ β ε′ ′ + + ′ ′ ′ .′ ′ ′ ′
−U N( , ( ) ) (7)j m q m q j m m j m q m q j q, , , , , , , ,
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The treatment of σk and εk,q as fixed and estimated from data is the empirical aspect of the Bayesian model 
proposed here. Empirical Bayesian methods leverage the Bayesian statistical paradigm to obtain posterior dis-
tributions of unknown parameters conditional on data, but with considerably less intricate computations and 
generally near identical theoretical properties.

With Eqs. 5–7, we are essentially assuming that the logarithm of the differential between any pair of subse-
quent order statistics, which is a sample quantity, is Gaussian with the mean being the population equivalent. As 
such, the model does not suggest that extremes themselves are Gaussian, it merely says sample versions are nor-
mally distributed around true population quantities. This Gaussian assumption of the Uk,m,q statistics is examined 
in greater detail in the supplementary materials. It is important to keep in mind that observations themselves are 
potentially noisy realizations of the truth. Our Bayesian model does not necessarily treat observations as ground 
truth in the way a supervised learning approach would. The parameter τk lets us scale the weight of observational 
climate data to behave more like ground truth, which in turn influences values of unknown parameters in a man-
ner similar in spirit to a supervised learning problem. We explore the sensitivity of model results to choice of τk in 
the supplementary material, based on which we settle on τk = 100 for our data analysis in this paper.

The full joint distribution of all the unknown parameters: Cm, ′C m, CBIASj, σj, θ, φm, αj.m, εj,q, γm,q, γ′ ′m q, , φ′m, 
and β ′m q,  is not of an analytically known form. Similar to past studies15,16,18, we choose conjugate prior distribu-
tions for each unknown that lead to known full conditional posterior distributions. All unknowns are updated in 
a Gibbs sampler variant of a Markov Chain Monte Carlo (MCMC) simulation. In the supplementary materials, 
we provide full details on the prior parameters, sensitivity tests for key prior parameters, the full conditional pos-
terior distribution for all unknowns, MCMC simulations and associated diagnostics. SI Tables 6–8 summarizes 
the selected priors and parameter starting values.

Validation of the Bayesian model is a crucial component of assessing its utility. Of course, unlike weather 
forecasting, true validation over future climatologies is impossible in the immediate term given the lead times of 
interest. We validate the model using a training-holdout scheme similar to conventional predictive modeling. We 
do this in each region using 1950–1974 as the “training” and 1975–1999 as the “validation” climatologies, respec-
tively. We examine the accuracy of our Bayesian model, posterior coverage, posterior upper coverage, and pos-
terior width, all as compared to the original ensemble of ESMs. In addition, we also compare posterior projected 
changes in return levels as compared to those projected changes obtained directly from the original ensemble of 
ESMs. For this measure, where the original ensemble performs well with reference to held out observations, the 
ideal Bayesian model should exhibit similar projected changes. In cases where the original ensemble performs 
poorly against held out observations, the ideal Bayesian model might deviate in terms of projected changes.

Finally, similar in theme to related work18, we use the ESMs themselves to validate the model. For a given 
watershed, each ESM is iteratively treated as true climate and the Bayesian model is run using 1975–1999 as the 
training climatology and 2065–2089 as the validation climatology. This is motivated by the fact that the difference 
between 2065–2089 and 1975–1999 should show a more prominent signal and thus might be a more fair way to 
assess the ability of the Bayesian model to handle longer-term changes (than those between 1950–1974 and 1975–
1999) and potential nonstationarity. Details of these validation steps are reported in the supplementary materials.

Results
Validation results.  Figure 1 displays validation scheme accuracy results across the 18 USGS HU2 water-
sheds that comprise the continental United States on a map (See SI Figs. 1–3 for validation, cross-validation 
and average distance from ensemble mean). Out-of-sample RMSE-based accuracy, posterior coverage, posterior 
upper coverage, and posterior distribution width are tabulated for each watershed in Table 1 (See SI Figs. 4–6 for 
prior and posterior distributions for validation scheme model runs for sample (Ohio) watershed). In the majority 
of watersheds (15 of 18), the Bayesian model outperforms the equal weighted ensemble average relative to held 
out observations from 1975–1999 in terms of RMSE-based accuracy. For 16 of 18 watersheds, the Bayesian model 
equals or outperforms the equal weighted ensemble upper and lower bounds in terms of posterior coverage when 
using a 99% posterior credible interval. Marginally, the Bayesian model outperforms the ensemble in 81.8% of the 
return levels corresponding to q′ ∈ [1, …, 25] in the 18 watersheds (averaged over the months), and in 73.1% of 
the months (averaged over the return levels).

Overall, the Bayesian model tends to be more accurate than the ensemble in non-summer months. Note that 
ESMs poorly simulate the pronounced diurnal cycle in precipitation over the United States in the summer49, and 
there is a significant correlation between tropical and North Pacific sea surface temperatures and summer pre-
cipitation variability41. Using these factors in the Bayesian model can potentially yield even better comparative 
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Figure 1.  The performance of the Bayesian model is compared to using the raw ensemble in terms of out-of-
sample accuracy and predictive coverage across 18 watersheds that comprise the continental U.S. Coloring 
represents accuracy of the posterior relative to using an ensemble average approach, measured as RMSE

RMSE
p

e
. 

Accuracy is higher in 15 out of 18 watersheds. In 15 of 18 watersheds, using a 99% credible interval, posterior 
coverage is larger than or equal to than ensemble coverage in all watersheds, where coverage ranges from 0 to 1 
(not depicted). The three regions where posterior coverage is smaller than that of the original ensemble are the 
Tennessee, Pacific Northwest, and California watersheds. Upper coverage is equivalent or improved in only 3 
out of 18 watersheds using the same 99% credible interval, including Lower Mississippi, Texas-Gulf, and Upper 
Mississippi. Watersheds are labeled by name and their respective RMSE

RMSE
p

e
 values. (We use R package that wraps 

around the open source Javascript project Leaflet: https://rstudio.github.io/leaflet/ to create the figure).

Watershed RMSEp

RMSEp
RMSEe covp

covp
cove

covp
u covp

u

cove
u Wp

Wp
We

Arkansas-White-Red 2.16 0.79 0.98 1.08 0.98 0.98 11.37 1.12

California 2.19 0.54 0.92 1.01 0.97 0.97 9.38 0.73

Great Basin 1.67 0.34 0.79 1.55 0.93 0.93 4.71 0.49

Great Lakes 2.12 0.57 0.88 1.69 0.96 0.96 5.71 0.78

Lower Colorado 2.13 0.43 0.83 0.95 0.92 0.92 5.24 0.38

Lower Mississippi 5.75 1.63 0.99 1.00 0.99 1.00 36.16 2.20

Mid Atlantic 4.33 0.61 0.95 1.34 0.96 0.96 10.68 0.69

Missouri 1.89 0.94 0.87 1.25 0.97 0.97 6.17 1.09

New England 5.02 0.69 0.89 1.73 0.89 0.89 10.62 0.65

Ohio 2.81 0.56 0.98 1.58 0.99 0.99 12.15 0.97

Pacific Northwest 1.54 0.73 0.98 1.16 0.98 0.98 7.47 1.18

Rio Grande 1.71 0.37 0.90 1.72 0.98 0.98 5.07 0.64

Souris-Red-Rainy 2.65 0.83 0.68 1.31 0.85 0.85 4.71 0.53

South Atlantic-Gulf 3.77 1.39 0.95 0.97 0.95 0.97 13.06 1.06

Tennessee 5.92 1.09 0.96 1.02 0.96 0.96 20.50 0.76

Texas-Gulf 3.19 0.95 0.95 1.07 0.95 1.01 10.01 0.87

Upper Colorado 1.72 0.55 0.88 1.39 0.96 0.96 4.71 0.63

Upper Mississippi 1.60 0.44 0.99 1.25 1.00 1.00 8.54 0.81

Table 1.  Watershed level validation metrics are tabulated. Bayesian accuracy is shown on its own (RMSEp) and 
relative to the original ensemble as a ratio ( )RMSE
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p . The same is tabulated for coverage ( )cov andp
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performance over the unweighted ensemble. However, we did not pursue such more mathematically complex 
models to keep the analysis tractable and interpretable.

Figure 2 examines the ability of the Bayesian model to simulate historical changes in return levels compared 
to the original ensemble projections. Historical changes (1950–1974 to 1975–1999) are shown for the Bayesian 
model, the original ensemble, and the observations. All changes are in mm

day
 units and are separately examined 

marginally over watersheds, return periods, and seasons. Median projections from the Bayesian model better 
reflect observed magnitudes of change, whereas the median of the original ensemble consistently underestimates 
observed change. The relative consistency of the Bayesian projections, versus those obtained from the raw ensem-
ble, may reflect a combination of (1) the Bayesian model’s ability to weight ESM projections more realistically 
using observations and/or (2) “shrinkage”, or the process of the model parameters tending toward average behav-
ior over seasons and order statistics.

Projections.  Figure 3 provides a comprehensive look at median change projections from both the Bayesian 
model and the original ensemble, but without information on uncertainty. Heatmaps show medians of posterior 
projections and the original ensemble for all combinations of return levels and watershed, averaged over all cal-
endar months in each case. Results for both the original ensemble and the Bayesian model in Fig. 3 resemble what 
could be generally expected under CC scaling in every watershed, where progressively further into the upper tail 
of the extreme precipitation distribution, intensity increases more34. For the Bayesian model, ~82% (369 of 450) 
of heatmap cells show increases in return levels, compared to ~85% (383 of 450) for the original ensemble.

Figure 3 also shows the same but show median projected changes for each month, averaged over all return lev-
els, for the Bayesian model and original ensemble, respectively. Here, ~72% (156 of 216) of cells show an increase 
for the Bayesian model, whereas ~76% (165 of 216) do for the original ensemble. The seasonal pattern of change 
is similar for both Bayesian and original ensemble projections, with June through September showing more cases 
of average decrease and the rest of the year showing increases more frequently across the majority of watersheds.

We now focus on one watershed, Ohio, as a complete case study. Figure 1 shows that the Bayesian model sub-
stantially improves on its accuracy in the 1975–1999 time period, cutting RMSE almost in half. Figure 2 shows 
that the Bayesian model also more realistically portrays the change in average Ohio extremes. Figure 3 shows 
that, qualitatively, the Bayesian model yields similar projected changes as the median projected changes from the 
original ensemble. Table 1 shows that, while the Bayesian model cuts RMSE almost in half, it also effectively on 
average reduces width as measured by the credible interval. Finally, we explore detailed projected changes for the 
uppermost extremes: Fig. 4 shows the detailed end of century percent change projections (1975–1999 median to 
2065–2089) for q′ = 25 year return levels Ohio. Violin plots show a full probability distribution of change relative 
to the 1975–1999 from the Bayesian model for each calendar month. Median, lower bound, and upper bound 
change projections from the original ensemble are overlaid for comparison. One notable feature in the Bayesian 
projections that is absent in the original ensemble is a long upper tail. Another is the difference between median 
projections of the Bayesian model versus the original ensemble, which can provide insight into biases being 
estimated. December projections show this difference, where the full spread of ESM projections shows increased 
precipitation, but the Bayesian model shows a median of projected decrease but a heavy upper tail. This lends an 
explicit likelihood to potential changes that are larger than the original ensemble projections. Though generally 
similar on average, the Bayesian change projections have the advantage over the original ensemble in that they 
provide stakeholders with information on probabilities versus discrete, unweighted projections.

Figure 2.  (Left) In each watershed, median historical Bayesian changes are calculated (median of the 1975–
1999 minus the 1950–1974 climatology), where the median of the 1950–1974 posterior is subtracted from the 
median of 1975–1999. Those changes are averaged across all return periods and seasons. The same changes are 
calculated for the median of changes from the original ensemble and from observed changes. Brown serves to 
indicate decrease, green increase, and white means no change. (Center) The same as the left panel but averaged 
across watersheds and seasons. (Right) The same as the left panel but averaged across watersheds and return 
periods.
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Significance of temperature as a covariate.  One of the principal hypotheses of this study is that guiding 
the statistical architecture of the model with known physics could enhance the results, potentially in a number of 
ways. In this case the hypothesis centers on the inclusion of same day temperature as a covariate. To test this, we 
run an experiment with one variant evaluating the model’s performance in terms of RMSE performance, poste-
rior coverage, posterior upper coverage, posterior distribution width (all of of γ′ ′m q, ) while including φm and φ′m 
as random unknowns and another variant where we set φ φ= ′ = 0m m , effectively removing the notion of tem-
perature dependence. We then perform a meta-analysis of the model’s performance against the validation regime 
with versus without temperature dependence.

Table 2 synthesizes the relative difference in model performance when including temperature dependence ver-
sus not including it. Including temperature dependence improves overall RMSE in 7 of 18 watersheds, increases or 
maintains coverage in 11 of 18, increases or maintains upper coverage in 14 of 18, and increases average posterior 
width in 11 of 18. In the Lower Mississippi, South Atlantic-Gulf, and Ohio watersheds, accuracy improves notably 
with temperature dependence included. There appears to be a mild bias-variance tradeoff, where posterior inter-
vals improve (and often widen) and accuracy decreases slightly in general. The ability of the Bayesian model to 
capture bias of ESMs likely contributes to its performance more so than temperature dependence. Despite these 
mild tradeoffs when including temperature, the Bayesian model still generally outperforms the ensemble in terms 
of accuracy (see Fig. 1 and Table 1).

Figure 3.  (Top left) Similar to Fig. 2, median projected changes (1975–1999 to 2065–2089) are shown for the 
Bayesian model for each return period and watershed, averaged over all months. (Bottom left) The same is 
shown as the top left but for the medians of the original ensemble. (Top right) Median projected changes are 
shown for the Bayesian model for each season, averaged over all return levels. (Bottom right) The same is shown 
as the bottom left but for the medians of the original ensemble.
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Figure 4.  Blue violin plots depict kernel densities of Bayesian probability distributions of projected change 
(1975–1999 to 2065–2089) in q′ = 25-year return levels in the Ohio watershed for each month. White dots 
represent the median of the Bayesian posteriors, and thick and thin black whiskers are lower and upper fences 
seen in a standard boxplot. Red hollow dots represent the median of the original ensemble projected changes. 
Red filled dots represent the upper and lower bounds of the original ensemble. Fences of the violin plot 
represent the kernel density functions of Bayesian probability distributions for each month.
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Arkansas-White-Red 1.06 0.99 0.99 1.00

California 0.96 1.00 1.00 1.00

Great Basin 1.04 1.00 1.02 1.04

Great Lakes 0.93 1.04 1.01 1.02

Lower Colorado 1.02 1.01 1.01 1.00

Lower Mississippi 0.97 1.00 1.00 0.99

Mid Atlantic 1.04 0.99 0.99 1.00

Missouri 0.96 1.02 1.02 1.00

New England 1.00 0.99 0.99 0.97

Ohio 1.03 0.99 1.00 0.99

Pacific Northwest 0.99 1.00 0.99 0.98

Rio Grande 1.05 0.98 1.00 0.95

Souris-Red-Rainy 1.02 0.99 1.00 1.00

South Atlantic-Gulf 1.00 1.00 1.00 1.03

Tennessee 1.02 1.00 1.00 1.00

Texas-Gulf 1.05 1.00 1.00 1.00

Upper Colorado 0.95 0.99 1.00 0.96

Upper Mississippi 0.85 1.02 1.00 1.00

Table 2.  Validation metric ratios are shown for RMSE, coverage, upper coverage, and width for the posterior 
with temperature dependence compared to without temperature dependence (denoted as p, φ and p, !φ, 
respectively, in the table header). Including temperature dependence improves overall RMSE in 7 of 18 
watersheds, increases or maintains coverage in 11 of 18, increases or maintains upper coverage in 14 of 18, and 
increases average posterior width in 11 of 18.
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Discussion
In this study, we present a physics-guided Bayesian model that utilizes ensembles of ESMs to estimate probabil-
istic projections of precipitation extremes under climate change. We exploit the knowledge that in many regions 
there is a relationship between temperature and extreme precipitation (e.g.34), but that the dependence structure 
between the two variables might often be more complex than idealistic Clausius Clapeyron scaling50. The Bayesian 
model weights ESMs according to their ability to capture not only historically observed marginal, univariate sta-
tistics of daily total precipitation return levels but also their covariance with historically observed same-day aver-
age surface temperature. This study has a similar goal to a Bayesian model for precipitation extremes developed 
recently19 but is more generalized in the sense that it simultaneously models a complete cumulative distribution 
function of extreme events rather than one specific statistic of extreme precipitation.

For the model specific to precipitation extremes developed here, there are several caveats worth highlighting. 
ESMs would not explicitly capture (extra)tropical cyclones or other major storms (e.g., Nor’easters) from the 
observational record, and thus extreme precipitation as a result of those types of events might not be reflected 
directly in raw ensemble data. This may impact the Bayesian model’s ability to accurately capture some of the 
most extreme observed events, especially in the southeastern United States (e.g., see Fig. 1). In the validation 
analysis, while the Bayesian model’s 99% credible intervals performed well overall, they did not tend to outper-
form the original ensemble in terms of upper coverage, i.e., the ability to bound the most extreme observations. 
This could be explained partially be a form of bias-variance trade-off, given that the Bayesian model usually out-
performs the ensemble in terms of accuracy in the 1975–1999 period. It is also reasonable to hypothesize that a 
Generalized Extreme Value (GEV) data model, for example, might better handle the uppermost extremes. Future 
research could expand the development of tractable, intepretable Bayesian frameworks for ensemble weighting 
based on a GEV data model19. For this particular work, results in Fig. 4 do show that the upper tail of projected 
changes can be quite heavy; this is not reflected in the 99% credible intervals.

Caution must also be exercised in interpreting Bayesian projections, especially given mixed results from the 
ESM cross validation experiment (see supplementary materials). Stationarity and reliability of a relatively com-
plex multivariate distribution of Bayesian parameters, while tested to the extent possible via cross validation with 
ESMs and with an explicit training-holdout split in the historical time window, is not guaranteed in the future25. 
However, the Bayesian model does produce projections that are qualitatively comparable to those of the original 
ensemble but with probabilistic information, implying that the risk of leaning on the Bayesian model versus the 
raw ESMs is minimal in a relative sense.

From stakeholder perspective, near term and long term risk assessment needs to account for uncertainty from 
disparate sources and climate uncertainties may be of second order. For example, in case of hydrological and flood 
risk assessment, parametric and modelling uncertainties owing to limited understanding of underlying processes 
can dominate or in some cases, comparable to climate uncertainties51. Similarly, in the context of risk assessment 
on critical infrastructures including transportation, energy, and water and wastewater networks, uncertainties 
associated with associated non-linear dynamics and cascading failures52 can dominate the stressor related uncer-
tainties. Hence, future research and methodologies in this direction need to characterize, both qualitatively or 
quantitatively, the relative importance and magnitude of various sources of uncertainties within mathematical 
frameworks to aid policymakers in decision making.

As discussed more in the supplementary materials, certain combinations of prior parameters may work par-
ticularly well in certain watersheds, but in this study we opted to find one set of parameters that worked well, gen-
erally (See SI Figs. 7–8). The Bayesian model generally performs best when skill is favored over consensus ((See 
SI Figs. 9–17 for watershed scale results). This may suggest that in general, weighting ESMs based on nontrivial 
and physics-guided measures of historical skill (in this case, how well ESMs portray precipitation-temperature 
dependence from observed data) can lead to improvements in the statistical attributes of probabilistic projections, 
e.g., accuracy and coverage.
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