
Defending SDN-based IoT Networks Against DDoS
Attacks Using Markov Decision Process

Jianjun Zheng
Computer Science Department

Texas Tech University
Lubbock, Texas, USA

Email: jianjun.zheng@ttu.edu

Akbar Siami Namin
Computer Science Department

Texas Tech University
Lubbock, Texas, USA

Email: akbar.namin@ttu.edu

Abstract—The emerging Internet of Things (IoT) has increased
the complexity and difficulty of network administration. For-
tunately, Software-Defined Networking (SDN) provides an easy
and centralized approach to administer a large number of
IoT devices and can greatly reduce the workload of network
administrators. SDN-based implementation of networks, however,
has also introduced new security concerns, such as increasing
number of DDoS attacks. This paper introduces an easy and
lightweight defense strategy against DDoS attacks on IoT devices
in a SDN environment using Markov Decision Process (MDP)
in which optimal policies regarding handling network flows are
determined with the intention of preventing DDoS attacks.

Index Terms—Internet of Things, DDoS, Markov Decision
Process, Software-Defined Networking

I. INTRODUCTION

In traditional network architecture, the data processing
functionalities and the control logic governing transmission
of flows are incorporated into network devices resulting in
a distributed and highly-coupled system. Although this type
of design is beneficial for performing reliable and efficient
network operations, it can also create a heavy and expensive
workload for administrators in order to maintain and update
every network device. In particular, it is even a big hurdle
for administrators when the complexity and scale of the
underlying network increases. On the other hand, the emerging
paradigm of Internet of Things (IoT) not only added more
complexity to networks, but also introduced several attacks
types and thus increased attack surfaces in the network. As an
eye-opening fact, there was 600% increase in attacks against
IoT devices between 2016 and 2017 [1].

Software-Defined Networking (SDN) [2] is an emerging
network design aiming to solve the challenges in the current
network architecture. It creates a flexible, programmable and
secure network to meet the needs for more innovation and
better security. In the software-defined networking architec-
ture, the control logic in each network device is transfered
into a centralized controller, leaving the network devices to
only perform the data forwarding activities with respect to the
flow-rules received from the centralized controller. The com-
munication between the controller and the network switches is
achieved through application programming interfaces (APIs).
The most successful example of such an API is OpenFlow [3].
Each OpenFlow switch has multiple flow tables. Furthermore,

in each table every row stores a packet-handling rule (i.e.,
flow-rule) defined by the controller. The controller also inserts
and updates the flow-rules upon request from the switch.

The separation of the control logic from the data forwarding
plane enables network administrators to manage and configure
the entire network through a centralized controller and thus re-
duce the workload and at the same time increase the efficiency
of their jobs. These features make SDN a good candidate for
facilitate administration of IoT devices. On the other hand,
the centralized design architecture of SDN also introduces
new security concerns, such as the information leakage, DDoS
attack, and more [4].

In SDN, each switch relies on the controller to make
decisions on how to process the received data packets. Hence,
any failure of the controller or the communication between
the controller and the switch can make the whole network
nonoperational. Distributed Denial of Service (DDoS) attack
is a commonly used attack in SDN aiming to overload the
controller with a large number of specially crafted flow re-
quests [5] or IP packets [6] so that the controller becomes
unresponsive to the legitimate requests from the network
switches.

The mitigation strategies against DDoS attack has been
discussed in several research papers. Most of the introduced
approaches utilize flow analysis techniques to detect DDoS
attacks and therefore alert the network administrators. The
network administrators then create new mitigating flow rules,
which will be sent to all network switches via the controller.

A possible challenge in the detection-based approaches of
DDoS attacks is that the detection stage usually requires a
large number of data packets to be analyzed to improve the
detection accuracy. Another challenge is long response time
due to the intensive and deep packet analysis of large amounts
of data packets.

Inspired by [7] and [8], we propose to use Markov Decision
Process to optimize the flow traffic in SDN based on flow
traffic parameters and alert network administrators whenever
the flow traffic needs to be optimized. Our approach does not
require large amounts of data or deep packet analysis, so its
response time is short and can detect and then alert the network
administrators of potential DDoS attacks at the early stage.

The rest of the paper is organized as follows. In Section II

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 4589

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 15:39:55 UTC from IEEE Xplore. Restrictions apply.

we describe existing approaches to DDoS attacks in SDN. In
Section III we introduce our MDP-based model. We present
our simulation experiments and results in Section IV. Finally,
Section V concludes the paper and presents future research
opportunities.

II. RELATED WORKS

The mitigation of DDoS attacks in SDN has been studied
using various approaches and techniques in which the effective
detection of DDoS attacks is a key critical concern. Braga et
al. [9] point out that the detection of DDoS attacks is slow
and difficult because it requires a large amount of data to be
analyzed to distinguish between the normal data packets and
the attacker-crafted data packets. The authors [9] then propose
a lightweight method to detect DDoS attacks by using some
flow features stored in the flow tables of each switch. Since
the controller has the direct access to the flow tables, it can
retrieve the flow features in an efficient way and then use them
to identify the abnormal flow traffic.

Fonseca et al. [6] argue that the idea of centralized design
of SDN may not be resilient because of the issue of the
single point of failures. Therefore, they propose to build
a replication component called CPRecovery to improve the
network resilience. When a primary controller is under an
intensive attack, the replication component can seamlessly
transit all information to a backup controller. However, as
pointed out by Yao et al. [10], it may not be reliable to use
multiple controllers to defend against DDoS attacks because
it is possible that a DDoS attack on one controller can lead to
the cascading failures of multiple controllers.

In this paper, we introduce a theoretical scheme based on
Markov Decision Process to optimize the flow traffic for each
controller by estimating the involved flow parameters. In the
case of a DDoS attack, even at an early stage of the attack,
the flow traffic would change and the MDP would be able to
detect the abnormality in an efficient way and alert the network
administrator to take necessary actions. The high efficiency
and low overhead of our approach is beneficial to network
administrators when they have to administer a great number
of IoT devices connected to SDN.

III. MARKOV DECISION PROCESS MODEL

In this section, we formulate our approach as a discrete,
finite-state, and finite-action Markov Decision Process (MDP)
as a 4-tuple (S,A, P,R), where:

– S is a finite set of states.
– A is a finite set of actions.
– P is the probability of a state transitioning to a new state

upon performing an action.
– R is the expected immediate reward received after state

transition, due to the control action performed.

A. MDP States

Three parameters are selected [11] to formulate the finite
set of states: 1) Used Flow Entry Size (F), 2) Flow Queue
Size (Q), and 3) Transmitted Packets Count (T). The finite

set of states in our MDP will be the Cartesian product of the
finite sets of F , Q, and T :

S = F ×Q× T (1)

B. MDP Actions

At each fixed time period, the controller determines if the
system would transit to the next state based on the current
state.

A ∈

{
1 Transit
0 Stay

(2)

C. Reward Function

The immediate reward, R, received after state transition is
related to the three flow parameters F , Q, and T :

R = RF +RQ +RT (3)

Since each parameter has different impact on the reward, we
use weighted reward function to take into account the impacts:

R = wfRF + wqRQ + wtRT (4)

The Used Flow Entry Size is an indicator of the traffic load.
A heavy traffic consumes more flow entries than a light traffic
and thus a light traffic is preferable. We define the reward
associated with the Unused Flow Entry Size (F) as follows:

RF =


1 0 ≤ f ≤ Fmin

Fmax−f
Fmax−Fmin

Fmin < f < Fmax

0 f ≥ Fmax

(5)

where:
– f is the unused flow entry size at the given state.
– Fmin is the minimum acceptable unused flow entry size.
– Fmax is the maximum acceptable unused flow entry size.
Similarly, we define the rewards associated with the Flow

Queue Size (Q) and the Transmitted Packets Count (T):

RQ =


1 0 ≤ q ≤ Qmin

Qmax−q
Qmax−Qmin

Qmin < Q < Qmax

0 q ≥ Qmax

(6)

where:
– q is the queue size at the given state.
– Qmin is the minimum acceptable flow queue size.
– Qmax is the maximum acceptable flow queue size.

RT =


0 0 ≤ t ≤ Tmin

Tmax−t
Tmax−Tmin

Tmin < t < Tmax

1 t ≥ Tmax

(7)

where:
– t is the transmitted packet count at the given state.
– Tmin is the minimum acceptable transmitted packet

count.
– Tmax is the maximum acceptable transmitted packet

count.

4590

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 15:39:55 UTC from IEEE Xplore. Restrictions apply.

D. Bellman Optimality Equations
An optimal policy π∗ is a control action a ∈ A that

generates the maximum expected total discounted reward and
is expressed by Bellman Optimality Equation [12]:

V ∗i+1(s) = max
a∈A

∑
s′∈S

P (s, a, s′)[R(s, a, s′) + γV ∗i (s
′)] (8)

where:
– P (s, π, s′) is the transition probability starting from state
s and ending at state s′ after following policy π.

– R(s, π, s′) is the expected rewards received after state
transition from s to s′ after following policy π.

– γ is the discount factor.

E. Solving MDP
The optimal policy can be obtained by solving the MDP

problem which is expressed in Equation (8). Commonly used
methods to solve Equation (8) include dynamic programming,
policy iteration, and value iteration. Due to its simplicity, in
our approach we use the value iteration to solve the underlying
MDP.

IV. SIMULATION EXPERIMENTS

In this section, we presents the results of a simulation using
combinations of the three flow parameters and analyze the
impact of each parameter on the total expected discounted
reward.

A. Experiments Parameters
The following parameters are used in the simulation:
– Fmin = 0
– Fmax = 0.9, 90% of the total flow entry size
– Qmin = 0
– Qmax = 0.90, 90% of the total flow queue size
– Tmin = 0.3, 30% of the acceptable total transmitted

packet count
– Tmax = 0.9, 90% of the acceptable total transmitted

packet count
We arbitrarily choose 4 values between the minimum and the
maximum values of each parameter to formulate the finite sets:
• F = {0.35, 0.55, 0.75, 0.95}
• Q = {0.35, 0.55, 0.75, 0.95}
• T = {0.35, 0.55, 0.75, 0.95}

The Cartesian product of F , Q, and T will generate 4×4×4 =
64 states, however, for simplicity purposes, in this simulation
we arbitrarily choose 4 states from the 64 states as follows:
• S1 = {f = 0.35, q = 0.35, t = 0.35}
• S2 = {f = 0.55, q = 0.55, t = 0.55}
• S3 = {f = 0.75, q = 0.75, t = 0.75}
• S4 = {f = 0.95, q = 0.95, t = 0.95}

The MDP model with these 4 states is shown in Figure 1
where the solid lines represent the “Transit” action path from
one state to another ones (including itself) with an equal
transition probability (25%) and the dashed lines represent the
“Stay” action path from one state back to itself with transition
probability of 100%.

Fig. 1: The MDP model with 4 states.

Fig. 2: Impact of discount factor γ on expected total reward.

B. Experiments Results

1) Discount Factor: The discount factor in MDP, denoted
by γ ∈ (0, 1), indicates the importance of the future rewards
in comparison to the present ones. Smaller γ means the reward
received in the future will be less significant than the present
reward. This indicates that the reward should be collected
sooner than later. Figure 2 depicts the impact of the discount
factor on the total expected rewards. It shows that when the
discount factor is smaller than 0.9, the total expected reward
for each state does not increase much as the discount factor
increases. However, when the discount factor is greater than
0.9, even a small increase in the discount factor will result in
a big increase for the total expected rewards.

2) Reward Function Weight: Figure 3 depicts the impact
of the reward weight of F , Q, and T on the expected total
rewards. When the three weights are the same wf = wq =
wt =

1
3 , the impact on the expected total reward of each state

is almost the same and this can be confirmed by Equation 4.
The figure also shows that the larger wt has bigger impact on
expected total reward of the state S4 than the expected total
rewards of the other three states, but the larger wf or wq has
bigger impact on the state S1 than the other three states.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presents a MDP-based optimal policy for
detecting and mitigating potential DDoS attacks targeting IoT

4591

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 15:39:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Impact of reward weight on expected total reward.

devices on a Software-Defined Network. Our approach focuses
on keeping the flow traffic optimized and alerting system ad-
ministrators otherwise, therefore, it can detect potential DDoS
attacks at the early stage and gives administrators enough time
to mitigate the attacks quickly. Our simulation results show
that, by adjusting the discount factor and the reward weight
factor, administrators can control how the system transit from
one state to another.

In the future research, we plan to include more flow param-
eters to formulate more realistic states. In addition, we also
plan to implement machine learning technique to automate the
detection and mitigation process.

ACKNOWLEDGEMENT

This project is funded in part by a grant (Awards No:
1516636 and 1564293) from National Science Foundation.

REFERENCES

[1] (2018) Internet security threat report by symantec corpo-
ration. [Online]. Available: https://www.symantec.com/
content/dam/symantec/docs/reports/istr-23-2018-en.pdf

[2] N. McKeown. (2011) How sdn will shape networking.
[Online]. Available: https://www.youtube.com/watch?v=
c9-K5O qYgA

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1355734.1355746

[4] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov,
“Security in software defined networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 17, no. 4, pp.
2317–2346, Fourthquarter 2015.

[5] S. Shin and G. Gu, “Attacking software-defined
networks: A first feasibility study,” in Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 165–166. [Online].
Available: http://doi.acm.org/10.1145/2491185.2491220

[6] P. Fonseca, R. Bennesby, E. Mota, and A. Passito,
“A replication component for resilient openflow-based
networking,” in 2012 IEEE Network Operations and
Management Symposium, April 2012, pp. 933–939.

[7] A. Munir and A. Gordon-Ross, “An mdp-
based application oriented optimal policy for
wireless sensor networks,” in Proceedings of
the 7th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis,
ser. CODES+ISSS ’09. New York, NY, USA:
ACM, 2009, pp. 183–192. [Online]. Available:
http://doi.acm.org/10.1145/1629435.1629461

[8] J. Zheng and A. Siami Namin, “A markov decision
process to determine optimal policies in moving target,”
in Proceedings of 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18).
Toronto, ON, Canada: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3278489

[9] R. Braga, E. Mota, and A. Passito, “Lightweight ddos
flooding attack detection using nox/openflow,” in IEEE
Local Computer Network Conference, Oct 2010, pp.
408–415.

[10] G. Yao, J. Bi, and L. Guo, “On the cascading failures
of multi-controllers in software defined networks,” in
2013 21st IEEE International Conference on Network
Protocols (ICNP), Oct 2013, pp. 1–2.

[11] ONF. (2015) Openflow switch specification version
1.5.1. [Online]. Available: https://www.opennetworking.
org/software-defined-standards/specifications/

[12] R. E. Bellman, Dynamic Programming, reprint ed.
Princeton University Press, 2010.

4592

Authorized licensed use limited to: Texas Tech University. Downloaded on August 26,2020 at 15:39:55 UTC from IEEE Xplore. Restrictions apply.

