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Abstract: Designing effective recovery strategies for damaged networks is important across built, human, and natural systems. Postper-
turbation network recovery has been motivated by two distinct philosophies, specifically, the use of centrality measures in complex networks
versus network optimization measures. The hypothesis that hybrid approaches may offer complementary value and improve our understand-
ing of recovery processes while informing real-world restoration strategies has not been systematically examined. This research shows that
the two distinct network philosophies can be blended to form a hybrid recovery strategy that is more effective than either. Network centrality—
based metrics tend to be intuitive and computationally efficient but remain static irrespective of the desired functionality or damage pattern.
Optimization-based approaches, while usually less intuitive and more computationally expensive, can be dynamically adjusted. The proposed
approach, based on edge recovery algorithms with edge importance informed by network flow and node attributes, outperforms recovery
informed exclusively either by network centrality or network optimization. We find that optimization methods outperform centrality-based
approaches for networks that are large enough for the power law to be manifested, but for treelike networks typically found at smaller scale,
the two approaches are competitive and scenario specific. DOI: 10.1061/(ASCE)IS.1943-555X.0000566. © 2020 American Society of Civil

Engineers.
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Introduction

Lifelines provide essential services to residents and businesses
across geographic scales and help ensure the public’s health and
safety as well as economic security (Rinaldi et al. 2001). Energy,
water, transportation, and communications represent the four pri-
mary lifelines, and comprise interdependent networked systems,
such as the infrastructures that support power grids, water distribu-
tion or wastewater systems, multimodal transportation including
railways, roads, airways, or waterways, and telephone, satellite,
or Internet services. Natural, technological, and human-made catas-
trophes, including weather extremes and cyber-physical attacks,
may severely disrupt the functioning of these lifeline infrastructure
networks, thus causing loss of essential services. The correspond-
ing impacts can be felt by rural and urban communities with cas-
cading fallouts across cities, megalopolises, nations, regions, and
indeed the entire globe (McNutt 2015). The ability to manage,
adapt to, and mitigate the risks may determine the extent to which
human society can benefit from globalization versus becoming in-
creasingly vulnerable to large-scale failures. Probabilistic risk
analysis, reliability engineering, operations research, and, in recent
years, network science (Buldyrev et al. 2010; Clark et al. 2018;
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Ganin et al. 2016; Gao et al. 2016; Ouyang and Wang 2015) have
demonstrated value in characterizing, designing, maintaining, and
operating lifeline infrastructure networked systems (LINS). How-
ever, once disasters strike, intervention by emergency managers,
stakeholders, and policymakers is imperative for the timely and ef-
ficient restoration of the essential services supported by LINS. One
crucial knowledge gap in this context is the inability to provide
systematic guidance for postdisruption recovery, let alone prepare
such recovery plans in advance. While optimization approaches
have demonstrated value in simulated or stylized settings and net-
work science methods have shown initial promise with simulated or
real-world networks (Bhatia et al. 2015; Clark et al. 2018; Ganin
etal. 2016, 2017; Ulusan and Ergun 2018), principled strategies for
recovery, especially those that can benefit from both, are still
lacking.

Current efforts in infrastructure recovery (Ganin et al. 2016;
NIAC 2010; Ouyang et al. 2012) include postdisaster maximum
flow, connectivity recovery, identification of key components for
resource allocation using network science—based approaches, and
theoretical recovery frameworks for simulated networks (Bhatia
et al. 2015; Clark et al. 2018; Ouyang et al. 2012). Existing infra-
structure recovery methods either focus on network heuristics that
prioritize restoration based on predefined measures or optimization
methods that have been tested either on stylized or simulated net-
works (Ulusan and Ergun 2018). While centrality-based metrics
tend to be intuitive and computationally efficient, they remain static
irrespective of the desired essential functionality of networked in-
frastructures. Optimization-based approaches, while usually less
intuitive and more computationally expensive, can potentially be
better tailored to design objectives.

However, most real-world networks often differ from the
stylized models and assessing the impact of disruptive events fol-
lowed by recovery calls for a case-by-case assessment of the most
efficient recovery strategies. For instance, an approach for joint re-
storation and modeling of interdependent infrastructures exempli-
fied through interdependent gas and power systems at the county
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level impacted by a hurricane was proposed by Ouyang and Wang
(2015). As noted, the proposed framework requires multiple com-
ponents, including a hazard generation model, component fragility
models, disaster-specific fragility curves, and system performance
models, which may not be available for many real-world infrastruc-
ture systems that operate at large geographical scales and face a
variety of potential threats. Also, infrastructure systems are often
designed to meet multiple functionality criteria. When performance
levels for infrastructure systems deteriorate after perturbation, these
systems lose essential functionality from more than one standpoint
(Ganguly et al. 2018).

To address the shortcomings, explore the complementary value
network science—based approaches and optimization approaches to
guide networked infrastructure recovery. While prior literature ex-
ists on network flow and optimization, there have been no previous
attempts reported in the literature to blend network science with
network optimization and translate such hybrid methods to recov-
ery of lifeline infrastructure networks. We designed a strategy that
blends network science and optimization to improve network re-
covery postperturbation and demonstrate it on two real-work net-
works. Specifically, we developed an edge recovery algorithm that
blends network science-based heuristics including network cen-
trality measures and optimization approaches including the greedy
algorithm (Edmonds 1971; Krause et al. 2009) and cross-entropy
(CE) algorithm (Rubinstein 1999) to inform recovery of real-world
networks after disparate hazards. The greedy and CE algorithms
that represent two distinct optimization approaches were selected
to test the recovery performance when applied to networks follow-
ing the treelike and power-law structure. The integrated approach
enables us to design adjustable objective functions in which real-
world constraints such as resources, recovery time, and a combi-
nation of nodes and edge failure can be included. We applied
the model to two real-world transportation systems: the Indian Rail-
ways Network (IRN) and the Massachusetts Bay Transportation

Authority (MBTA) system in the Greater Boston area. We modeled
network disruptions inspired by real-life events. Then, we applied
the proposed edge recovery algorithms to compare performance of
various recovery strategies. The results may reveal important con-
siderations for assessing proposals for disaster preparedness that in
turn can help stakeholders act in advance to restore network func-
tionality at faster rates.

Data

We generated models of two topologically distinct transportation
systems operating at disparate scales. Specifically, we modeled
the IRN and MBTA as networks, in which the nodes represent
the transit stations. For IRN, a pair of nodes is considered con-
nected by an edge if there is at least one origin and destination train
between the pair. For MBTA, two nodes are considered connected
if a pair of stations is connected by a direct train. We used two
different network representations because both origin—destination
(OD) and traffic flow data are frequently used in transportation for
efficiency and resilience assessment studies depending on the data
availability (Murray-Tuite 2006; Vugrin et al. 2014; Zhang et al.
2009). Here, we analyzed origin—destination data of passenger-
carrying trains on the IRN. The network was constructed using
publicly available data, which were cleaned and appropriately for-
matted prior to the analysis. The resulting IRN comprises 809 no-
des (i.e., stations) with 7,066 edges (i.e., trains). We constructed the
MBTA network by analyzing the open-source map available at the
operator’s website. Traffic flow data were obtained from MBTA
(n.d.). The resulting MBTA network contains 121 nodes and
176 edges. Fig. 1(a) shows the resulting IRN and Fig. 1(b) shows
the resulting MBTA networks. Traffic flow is a dynamic attribute of
any transit network and it depends on multiple factors such as aver-
age delays, weather conditions, and the physical state of stations

Critical Failure:
@ 2015 Nor’easter

Critical Failure:

@ 2004 Tsunami
@ 2012 Power Blackout

@ Simulated Cyber-Physical attack

(a)

(b)

Fig. 1. Network visualization of transportation systems: (a) IRN; and (b) MBTA. Node size is proportional to the number of connections of each
network. Critical failure nodes impacted by simulated cyber-physical hazards, 2004 Indian Ocean tsunami, and 2012 India blackouts are highlighted.
Nodes impacted by 2013 snowstorms are shown in (b). Geographical maps in inset highlight the different scales at which these two transportation

networks operate.
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and tracks. However, these data sets are not publicly and widely
available for either IRN or MBTA. Hence, we relied on open-
source data sets for this study. The proposed approach can be
straightforwardly updated given updated information of traffic
flow conditions.

Critical Functionality of Lifelines

In the context of LINS, critical functionalities are defined as those
functionalities that, if perturbed, can lead to serious societal emer-
gency and crisis. Posthazard restoration efforts ought to restore
these systems to the level of initial performance. Hence, we used
state of critical functionality (SCF) as a performance measure,
which is defined as the ratio of functionality at a given instance
during the restoration process [instantaneous functionality (IF)] to
a state of functionality before perturbation [target functionality
(TF)]. Hence, SCF =1 represents a fully functional system,
whereas SCF = 0 represents the total loss of functionality. In a
transportation context, the impact of perturbations unfolds in the
form of loss or impairment of stations and/or linkages between
these stations, which in turn results in loss of service such as delays,
disruption of traffic flow, and loss of connectivity. In the present
study, we used two different measures for SCF for the systems
under consideration: (1) network connectivity assessed by measur-
ing the size of the largest connected component (LCC) in a net-
work, and (2) satisfying OD traffic demand measured as a total
traffic flow in the LCC (Bhatia et al. 2015; Ganguly et al. 2018).

Perturbation and Recovery

To simulate perturbations on IRN, we considered three hazards in-
spired by real-life events: (1) the 2004 Indian Ocean tsunami (Grilli
et al. 2007) that impacted stations and train tracks on the eastern
coast of India; (2) cascading failure from the power grid based on
the historically massive 2012 blackout (Lai et al. 2013); and (3) a
cyber-physical attack scenario, in which transit stations are mali-
ciously targeted based on traffic volume. In future sections, for
brevity, we call these events tsunami, grid, and cyber-physical, re-
spectively. The cyber-physical attacks are based on hypothetical
scenarios, although motivated from real-world events such as the
2008 Mumbai terror attack (Azad and Gupta 2011; Bhatia et al.
2015). For MBTA, we considered a hazard inspired by the
nor’easter of January 2015 (Rauber et al. 2016) that put up to 1 m
of snow in various parts of New England. These hazards result in
loss of impacted nodes and edges that are incident on these nodes.
Loss of these components in turn results in reduced functionality
because the system cannot sustain the TF (see Tables S1 and S2 for
the list of affected stations by various hazards in the two networks).
Postperturbation system recovery entails strategic restoration
of network components that are impacted by perturbation. When
multiple components are lost, determining recovery sequences for
restoration plays a crucial role in regaining the desired performance
level and serviceability of the system (Ouyang et al. 2012). In this
study, we focused on determining the optimal recovery sequence of
edges, which results in the fastest recovery to predisaster function-
ality, i.e., minimizing the resilience loss. Resilience loss in this con-
text is described as the mismatch between the targeted functionality
and actual recovery curve and is a function of the intensity of the
perturbation and duration of the recovery. Resilience loss is com-
puted as the area between the TF and IF curves (Fig. 2). The def-
inition of resilience loss used here is the direct application of the
conceptual definition of the resilience triangle and a simple way to
quantify resilience (Bruneau et al. 2003; Cimellaro et al. 2010).
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Fig. 2. Disruption and recovery process in representative network with
five nodes and four edges. The efficiency of a strategy is measured in
terms of resilience loss, which is the area bounded by the Y-axis and
recovery curve traced by SCF. The strategy with the least resilience loss
is comparatively more efficient.

For the representative network with five nodes and four edges,
we measured SCF at time ¢ as the ratio of the number of nodes at
time ¢ with respect to original number of nodes at T = 0. At time
P[0], SCF = 1 (prehazard). The edge shown marked by dotted lines
was selected for removal at ¢+ = P[1], resulting in isolation of the
node shown in red, which sets SCF to 4/5. At P[2], another edge
was removed, which further shrunk SCF to 2/5. After the network
was disrupted, the recovery process was initiated. With three edges
removed, edge restoration can be determined in six ways. Out of six
possible ways, we considered Recovery Sequences A and B. In
Recovery Sequence A, when the green edge is restored at time
R[1], SCF changes from 2/4 to 3/5. The process of restoring
one edge at a time is repeated until the network has SCF = 1 (pre-
hazard state).

In this study, we propose network science and optimization ap-
proaches to solve the network recovery problem. The network sci-
ence approach relies on network centrality measures to inform the
recovery strategy. The optimization approach generates recovery
strategies by directly minimizing resilience loss through making
the locally best deterministic decision using the greedy approach
and globally based heuristic decisions using the CE approach.
Given the three perturbation scenarios considered previously, the
network science and optimization approaches were tested, evaluated,
and compared for the IRN and MBTA systems (see “Methods” for
more detail).

Regardless of the approach, the outcome of the network and
optimization-based approaches is a set of edges and a sequence
in which the edges in the network should be restored. To assess
the goodness of the recovery strategy, the edges and adjacent nodes
are gradually restored and SCF is computed at each step. Specifi-
cally, recovery takes the following process:

1. TF is calculated at the prehazard state without perturbing nodes
or edges.

2. IF is computed at the initial posthazard state for a given set of
perturbed edges.

3. Given a set and a sequence of edges that should be restored, at
each step:

a. The next edge in the prioritization sequence and its adjacent
nodes is restored, establishing flow between a pair of nodes
connected by the edge. This increases the size of the largest
connected component and enables traffic flow across the
network.
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b. IF is recalculated.
¢. SCF is calculated.

Methods

Network Science—Based Recovery Approaches

We built on network centrality measures to generate prioritization
sequences for perturbed systems; specifically, we relied on degree,
closeness, betweenness, and eigenvector centrality measures
(Clark et al. 2018). Different centrality indexes measure distinctive
aspects related to a position of nodes within a network. For exam-
ple, betweenness centrality describes the importance of a node as a
connector between different parts of the network. Alternatively,
closeness centrality measures the proximity of a node to all other
nodes. Nodes with high closeness centrality values can rapidly af-
fect other nodes and vice versa. Degree centrality is a measure of
the number of connections originating (or terminating) at a node,
whereas eigenvector centrality is a measure of influence of the
node. A high eigenvector centrality means the node is connected
to many more nodes that have a high degree. Similarly, edge be-
tweenness centrality is defined as the number of the shortest paths
that go through an edge in a network.

We considered two performance metrics, where the resilience is
a function of: (1) network connectivity and (2) the origin—destination
demand that can be satisfied. For Function 1, we considered a
topology-based centrality measure, whereas for Function 2 a
weighted version of network centrality was used, where weight of
an edge represents the number of trains scheduled to operate on
a given edge. Specifically, we used weighted degree (sum of
weights incident upon a node), weighted closeness centrality
(measuring proximity of a node while using inverse of weights
to find the least costly path among all nodes), and weighted
edge betweenness centrality based on the algorithm proposed by
Newman (2002).

Intuitively, an edge connecting two important nodes should act
like a bridge between two parts of a network. Hence, removal
(restoration) of such an edge could result in faster destruction
(recovery) of the system. Hence, in addition to edge betweenness
centrality, we also accounted for the importance of a pair of nodes
between which an edge is positioned. We computed averages of
closeness, eigenvector, and degree centrality for each pair of nodes
in the network, and centrality-based scores were used as measures
to establish the edge prioritization sequence. The higher the
centrality-based score, the higher the prioritization assigned to an
edge during the recovery process.

Optimization-Based Recovery Approaches

The greedy and CE algorithms represent two distinct optimization
approaches were selected to test the recovery performance when
applied to networks following the treelike and power-law structure.
The greedy algorithm belongs to a class of deterministic optimiza-
tion approaches that make locally best decisions given available
information. The CE algorithm belongs to a class of heuristic
simulation-based approaches that make global decisions by gener-
ating many realizations of probable solutions. In both approaches,
the goal is to find a feasible solution that satisfies all the constraints
while optimizing (i.e., maximizing in our setting) a predefined ob-
jective function. Both approaches have the advantage over the
network-based method because of their ability to model the objec-
tives (and constraints) of the decision maker and incorporate these
in the optimization process. Both the greedy and CE algorithms
require having a way to evaluate system performance, e.g., through

© ASCE

04020024-4

sampling or model simulations. The methods differ, however, in
their solution approach. The greedy algorithm is a sequential deter-
ministic algorithm that selects in each step the best local decision
and continues to the next best local decision until all decisions are
covered and the final solution is achieved. Thus, the final solution
constitutes a sequence of local best decisions. On the contrary, the
CE algorithm is a stochastic global algorithm that optimizes the
underlying probability of the solutions instead of directly optimiz-
ing the decision variables. Thus, all the decisions for the entire plan-
ning horizon are made at once. The greedy algorithm has the
advantages of being (1) computationally efficient because of its
deterministic nature and requiring evaluation of the system’s re-
sponse to each decision one step at a time (and not the combina-
tions of many decisions over the entire planning horizon) and
(2) adaptive to the changing conditions through sequential decision-
making, which allows adjusting the decision strategy once new
information is revealed. The CE has the advantages of (1) making
globally optimal decisions by considering the entire planning
horizon and not being affected by local properties of the network
and (2) providing near-optimal solutions when using tuned
parameters.

The greedy algorithm has the disadvantages of being trapped by
local optimums and thus not reaching globally good solutions. The
CE algorithm relies on a large number of simulations, which typ-
ically makes it computationally intense especially for large sys-
tems. The main drawback of both approaches is that they do not
provide performance guarantees on the quality of the solution.
However, they have been highly successful for applications in a
variety of computer science and optimization problems and empiri-
cally result in good-quality solutions (Kapur and Kesavan 1992;
Moher 1993).

To formulate the recovery problem, we defined the recovered
edges as the decision variables. Our goal was to achieve a fast re-
covery to the predisaster functionality, i.e., minimize resilience
loss. Thus, we defined the objective function as the area under
the resilience curve that we wish to minimize. We considered
two performance metrics, where the resilience is a function of net-
work connectivity and the origin—destination demand that can be
satisfied. The outcome of the optimization approach, either greedy
algorithm or CE, would provide the sequence of the edges that
should be restored to achieve the minimum resilience loss.

Intuitively, the greedy algorithm approach is to iteratively select
the solution (edge) that contributes the most to the network func-
tionality at the current stage, until all edges are restored and the
network regains its full functionality. The main steps of the greedy
approach are outlined in Table S3 and a full description can be
found in Rubinstein (1999). The greedy algorithm has been
widely studied in the context of submodular function optimization
and combinatorial optimization in a wide range of applications,
e.g., sensor placement and scheduling (Krause et al. 2008). In
the case where the objective function is monotone submodular
(Topkis 1978), the greedy approximation can provide perfor-
mance guarantees. For the recovery problem, this means that as
the number of recovered edges increases, the marginal value of
system functionality decreases. This assumption does not hold
in our case and we cannot provide performance guarantees. How-
ever, in practice, the greedy algorithm still shows better perfor-
mance than the theoretical guarantees.

The recovery problem was also solved using the CE method for
combinatorial optimization (Rubinstein 1999). The CE algorithm is
a heuristic search technique that utilizes probabilities of outcomes
of the decision variables instead of the actual values. Intuitively, the
CE algorithm associates probabilities with the decision variables
and the goal is to find the optimal probability distributions for
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Fig. 3. Recovery of Indian Railways Network after three hazards: (a and d) simulation inspired by 2004 Indian Ocean tsunami; (b and e) scenario
based on a cascade from the power grid; and (c and f) a cyber or cyber-physical attack scenario. Five approaches (two optimization based and three
network science based) were used to generate edge prioritization sequences for perturbed sequences; the two optimization approaches and one
network-based approach (edge betweenness centrality) are shown in solid lines. In all three cases and for both performance measures,
optimization-based recovery approaches are more efficient than network centrality—based approaches, on average, by 9% in terms of resilience loss
(area between Y-axis and recovery curve). Table 1 summarizes the resilience loss calculated for the three hazards and two performance measures.

the decision variables. For example, p(x;,) represents the probabil-
ity of recovering edge i at time ¢, starting with a random probability.
The CE algorithm will converge when the probabilities are close to
p(x;,), representing that edge i is recovered at time ¢ and is 0 oth-
erwise. To find the optimal probabilities, the CE algorithm relies on
a two-stage iterative process: (1) generating potential solutions
from the sampling probability, and (2) updating of the parameters
of the sampling probabilities to find better solutions by minimizing
the Kullback-Leibler distance (Kullback and Leibler 1951) be-
tween the sampling probability and the theoretical optimal proba-
bility. The CE algorithm has three parameters that control its
performance, including sample size, which defines the number of
samples in each iteration; the elite sample percentage, which de-
fines the best set of solutions used for updating the parameters
of the sampling probability; and a smoothing parameter, which pre-
vents premature convergence. The main steps of the CE approach
are outlined in Table S3 and a detailed description can be found in
Rubinstein (1999).

Results

We measured efficiency of each recovery strategy by computing
the corresponding resilience loss, as defined previously (Fig. 2).
A lower area means higher efficiency because it represents the
mismatch between the actual functionality during recovery and the
targeted functionality at which the system was operating before
perturbation.

We used connectivity and traffic volume as the two performance
measures for SCF. We simulated three hazard scenarios for the
IRN and MBTA networks under consideration (see ‘“Methods™).
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For IRN, Fig. 3 shows the simulation results of applying the net-
work science and optimization recovery strategies and Table 1 sum-
marizes the resilience loss under each hazard scenario and recovery
strategy. For IRN, SCF dropped by 14% and 16%; cascades of fail-
ure from the power grid based on 2012 blackout resulted in SCF
loss of 30% and 35%; whereas the simulated cyber-physical attack
caused loss of 27% and 35% of SCF in terms of connectivity and
traffic volume, respectively. To restore the SCF of the perturbed
network to TF, we used edge prioritization sequences determined
from network science—based and optimization-based approaches.
We found that for IRN, the optimization-based approach results
in better performance than network science—based approaches.
On average, optimization strategies are 12% and 40% more effi-
cient when compared with centrality-based strategies for both con-
nectivity recovery and traffic flow recovery, respectively (Fig. 3 and
Table 1).

For MBTA, Fig. 4 and Table 2 show the performance results and
resilience loss, respectively, under each hazard scenario and recov-
ery strategy. Results show that the 2015 nor’easter scenario exhibits
disproportionately adverse impacts on SCF as removal of 9% of the
edges (17/176) resulted in 80% loss of SCF in terms of connectivity
as well as traffic volume. Contrary to our finding for IRN, we ob-
served that the network science—based recovery approach, specifi-
cally edge betweenness centrality, outperformed the greedy
algorithm approach by 41%, whereas efficiency from the CE algo-
rithm was comparable to the edge betweenness centrality (Fig. 3).

On the other hand, we found that for MBTA, which approaches
a treelike network topology, approaches such as the greedy algo-
rithm that tend to maximize instant or short-term restoration of
functionality may turn out to be myopic and inefficient at the system
level over the lifetime recovery process (Fig. 4). Specifically, the
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Table 1. Recovery scores for Indian Railways Network

Hazards on IRN

Tsunami Grid Cyber-physical attack
Edges recovered
376 815 720
Connectivity Traffic flow Connectivity Traffic flow Connectivity Traffic flow
Recovery algorithm recovery recovery recovery recovery recovery recovery
Greedy optimization 26.60 25.15 116.92 108.73 91.27 87.70
Closeness 29.79 34.47 128.65 150.98 99.75 128.87
Degree 29.24 34.18 128.69 247.59 100.06 126.24
Betweenness 29.20 33.93 127.65 147.76 99.63 126.34
Eigenvector 29.88 34.63 128.50 150.52 100.13 130.42
Cross entropy 26.75 26.60 118.01 120.93 92.02 98.80

Note: Resilience loss is measured as the area between the Y-axis and state of resilience curve, traced by each strategy curve during recovery process. A lower

area means a more efficient recovery strategy.

Table 2. Recovery scores for Boston’s MBTA
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Fig. 4. Recovery of MBTA after 2015 nor’easter. Five approaches (two
optimization based and three network science based) were used to
generate edge prioritization sequences for perturbed sequences; the
two optimization approaches and one network-based approach (edge
betweenness centrality) are shown in solid lines. (a) Recovery of
SCF in terms of network connectivity shows that network-based edge
betweenness performs as well as CE optimization, and both these ap-
proaches outperform the greedy algorithm by nearly 41% in terms of
efficiency; and (b) similar insights are obtained when traffic volume is
used to measure SCF. Table 2 summarizes the resilience loss calculated
for the two performance measures.

network-based recovery approach outperformed the optimization-
based greedy algorithm by 41% and 38% for network connectivity
recovery and traffic flow recovery, respectively. The edge centrality—
based recovery was marginally better than CE. Both CE and edge

2015 nor’easter, Boston

Edges recovered

35
Connectivity Traffic flow
Recovery algorithm recovery recovery
Greedy optimization 17.26 15.95
Closeness 11.16 11.26
Degree 14.30 13.85
Betweenness 10.18 9.77
Eigenvector 16.8 17.84
Cross entropy 10.31 9.74

Note: Resilience loss is measured as the area between the Y-axis and state
of resilience curve, traced by each strategy curve during recovery process.
A lower area means a more efficient recovery strategy.

centrality outperform the greedy algorithm by 40% (Table 2). This
holds true for both connectivity recovery and traffic flow recovery.
Because the CE algorithm is heuristic in nature, to ensure that our
results are robust to the choice of parameters, we performed many
CE optimizations using three different choices of parameters and
we observed that efficiency scores thus obtained were insensitive to
parameter choice for both objective functions (Fig. S1). Compari-
son of the CE and greedy algorithm approaches at various time
steps during the recovery process is shown in Fig. S2.

To understand the relationship between topological features of
the network and recovery scores, we plotted degree distribution and
weighted degree distribution of the network. In addition, we also
measured network assortative to measure the similarity of connec-
tions in the networks with respect to node degree. We found
that IRN follows the power-law distribution in degree as well as
weighted degree distribution. That is, degree distribution follows
the form

P(k) ~ k™ (1)

where P(k) = fraction of nodes in the network that have k connec-
tions; and v = 1.84 (p-value < 0.05, Student #-test). As shown in
prior research (Bhatia et al. 2015; Clark et al. 2018), for networks
exhibiting a power law in their degree distribution, centrality mea-
sures are often correlated with degree of nodes and hence generat-
ing node restoration sequences using network centrality attributes
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often yield high recovery efficiency. However, this intuition may
not hold true in the case of edge recovery. We found that the degree
assortativity coefficient for this network is 0.062, which means
there is no preference of a network node of high degree to attach
to other high degree nodes (Newman 2002). As a result, ranking
edges based on the pair of attributes of adjacent nodes does not
yield the most efficient recovery trajectories. On other hand, MBTA
exhibits a treelike structure (Latora and Marchiori 2002) with 80%
of nodes having degrees in the range of 1 and 3 [Figs. 1(b) and 5
(right)]. For localized damage on treelike networks such as MBTA,
the greedy algorithm approach fails to identify the systemwide op-
timal just by maximizing functionality at each step because attrib-
utes of edges in a treelike network are similar. Edges with higher
edge betweenness (Lu and Zhang 2013) tend to bridge the broken
network at a faster rate, therefore exhibiting high efficiency. Recov-
ery scores from various recovery strategies for both networks are
summarized in Table 1.

Conclusion

Postperturbation network recovery strategies have been motivated
by two distinct philosophies, specifically, centrality measures in
complex networks versus network optimization including entropy
measures. Here we showed that they may be blended to offer com-
plementary value for the recovery of networked infrastructure sys-
tems (Figs. 3 and 4; Table 1). We designed a strategy that blends
network science and optimization to improve network recovery
postperturbation and demonstrated on two real-world networks,
specifically, the IRN and the MBTA network. Our hybrid approach
shows that the optimal algorithm at each recovery step may be sit-
uation specific and allowing an automated way to choose between
network science versus network optimization methods may result
in gains of efficiency by anywhere from about 10% to about 40%
for both network connectivity and traffic flow recovery. Further-
more, the performance can be mapped to the network attributes.
Thus, optimization approaches work better for the IRN, which
approaches scale-free network attributes, while network centrality
approaches work better for MBTA, which approaches a planar net-
work. However, the performance at any specific recovery step may
be dependent on the characteristics of the current attribute of the
damaged network.

Recovery strategies may need to handle trade-offs between
multiple and potentially disparate essential services they were de-
signed to provide. Recovery approaches need to adjust to the cur-
rent state of a lifeline infrastructure network rather than being
exclusively guided by the topology of a system prior to loss of func-
tionality. The network topology and flow attributes of a specific
lifeline system determine the extent to which systematic or dynamic
approaches may improve recovery of any specific lifeline network
or generalize to other lifelines. Recovery strategies that dynami-
cally consider multiple essential services and account for both net-
work and flow attributes tend to be more reliable and generalize
better across systems. Infrastructure and lifeline recovery strategies
have traditionally tended to be bottom-up, where component-
specific and granular information are used where available, in
the absence of which relatively ad hoc strategies become the default
choice. The top-down approaches proposed here offer a way for
infrastructure owners and operators to make recovery strategies that
may be optimal at the overall system level functionality.

We note that the optimal algorithm at each recovery step may be
situation specific and allowing an automated way to choose be-
tween network science versus network optimization methods
may result in gains of efficiency by anywhere from about 10%
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to about 40% for both network connectivity and traffic flow recov-

ery. Specifically, we note the following:

* JRN: Optimization-based approaches are 9% and 25% more ef-
ficient than network centrality—based approaches for network
connectivity recovery and traffic flow recovery, respectively.
Optimization-based approaches (both the greedy algorithm
and CE) are better at all recovery steps as well are more efficient
in terms of resilience loss. This holds true for all three scenarios:
tsunami, power grid cascade, and simulated cyber-physical attack.

* MBTA: The network-based recovery approach outperforms the
optimization-based greedy algorithm by 41% and 38% for net-
work connectivity recovery and traffic flow recovery, respec-
tively. The network centrality approach is marginally better
than CE. Both CE and network centrality outperform the greedy
algorithm by 40%. This holds true for both connectivity recov-
ery and traffic flow recovery.

e Furthermore, the performance can be broadly mapped to the
network attributes. Thus, optimization approaches work better
for the IRN, which exhibits a power law in the degree distri-
bution, while network centrality approaches work better for
MBTA, which approaches a planar network. However, the per-
formance at any specific recovery step may be dependent on
the characteristics of the current attribute of the damaged
network. Thus, the hybrid approach that selects the best per-
forming approach at the recovery time steps would appear to
be the best suited.

While future research may need to balance the traditional
bottom-up approaches with emerging top-down methodologies,
none of these address data limitations and information gaps on their
own. Thus, the proposed approaches need to make assumptions
about resource constraints, recovery time, and fragility at compo-
nent levels. However, while these assumptions do limit the validity
of the conclusions in a data-limited study, they also point to what
new data may add value to the analysis and help improve the cred-
ibility of the results. Validation of the model results proposed here
requires information on the extent of damage, structural redundan-
cies, and inclusion of social and human factors, including time-
varying network attributes. Real-time data monitoring and data
ingestion in the proposed models could be a valuable area of re-
search to explore in the future.

In the present case, the problem formulation was driven by data
availability and transportation networks can be modeled on an
individual link level or origin—destination level. Our application
is a bit limited because we relied on publicly available data sets;
however, we demonstrated that our approach is general and can
be applied to both types of network models. Interesting future ex-
tensions are to compare the outcomes and insights of recovery
strategies for the same transit networks having different represen-
tation. We have clearly discussed these caveats in the “Conclusion”
section. Infrastructure owners and operators may have direct
access to component-specific data about resources and vulnerabil-
ities that could augment the methodologies proposed and demon-
strated here.

One final caveat is that the optimization algorithms require addi-
tional information about the desired performance function which is
not always available, or different stakeholders are expected have
different objective functions. Additionally, the performance of heu-
ristic algorithms, such as CE, is dependent on parameter selection
and thus requires off-line parameter tuning. This process is com-
putationally expensive and there are no proven guidelines on the
best parameter selection.

Large-scale disasters have revealed that decision makers often
struggle to identify or determine key components and interdepend-
ency relationships in infrastructure systems, optimal resource
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allocation to increase resilience or reduce risk, and optimal re-
sponse plans. Although interest has increased in policies that en-
hance resilience of these systems, few analytic tools are available to
guide new investments in achieving resilience goals. Our analysis
offers several meaningful inferences to be made that may have im-
portant implications for resilience policy for systems operating at
various jurisdictional and geographical levels. Future research
needs to include underlying dynamic behavior of networks as well
as understand the dependence across systems in the assessment
of optimal recovery trajectories of the lifeline infrastructure net-
worked systems that shape modern-day societies.
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