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ABSTRACT

Moving Target Defense (MTD) has been introduced as a new game
changer strategy in cybersecurity to strengthen defenders and con-
versely weaken adversaries. The successful implementation of an
MTD system can be influenced by several factors including the ef-
fectiveness of the employed technique, the deployment strategy, the
cost of the MTD implementation, and the impact from the enforced
security policies. Several efforts have been spent on introducing
various forms of MTD techniques. However, insufficient research
work has been conducted on cost and policy analysis and more
importantly the selection of these policies in an MTD-based setting.

This poster paper proposes a Markov Decision Process (MDP)
modeling-based approach to analyze security policies and further
select optimal policies for moving target defense implementation
and deployment. The adapted value iteration method would solve
the Bellman Optimality Equation for optimal policy selection for
each state of the system. The results of some simulations indicate
that such modeling can be used to analyze the impact of costs of
possible actions towards the optimal policies.
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1 INTRODUCTION

Moving Target Defense has been an ongoing active research since
its official introduction at the National Cyber Leap Year Summit
in 2009 [1, 6-8]. The essence of Moving Target Defense is security
through diversification which dynamically and randomly changes
the configurations and properties of a target system (e.g., a host or a
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network). This creates a complex and unpredictable moving target
for attackers and thus makes it computationally expensive for them
to exploit exposed and known vulnerabilities. While increasing the
attack cost and reducing attackers’ financial incentive, effective
Moving Target Defense implementation can also come with cost
and thus impose financial burden on defenders and accordingly
on the network infrastructure. Therefore, it is important to take
into account cost in the factors that can affect the effectiveness of
MTD. Examples of possible factors include: the type of attack [4],
network environment and MTD deployment [7], and MTD strategy
change frequency [8].

Security policies are imposing additional restricting factor of
the implementation of MTD in practice. These security policies are
usually defined on the network, on which the prospective MTD
system would be deployed. The existing security policies regulate
actions that are permitted or prohibited under certain circumstances
(i-e., access controls) and might also cause conflicts with possible
actions required by the MTD.

Many MTD-based techniques have been introduced to address
many real-world security challenges and these research efforts
focus on introducing practical MTD techniques and conduct sim-
ulation to evaluate the effectiveness of their techniques. A major
problem with these approaches is that they are technique-specific
and the evaluation mechanism of a certain MTD-based technique
can hardly be applied to another technique. Therefore, an appro-
priate mathematical model is needed to evaluate MTD techniques
from a higher and more abstract level for a better evaluation of
MTD.

To meet this challenge, this poster paper proposes to use Markov
Decision Process (MDP) to model the state transitions of a system
based on the interaction between a defender and an attacker. A
Markov model is a stochastic model used to describe the state
transition of a system. Combined with game theory, a Markov game
model can be built to describe the interaction between defenders
and attackers and then analyze the outcome of the system when it
is in a certain state. The Markov chain game model is helpful for
providing information for a defender to choose the best strategy for
the next move. However, the network defenders in some situations
face time constraints when making decision with respect to the
outcome obtained from a Markov model. Therefore, A model is
needed that can make decision with the goal of implementing best
security policies (i.e., actions) in certain situations.

Our model incorporates the costs of players’ actions and the
existing security policies in a system and further uses Bellman Op-
timality Equations to find the optimal defense strategies or policies
under different scenarios. The results are used to analyze the impact
of the policy change by the cost of chosen strategy.
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Figure 1: MDP model with state transition probabilities and costs.

The remainder of this paper is organized as follows: Section The value function, denoted by V,(s), represents the expected
2 describes Markov Decision Process game model and Bellman value of rewards received starting from state s and following policy
Optimality Equation. Section 3 presents the model simulation setup. 7. It is also called state value function or utility function:
Section 4 presents our future work and concludes the poster.
Va(s) = . Pls, 7,8 )RG5, 7,5") + y Ve (s')] 3)
2 A MARKOV DECISION-BASED MODEL s'eS

In the proposed Markov decision-based model, the interaction be- where:
tween a defender and an attacker is abstracted out as a discrete,

finite-state, and finite-action Markov Decision Process (MDP) as a ; X .
4-tuple (S, A, P, R), where: and ending at state s’ after following policy 7.

- R(s, m,s’) is the expected rewards received after state transi-
tion from s to s’ after following policy .
— y is the discount factor.

The discount factor in MDP, denoted by y € (0, 1), indicates
what portion of the future rewards will be lost in comparison to
the present rewards. Smaller y means the rewards received in the
future will be worth much less than the present rewards due to the

- P(s, m,s’) is the transition probability starting from state s

- S is a finite set of states.

- Ais a finite set of control actions.

— P is the probability of a state transitioning to a new state
upon performing an action.

- R is the expected immediate rewards received after state
transition, due to the control action performed.

Figure 1 depicts the proposed MDP-based model. In this model, discount, so the reward should be collected sooner than later.
the security defense mechanism is abstracted out into four states An optimal policy 7* is a control action a € A that generates
(S) and three control actions (A): the maximum state value function and is expressed by Bellman

Optimality Equation [2]:

N System Running Normally V2 () = maX Z P(s, a,s)[R(s, a,5') + YV @
ae

Se T System Bel:ng Targefed (1) s
E  System Being Exploited The optimal policy can be obtained by solving the MDP problem
B System Breached or the Bellman Optimality Equation.
A € {Wait, Defend, Reset} ®) 2.2 Solving MDP
The ultimate goal is to find an optimal policy for the defender, Before discussing how to solve an MDP problem, we need to intro-
by which the defender needs to know what best action needs to be duce some important theorems regarding MDP [2, 5]:

taken in each state with the goal of maximizing the rewards. THEOREM 2.1. For any finite Markov Decision Process (MDP), there

exists an optimal policy that is always better than or equal to all other
2.1 Key Concepts of MDP policies, 7* > 7, V7.
In a typical MDP, the most critical property that must be satisfied
is known as Markov property. This property states that the effects

of an action taken in any state depend only on that state and not

THEOREM 2.2. All optimal policies in any finite Markov Decision
Process achieve the optimal value function, Vy=(s) = V*(s).

on the prior history or knowledge. The formal proof of Theorem 2.1 and Theorem 2.2 can be found in

A policy r in MDP is a mapping function from states to actions: [5] and [2], respectively. Based on these two theorems, the optimal
7 : § — A.In other words, a policy dictates each process (i.e., agent) policy is obtained by solving the Bellman Optimality Equation such
to take certain actions in each state. that [2]:
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Figure 2: Impact of defense cost on value function at state
S=E.

*(s) « arg max Z P(s,a,s")[R(s,a.s") +yV (sl (5)
acA
s’eS
Value Iteration is a method developed by Bellman [2] to solve
MDP. In the proposed model, the value iteration method is chosen

because due to its simplicity.

2.3 The Impact of Cost on Optimal Policy

In MDP, the optimal policy can be controlled by manipulating the
rewards. In our model, we introduce the concept of cost factor and
define the expected reward as the result of the baseline reward R
subtracting the cost incurred by an action during a state transition.
The action can be initiated by the attacker or the defender. After
incorporating the cost factor into the computation, the Bellman
equation will be:

Viii(s) = max 3" P(s,a,s)[(R - C(s,a,8") +yVi ()] (6)
acA
s’eS
where C(s, a, s”) is the cost incurred after state transition from s to
s” due to action a. This equation will enable us to analyze the cost
impact on the optimal policy. The action a € {Wait, Defend, Reset}
that yields the maximum value will be chosen as the optimal policy.

3 SIMULATION EXPERIMENTS

We implemented the value iteration method and calculated the
value function for each policy (wait, defend, reset) at each state
S € {N, T, E, B} with different defense cost through simulation. As
an example, the value function at the state S = E for each control
action versus the defense cost is plotted in Figure 2, where x-axis
and y-axis show the defense cost and the value function at each
state, respectively. As Figure 2 shows, when the defense cost is
below a certain value (called the turning point), the “Defense’ action
is the optimal policy and the best decision to make. On the other
hand, when the defense cost is above the turning point, the “Reset”
action turns out to be the optimal policy because it generates higher
rewards than the other two actions.

This optimal policy shift can be better demonstrated when the
optimal state value is plotted against each level of the defense cost
for state S = E. Figure 3 shows such this plot, where x-axis and
y-axis show the defense cost and the value function at the state,
respectively. The first 5 data points indicate the “Defend” action
and the rest data points indicate the “Reset” action.
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Figure 3: The optimal policy changes as the defense cost in-
creases.

4 CONCLUSION AND FUTURE WORK

This poster paper introduced the idea of modeling MTD and the
problem of making optimal decisions through MDP. The model
defined four states, in which optimal policies can be made with
respect to the actions. The simulation results show that the optimal
policy changes with in accordance with associated costs for each
action.

As future work, it is important to apply the MDP-based model
to other network dynamics and investigate how various cost fac-
tors impact the decision about the optimal policy. We also plan
to apply the MDP-based model to some existing MTD techniques
to demonstrate how to select the optimal policy and provide addi-
tional insights on the feasibility of the MTD techniques. We would
also like to compare our work to the evidence theory [3] which is
also applicable to this problem. Finally we plan to address some
challenges in the introduced model such as the estimation of the
initial probability values in a real-world dataset.
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