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ABSTRACT
Moving Target Defense (MTD) has been introduced as a new game

changer strategy in cybersecurity to strengthen defenders and con-

versely weaken adversaries. The successful implementation of an

MTD system can be influenced by several factors including the ef-

fectiveness of the employed technique, the deployment strategy, the

cost of the MTD implementation, and the impact from the enforced

security policies. Several efforts have been spent on introducing

various forms of MTD techniques. However, insufficient research

work has been conducted on cost and policy analysis and more

importantly the selection of these policies in an MTD-based setting.

This poster paper proposes a Markov Decision Process (MDP)

modeling-based approach to analyze security policies and further

select optimal policies for moving target defense implementation

and deployment. The adapted value iteration method would solve

the Bellman Optimality Equation for optimal policy selection for

each state of the system. The results of some simulations indicate

that such modeling can be used to analyze the impact of costs of

possible actions towards the optimal policies.

CCS CONCEPTS
• Networks → Network security; • Security and privacy →

Formal security models; •Moving Target Defense;

KEYWORDS
Moving Target Defense; Markov Decision Process; Optimal Policy

ACM Reference Format:
Jianjun Zheng and Akbar Siami Namin. 2018. POSTER: A Markov Decision

Process to Determine Optimal Policies in Moving Target. In 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’18),
October 15–19, 2018, Toronto, ON, Canada.ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3243734.3278489

1 INTRODUCTION
Moving Target Defense has been an ongoing active research since

its official introduction at the National Cyber Leap Year Summit

in 2009 [1, 6–8]. The essence of Moving Target Defense is security

through diversification which dynamically and randomly changes

the configurations and properties of a target system (e.g., a host or a
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network). This creates a complex and unpredictable moving target

for attackers and thus makes it computationally expensive for them

to exploit exposed and known vulnerabilities. While increasing the

attack cost and reducing attackers’ financial incentive, effective

Moving Target Defense implementation can also come with cost

and thus impose financial burden on defenders and accordingly

on the network infrastructure. Therefore, it is important to take

into account cost in the factors that can affect the effectiveness of

MTD. Examples of possible factors include: the type of attack [4],

network environment and MTD deployment [7], and MTD strategy

change frequency [8].

Security policies are imposing additional restricting factor of

the implementation of MTD in practice. These security policies are

usually defined on the network, on which the prospective MTD

system would be deployed. The existing security policies regulate

actions that are permitted or prohibited under certain circumstances

(i.e., access controls) and might also cause conflicts with possible

actions required by the MTD.

Many MTD-based techniques have been introduced to address

many real-world security challenges and these research efforts

focus on introducing practical MTD techniques and conduct sim-

ulation to evaluate the effectiveness of their techniques. A major

problem with these approaches is that they are technique-specific

and the evaluation mechanism of a certain MTD-based technique

can hardly be applied to another technique. Therefore, an appro-

priate mathematical model is needed to evaluate MTD techniques

from a higher and more abstract level for a better evaluation of

MTD.

To meet this challenge, this poster paper proposes to use Markov

Decision Process (MDP) to model the state transitions of a system

based on the interaction between a defender and an attacker. A

Markov model is a stochastic model used to describe the state

transition of a system. Combined with game theory, a Markov game

model can be built to describe the interaction between defenders

and attackers and then analyze the outcome of the system when it

is in a certain state. The Markov chain game model is helpful for

providing information for a defender to choose the best strategy for

the next move. However, the network defenders in some situations

face time constraints when making decision with respect to the

outcome obtained from a Markov model. Therefore, A model is

needed that can make decision with the goal of implementing best

security policies (i.e., actions) in certain situations.

Our model incorporates the costs of players’ actions and the

existing security policies in a system and further uses Bellman Op-

timality Equations to find the optimal defense strategies or policies

under different scenarios. The results are used to analyze the impact

of the policy change by the cost of chosen strategy.
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Figure 1: MDP model with state transition probabilities and costs.

The remainder of this paper is organized as follows: Section

2 describes Markov Decision Process game model and Bellman

Optimality Equation. Section 3 presents the model simulation setup.

Section 4 presents our future work and concludes the poster.

2 A MARKOV DECISION-BASED MODEL
In the proposed Markov decision-based model, the interaction be-

tween a defender and an attacker is abstracted out as a discrete,

finite-state, and finite-action Markov Decision Process (MDP) as a

4-tuple (S,A, P ,R), where:
– S is a finite set of states.

– A is a finite set of control actions.

– P is the probability of a state transitioning to a new state

upon performing an action.

– R is the expected immediate rewards received after state

transition, due to the control action performed.

Figure 1 depicts the proposed MDP-based model. In this model,

the security defense mechanism is abstracted out into four states

(S) and three control actions (A):

S ∈


N System Running Normally
T System Being Targeted
E System Being Exploited
B System Breached

(1)

A ∈ {Wait,Defend, Reset} (2)

The ultimate goal is to find an optimal policy for the defender,

by which the defender needs to know what best action needs to be

taken in each state with the goal of maximizing the rewards.

2.1 Key Concepts of MDP
In a typical MDP, the most critical property that must be satisfied

is known as Markov property. This property states that the effects

of an action taken in any state depend only on that state and not

on the prior history or knowledge.

A policy π in MDP is a mapping function from states to actions:

π : S → A. In other words, a policy dictates each process (i.e., agent)
to take certain actions in each state.

The value function, denoted by Vπ (s), represents the expected
value of rewards received starting from state s and following policy
π . It is also called state value function or utility function:

Vπ (s) =
∑
s ′∈S

P(s,π , s ′)[R(s,π , s ′) + γVπ (s ′)] (3)

where:

– P(s,π , s ′) is the transition probability starting from state s
and ending at state s ′ after following policy π .

– R(s,π , s ′) is the expected rewards received after state transi-

tion from s to s ′ after following policy π .
– γ is the discount factor.

The discount factor in MDP, denoted by γ ∈ (0, 1), indicates
what portion of the future rewards will be lost in comparison to

the present rewards. Smaller γ means the rewards received in the

future will be worth much less than the present rewards due to the

discount, so the reward should be collected sooner than later.

An optimal policy π∗ is a control action a ∈ A that generates

the maximum state value function and is expressed by Bellman
Optimality Equation [2]:

V ∗i+1(s) = max

a∈A

∑
s ′∈S

P(s,a, s ′)[R(s,a, s ′) + γV ∗i (s
′)] (4)

The optimal policy can be obtained by solving the MDP problem

or the Bellman Optimality Equation.

2.2 Solving MDP
Before discussing how to solve an MDP problem, we need to intro-

duce some important theorems regarding MDP [2, 5]:

Theorem 2.1. For any finite Markov Decision Process (MDP), there
exists an optimal policy that is always better than or equal to all other
policies, π∗ ≥ π ,∀π .

Theorem 2.2. All optimal policies in any finite Markov Decision
Process achieve the optimal value function, Vπ ∗ (s) = V ∗(s).

The formal proof of Theorem 2.1 and Theorem 2.2 can be found in

[5] and [2], respectively. Based on these two theorems, the optimal

policy is obtained by solving the Bellman Optimality Equation such

that [2]:
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Figure 2: Impact of defense cost on value function at state
S = E.

π∗(s) ← arдmax

a∈A

∑
s ′∈S

P(s,a, s ′)[R(s,a, s ′) + γV ∗i (s
′)] (5)

Value Iteration is a method developed by Bellman [2] to solve

MDP. In the proposed model, the value iteration method is chosen

because due to its simplicity.

2.3 The Impact of Cost on Optimal Policy
In MDP, the optimal policy can be controlled by manipulating the

rewards. In our model, we introduce the concept of cost factor and

define the expected reward as the result of the baseline reward R
subtracting the cost incurred by an action during a state transition.

The action can be initiated by the attacker or the defender. After

incorporating the cost factor into the computation, the Bellman

equation will be:

V ∗i+1(s) = max

a∈A

∑
s ′∈S

P(s,a, s ′)[(R −C(s,a, s ′)) + γV ∗i (s
′)] (6)

where C(s,a, s ′) is the cost incurred after state transition from s to
s ′ due to action a. This equation will enable us to analyze the cost

impact on the optimal policy. The action a ∈ {Wait,Defend,Reset}
that yields the maximum value will be chosen as the optimal policy.

3 SIMULATION EXPERIMENTS
We implemented the value iteration method and calculated the

value function for each policy (wait, defend, reset) at each state

S ∈ {N ,T ,E,B} with different defense cost through simulation. As

an example, the value function at the state S = E for each control

action versus the defense cost is plotted in Figure 2, where x-axis

and y-axis show the defense cost and the value function at each

state, respectively. As Figure 2 shows, when the defense cost is

below a certain value (called the turning point), the “Defense’ action
is the optimal policy and the best decision to make. On the other

hand, when the defense cost is above the turning point, the “Reset”

action turns out to be the optimal policy because it generates higher

rewards than the other two actions.

This optimal policy shift can be better demonstrated when the

optimal state value is plotted against each level of the defense cost

for state S = E. Figure 3 shows such this plot, where x-axis and

y-axis show the defense cost and the value function at the state,

respectively. The first 5 data points indicate the “Defend” action

and the rest data points indicate the “Reset” action.

Figure 3: The optimal policy changes as the defense cost in-
creases.

4 CONCLUSION AND FUTUREWORK
This poster paper introduced the idea of modeling MTD and the

problem of making optimal decisions through MDP. The model

defined four states, in which optimal policies can be made with

respect to the actions. The simulation results show that the optimal

policy changes with in accordance with associated costs for each

action.

As future work, it is important to apply the MDP-based model

to other network dynamics and investigate how various cost fac-

tors impact the decision about the optimal policy. We also plan

to apply the MDP-based model to some existing MTD techniques

to demonstrate how to select the optimal policy and provide addi-

tional insights on the feasibility of the MTD techniques. We would

also like to compare our work to the evidence theory [3] which is

also applicable to this problem. Finally we plan to address some

challenges in the introduced model such as the estimation of the

initial probability values in a real-world dataset.
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