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ABSTRACT
This demonstration paper introduces MalViz, a visual analytic tool
for analyzing malware behavioral patterns through process mon-
itoring events. The goals of this tool are: 1) to investigate the re-
lationship and dependencies among processes interacted with a
running malware over a certain period of time, 2) to support pro-
fessional security experts in detecting and recognizing unusual
signature-based patterns exhibited by a running malware, and 3) to
help users identify infected system and users’ libraries that the mal-
ware has reached and possibly tampered. A case study is conducted
in a virtual machine environment with a sample of four malware
programs. The result of the case study shows that the visualization
tool o�ers a great support for experts in software and system anal-
ysis and digital forensics to pro�le and observe malicious behavior
and further identify the traces of a�ected software artifacts.
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• Security and privacy → Systems security; Intrusion/anomaly
detection andmalware mitigation; Software and application security;

KEYWORDS
Malware visualization, dynamic analysis, digital forensics

ACM Reference Format:
Vinh The Nguyen, Akbar Siami Namin, and Tommy Dang. 2018. MalViz:
An Interactive Visualization Tool for Tracing Malware. In Proceedings of
27th ACM SIGSOFT International Symposium on Software Testing and Analy-
sis (ISSTA’18). ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3213846.3229501

1 INTRODUCTION
In the digital age, a vast amount of sensitive information stored in
computers and data servers has been increased dramatically. These
sugary resources are favourite targets for many attackers. A lot
of malicious software, so called malware, has been developed for
variety of reasoning such as harming users, computers, networks,
or infrastructures in general [13]. When the target computer is
infected by a piece of malware, the resources and data stored in the
system are tampered without consensus of the user.
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In order to understand the pattern and behavior of a malicious
program, two general analysis approaches are often used: 1) static
analysis, and 2) dynamic analysis. Static analysis involves analyzing
binary signatures of the malware without executing it; whereas, dy-
namic analysis observes the behavior of the running malicious code
in a controlled environment. As the number of samples increases
drastically, static or dynamic analysis of every single signature be-
comes overwhelming and a daunting task. It is salient to have a
supporting tool that helps facilitate the process of analysis and as-
sisting in comprehending the suspicious behavior of the malicious
software as much as possible.
2 EXISTING APPROACHES
There are several good and useful tools in the literature to accelerate
analysis. Wagner et al. [16] surveyed the available tools, and then
compared and categorized them based on a number of criteria.
These existing tools enable users to delve deeper into processes and
system Application Program Interface (API) calls and are capable of
detecting potentially malicious software. The survey then proposed
a Knowledge-Assisted Visual Malware Analysis System (KAMAS)
[17] for analyzing complex data in dynamic malware analysis. Kim
et al. [8] proposed a method for classifying and detecting malware
based on dynamic behavior through API-call sequences and thus
utilizing sequence alignment algorithms. Their experiment was
conducted in a realistic settings to avoid mal-functioning malicious
code. Several steps are involved to extract API calls which then
can be fed into Multiple Sequence Alignment (MSA) algorithms for
analysis. The �nal result can categorize malware into some classes.

Kim et al. [9] used the breath �rst search algorithm to track
the �ow of malware behaviors in static analysis. The unusual ac-
tions were visualized into graphs consisting of edges and vertices.
This approach is very interesting since it is a static analysis-based
approach and does not require users to run the actual code.

Each of these tools analyzes a malware program from di�erent
perspectives. However delving into every single process for analysis
purposes is a very tedious job and time consuming. In addition,
it is hard to detect a malware executed in a short time when it
terminates itself (i.e., a process is created and then terminated).
Traditional Window Task Manager does not retain the terminated
processes unless the log �le event is investigated. On the other
hand, going through hundreds or even thousands of events is a
challenging task. It is important to have a better methodology to
support this task. An interactive visualization tool can help to a
great extent.
3 CONTRIBUTION
Visualization is the process of representing data visually and has
been utilized in many research in malware analysis through ba-
sic representations, such as scatter plots [11], matrices [6], and
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byte plots [5]. However, these studies mostly focus on visualizing
known malicious programs and inspecting a certain aspect of their
patterns and behaviors. To the best of our knowledge, there is no
visualization technique, and in particular with interactive features,
for analyzing unknown processes, the system calls they make and
their relations.

To �ll this gap, this demonstration paper introduces MalViz that
enables users to view and observe unusual processes and system
calls for malware analysis. Malware inspectors are able to quickly
detect malicious processes and suspicious patterns. Our approach is
di�erent from the existing techniques in terms of time dependencies
and the relationship between processes and API-calls. In particular,
MalViz enables users to interact with processes and threats captured
in the given memory dump.
4 THE MALVIZ APPROACH
MalViz1 is developed using JavaScript and in particular the D3.js
library [2]. The primary goal of MalViz is to create an interactive
visual analytic tool that presents system and security experts a high
level view of running processes along with their corresponding
API-calls and interactions with some other kernel and application-
based processes. The tool enables users to investigate the behavior
of a malware program over a period of time such as 1) the time-line
it starts and remains active, 2) the processes that are triggered and
their timing, and 3) the actions that are performed. To meet this
goal, this paper proposes several features that are implemented in
MalViz:

– Overview Display (F1). Display overview of events’ distri-
bution.

– Details-On-Demand (F2). Present details on demand, in-
cluding retrieving live malicious patterns based on response
result from VirusTotal [14].

– Chronological Ordering (F3). Order processes chronolog-
ically and topologically to avoid over-plotting.

– Library Calls (F4). Show the pattern of libraries called by
each process.

– Anomaly Detection (F5). Detect anomalies of events from
visualization.

4.1 The Format of the Processing Dataset
The dataset template and format processed by MalViz can be cap-
tured and exported from the Sysinternals Process Monitor [1]
toolkit, as a Comma Separated Value �le (CSV). The Process Mon-
itor generates thousands of Window’s events every second and
generates a log �le. For the purpose of malware analysis and ease
of visualization, the events that are mostly related to malware activ-
ities [1] can be further �ltered. The �ltered events can be classi�ed
into four categories:

– Process including Process Create and Load Image;
– File including CreateFile, WriteFile, and SetRenameInforma-
tionFile;

– Registry including RegCreateKey, RegDeleteValue, and
RegDeleteKey; and

– Network including UDP Send, UDP Receive, TCP Receive,
TCP Connect, and TCP Send.

1For a short demo video of MalViz visit https://github.com/Alex-Nguyen/Malviz

These �ltered events then need to be exported to a CSV dataset
that contains the following information: the time the event is trig-
gered, the process ID, the process name, the operation made by the
underlying process, the location of the operation and the additional
information of each process. For our case study, these events were
captured after the malware was executed for 5 minutes.

5 THE MALVIZ ARCHITECTURE
MalViz consists of three main panels as depicted in Figure 1 where
1) Box A contains the Overview Panel, 2) Box B presents a list of
processes along with API-calls ordered by the time when they have
been triggered, and 3) Box C displays the libraries and APIs called
by each process.
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Figure 1: User interface ofMalViz: A) Overview Panel, B) De-
tail Panel, and C) Supporting Panel.

5.1 Box A: The Overview Panel
TheOverview Panel shows the distribution of 13 operations grouped
into four categories (the visualization feature F1). Categories are
color-encoded. Operations with each category are distinguished
by saturation. The wider (and darker) bars indicate that these type
of operations are more frequently occurred in the system. The bar
charts can also be used to �lter operations (described in Section 6).
The color legend of process operations is displayed on the middle
of the Overview Panel. On the right side of the Panel, a list of do-
mains that the running malware tries to connect is shown. These
domains are sent to the VirusTotal [14] service for lively checking
of their maliciousness domains. MalViz integrates the API o�ered
by VirusTotal to automate the process. The result is color-encoded
for easy detection, i.e., malicious domains are encoded as red color.
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5.2 Box B: The Detail Panel
The Detail Panel presents the interactions along with the time when
each event is triggered. The time axis is aligned horizontally from
left to right. This design is widely used when visualizing time series
data [18]. Each API-call is represented by a thin vertical bar at its
time stamp. Due to the limited screen space,MalViz sets the opacity
of each API call (vertical bar) to 0.5px to help viewers recognize
the intensity of its activities. That is, when there are many API-
calls at the consecutive time stamps, the vertical stripes become
clearly visible. This visualization technique helps users to quickly
identify which process makes a lot of API-calls in a short period
of time. By default, each API-call will be set with the same height.
However, if an API-call tries to connect with a malicious Internet
domain, longer bars are plotted. This presentation makes malicious
processes stand out (visualization feature F5).

Another possible approach to detect anomalies is based on pro-
cess relations (i.e., one process is initialized by another process).
The parent-child relationship is a common behavior usually exhib-
ited by a typical malware program. MalViz uses arcs diagrams [4]
to encode this relationship. Moreover, MalViz organizes the layout
so that processes are vertically sorted via a topological ordering
algorithm (i.e., “toposort”) in order to avoid introducing longer arcs
(by putting related processes next to each others). When sorting
multiple processes of the same parent (or child processes), MalViz
gives the priority to the earlier-initialized processes. This also helps
to minimize edge-crossings (visualization feature F3).

A pop-up window is also introduced in this Panel to further
display the details of each API-call on demand (visualization feature
F2). Furthermore, the response results obtained by checking the
domain and produced by VirusTotal are appended to this panel.
5.3 Box C: The Supporting Panel
This panel highlights the libraries called by each process (the vi-
sualization feature F4). The purpose of this panel is to help users
quickly detect the unusual patterns of libraries called by each pro-
cess. A process may call multiple libraries or a library can be loaded
by multiple processes. MalViz uses an interactive heat-map matrix
to represent these multi-relationships as it avoids cluttering com-
pared to node-link diagrams. The value (appears when mouse over)
in each cell represents the number of calls by a process. To draw
the user’s attention, this value is encoded by color opacity which
ranges from white to black. The white color means the value has
smallest calls whereas the black color carries the largest API-calls.
6 USER INTERACTIONS
MalViz enables users to interact with the visually represented com-
ponents through mouse over and mouse click.
6.1 Mouse Over

a) Overview Panel. When users mouse over a rectangular box, a
tooltip will be popped up to display the type of underlying operation
along with the number of API-calls made by the operation.

b) Detail Panel. Similar interactions are also allowed when the
user mouses over each API-call (i.e., detailed information is pro-
vided). Additional information is also appended to the details, when
an API tries to connect to a malicious Internet domain. This infor-
mation is retrieved from VirusTotal which contains some useful
information such as: Harmless, Malicious, Suspicious, Undetected -

the number of external tools classi�ed the target domain as harm-
less (or clean), malicious, suspicious and undetected, respectively.
For convenient, malicious data are highlighted as bold fonts with
red color. Users can investigate more detailed information of the
domain by clicking on the VirusTotal link which will navigate to
the original result.

c) Supporting Panel: The tooltip displays all API-calls and the
time they have been invoked.

6.2 Mouse Click
a) Overview Panel: When users click on this box, its correspond-

ing API-calls will be highlighted in the Detail Panel. Doing so, other
API-calls will be faded out. This interaction allows discovering any
API-call patterns of each operation.

b) Detail Panel: When users click on an API, the Detail Panel
highlights only its related processes.

c) Supporting Panel: Mouse click is performed within four selec-
tions and one slider:

– The sort by name selection allows the user to sort the matrix
by process and library names in an ascending order,

– The sort by Diff Libraries called selection sorts the
matrix by the number of di�erent libraries called by each
process descending,

– The sort by frequency selection descending orders matrix
by the number of libraries called; and

– The sort by similarity selection sorts the matrix based on
similarity values of each cell

Narrowing down the result is also supported by �ltering the
number of libraries called.

7 CASE STUDY
To evaluate the usefulness and e�ectiveness of MalViz, we con-
ducted two case studies with seven participants, including two
faculty members who are experts in Security and Privacy and �ve
graduate students majoring in Computer Science. The purpose of
this study was to (1) assess whether the user could detect a mal-
ware program within a limited time , (2) �nd interesting patterns
of malicious processes, and (3) receive feedback from user’s expe-
rience to improve MalViz. Before using the visualization tool, all
users were introduced the basic functionality of MalViz along with
some explanations of the common behaviors of malware patterns.
The Malware programs for research analysis were retrieved from
Malware DB [15]. We conducted the experiment in a virtual envi-
ronment (i.e., VirtualBox) running Windows 10. Three data-sets
were used in this study:

– The �rst data set contains nomalware program, it helps users
understand the normal activities of the Operating System as
depicted in Figure 2 (A),

– The second data set contains one running malware (ransome-
ware Cerber [10]) as shown in Figure 2 (B) and

– The last data set contains three malicious programs (Kelihos
[12], NJRat [3] and WannaCry [7]) as shown in Figure 2 (C).

Each user interacted with each visualized dataset for �veminutes.
In the �rst case study, as depicted in Figure 2(B), we expected to
see some interesting patterns on File and Networking activities.
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Figure 2: Visualization of behaviors of none (Box A), one (
Box B) and three (Box C) malware.

The participants were able to quickly recognize unusual process,
which was cerber .exe , because of its three indicators:

– The �rst behavior was the number of processes created in the
chain within a short period of time (cmd .exe , conhost .exe ,
taskkill .exe , PING .EXE),

– The second cue was a series of API-calls making together
in some time interval (the opacity of the rectangle is clearly
visible and the gaps between them are equally distributed),
and

– Finally, the rectangular with higher heights indicates activi-
ties relating to the malicious domains.

It can be shown from the Figure 2 (B) tooltip box that, out of
66 anti-virus services, one of them reports the target domain as
malicious (red color). It can also be seen that system calls made by
this malware mostly related to Network activities

In the second experiment, we randomly picked three pieces
of malware and ran them simultaneously as shown in Figure 2
(C). With the gained experience from the previous use cases, the
participants could quickly detect three chains of processes created
which were originated from Explore .EXE.

These malicious programs behaved di�erently and did not call
the same APIs. The �rst malware (from left to right) created only
one process while the second and the third malware generated a lot
of new processes. We can also notice that the number of libraries

called also increases in both volume and variety as we run more
malware programs.

User’s feedback: After �nishing the experiment, we gathered
user’s feedback to improve MalViz, including adjusting the bar of
the process to higher the malicious domain was detected, reorga-
nizing the layout (or toposort) and including more information of
the tooltip in the Supporting Panel (show event’s time and sorting)
8 CONCLUSION AND FUTUREWORK
In this demonstration paper, we introducedMalViz, a graphical tool
that allows researchers, especially in security and malware analysis
�eld, to gain a better understanding about malware behaviors based
on the relationship between processes in a timely manner, and
malicious domains noti�cation.

The usefulness of the application is evaluated through two case
studies where non-experts in security were able to �nd some typical
interesting processes. Our application can also be able to visualize
the interesting pattern of libraries called by each process and thus
gives hints to experts for further analysis.
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