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a b s t r a c t 

Stress can be applied to modulate solid–solid phase transitions because the stress changes 

the transition energy barrier which determines the phase transition rate. The lower the 

barrier, the higher the rate and more likely the phase transition occurs. This paper presents 

a new theoretical method – finite deformation Bell theory (FD-BT), which is developed based 

on the concept of the original Bell theory, for predicting transition barriers as a function 

of the applied stress field. The theory is applied to study the phase transitions of two 

model materials which exhibit distinct transition mechanisms: 2D MoTe 2 from 2H phase 

to 1T ′ phase, and silicon from diamond phase to β-tin phase. The theoretical predictions 

are compared with the atomistic simulation results obtained from the finite deformation 

nudged elastic band (FD-NEB) method, which has been recently developed to compute 

stress dependent barriers of the transitions under finite deformation. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Solid–solid phase transition has been an important topic in mechanics and materials research as it appears on many

material systems. The dynamic control of transitions between different phases can lead to broad technological applications.

Particularity, stress can be directly employed as a useful tool to control phase transition process. Meanwhile, stress also

commonly exists and plays important role in various phase engineering techniques. 

The fundamental mechanism of stress modulated phase transition can be described by Fig. 1 , in which a material trans-

fers from a stable phase P1 to another stable phase P2. The most probable phase transition path, i.e. minimum energy path

(MEP), is illustrated by a double-well curve. To have a phase transition from P1 to P2, the material has to overcome a bar-

rier ( � � = ) by crossing the transition state at the peak of MEP. Based on the transition state theory within the harmonic

approximation ( Hanggi et al., 1990; Olsen, 2006 ), the barrier determines the phase transition rate (through an exponential

function shown in the figure, see detailed discussion in Section 2.2 ), which is an important thermodynamic variable that

determines the likelihood of phase transition. The lower the barrier, the higher the rate and more likely the transition oc-

curs. The MEP can be modulated by the applied stress field. Under an external stress, the energy landscape is generalized to

a static enthalpy landscape (not including kinetic energy) in order to include the work done by external stresses. In Fig. 1 ,

the stress S 1 reduces the barrier between phase P1 and the transition state, thereby facilitating the transition from P1 to

P2. By contrast, the stress S 2 raises this barrier so prohibits the transition from P1 to P2; meanwhile it lowers the barrier
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Fig. 1. Schematic of stress dependent minimum energy path (MEP). In the equation, k is transition rate, k B is Boltzmann constant and T is temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the other side of MEP, making the transition from P2 to P1 easier. The phase transition rate also depends on the acti-

vation energy ( k B T ), so increasing temperatures can help to overcome transition barriers. The phase transition of solids can

be influenced by either engineering the barriers or varying the thermal excitation. At the meso or continuum level, phase

transitions at finite temperatures can be simulated with thermodynamic methods such as the phase field method, where

the parameters in these methods are usually related to the transition barriers. Therefore, the evaluation of stress dependent

barriers is critical for modeling phase transitions. 

Transition MEPs and barriers can be calculated by atomistic simulations using transition state search methods such as

nudged elastic band (NEB) method. The conventional NEB ( Jónsson et al., 1998 ) only takes atomic positions as transition

variables. Hence, it can not be directly applied to study solid–solid transitions when lattice deformation and external stress

field also contribute to the MEP. Moreover, solid–solid transitions are usually accompanied with finite lattice deformation.

Recently, we developed a finite deformation NEB (FD-NEB) method ( Ghasemi et al., 2019 ) for finding transition pathways of

solids under finite deformation. FD-NEB was formulated by introducing finite deformation variables to the previous solid

state NEB method ( Sheppard et al., 2012 ). 

In order to determine the barriers under many possible external stresses, a large number of FD-NEB simulations must be

performed. To avoid such high computational cost, the approximate theory to estimate stress dependent barriers is needed.

Unfortunately, there is no existing theory readily to be applied, while similar problems have been studied on force depen-

dent chemical reactions in the field of mechanochemistry ( Dudko et al., 2006; Konda et al., 2011; Kucharski and Boulatov,

2011; Ribas-Arino et al., 2009a ). A commonly used method is Bell theory ( Bell, 1978 ), which allows one to estimate chemical

reaction barriers as a function of applied force using the reaction results calculated at zero force. However, the Bell theory

was formulated on discrete atomic systems in terms of forces and displacements of atoms, so one cannot directly apply

Bell theory to study phase transition of solid materials coupled with stress and deformation. In addition to the Bell theory,

Zhu et al. (2005) provided a method to compute the energy barrier of a transition process under constant strain, where

they used a perturbation analysis on the MEP for a generically defined reaction coordinate. In this paper, we propose a

finite deformation Bell theory (FD-BT) developed based on the concept of original Bell theory and continuum mechanics, for

predicting transition barriers as a function of the applied stress. 

The remainder of this paper is organized as follows. In Section 2 , we briefly introduce the idea of the Bell theory, followed

by the formulation for the method of FD-BT. After that, a 1D example, which has exact analytical solutions, is used to

demonstrate the application of the FD-BT. In Section 3 , we briefly introduce the principle of the FD-NEB computational

method, which can provide numerical validations to the FD-BT predictions. In Section 4 , the FD-BT is applied to study the

phase transitions of 2D MoTe 2 and bulk Si, where the theoretical predictions are compared with FD-NEB simulations. Some

extended discussions are provided in Section 5 . Finally, the paper is summarized in Section 6 . 

2. Finite deformation bell theory for solid–solid phase transition 

2.1. Bell theory and limitations 

The original Bell theory ( Bell, 1978 ) was developed to describe the receptor-ligand dissociation rate under external forces

for cell adhesion. Since then, it has been generalized to study the force dependent chemical reactions such as increased

rate of chemical bond dissociation under external forces ( Dudko et al., 2006; Kucharski and Boulatov, 2011; Ribas-Arino

et al., 2009a ). The idea of Bell theory can be illustrated by an example of ring opening of a Benzocyclobutene molecule,

as shown in Fig. 2 . In the case of no external force, the molecule has to overcome an energy barrier of V � = in order to
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Fig. 2. Force dependent ring opening (3–4 bond) of Benzocyclobutene molecule. The figure is modified from Ribas-Arino et al. (2009b) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transform to the ring-opened (covalent bond between atoms 3 and 4) final state, where the transition rate k ∝ exp ( V � = /k B T ) .

When a pair of external force f is applied on atoms 1 and 2, based on the Bell theory, the barrier is changed by − f�R 12

where �R 12 = R ( t ) 
12 

− R ( o ) 
12 

is the difference in distance between atoms 1 and 2 from original (o) to transition (t) state, thus

the reaction rate becomes k ( f ) ∝ exp [(V � = − f�R 12 ) /k B T ] . In the Bell theory, �R 12 is approximated from the original and

transition states at zero force. Hence, the Bell theory provides a linear approximation to force dependent chemical reaction

barriers based on zero force atomistic calculations. 

It can be noted that the Bell theory was formulated on discrete molecular systems in terms of forces and displacements

of atoms. To apply this method for studying stress dependent phase transition of solids, one has to convert stress to atomic

forces, and deformation to atomic displacements. This process is rather complicated and infeasible in practice. Instead, we

could directly bring in continuum mechanics variables and build the connections between stress and transition barriers, so

that the stress dependent barriers can be predicted based on the barrier calculated at zero stress, similar to the concept of

the Bell theory. Following this idea, a new theoretical approach is developed in the framework of continuum mechanics. 

2.2. Formulation of finite deformation bell theory 

Consider a phase change crystal material subjected to a constant second Piola–Kirchhoff (P–K) stress, denoted by S . The

static enthalpy (which does not include kinetic energy) of the system, denoted by �, can be written as 

�(S ) = V(S ) − V 0 S : E (S ) , (1)

where V is the potential energy of the system, V 0 is the initial lattice volume, E is the Green-Lagrangian strain with respect

to the original zero stress state, and the inner product (represented by “: ′′ , implying a double contraction on tensors) of

S and E gives the work done by the stress. The enthalpy difference between the original and transition states gives the

transition barrier 

�� = (S ) = �(t) (S ) − �(o) (S ) , (2)

where (o) and (t) respectively represent the original and transition state. The stress dependent phase transition rate can be

calculated by the transition state theory. A harmonic approximation can be applied to simplify the transition state theory

for crystal materials when the temperature of interest is low compared with the melting temperature of the materials

( Olsen, 2006 ). Then, the stress dependent phase transition rate is written as 

k (S ) = ν exp 

[
−�� = (S ) 

k B T 

]
, (3)

where the prefactor ν depends on the atomic vibrational frequency at the original and transition states ( Hanggi et al., 1990;

Olsen, 2006 ). The period of a typical atomic bond-stretch vibration is on the order of 0.1 ps, thus yielding a prefactor on the

order of 10 13 s −1 . Since k (S ) is exponentially dependent on the barrier, it is reasonable to neglect the much weaker stress

dependence of the prefactor. Once � � = ( S ) is known, one can use Eq. (3) to calculate transition rate at temperature T . This

rate can be taken as an important parameter for thermodynamic modeling of phase transitions at the larger length scales. 

Fig. 3 describes the relationship between two phase transitions, occurring respectively under zero stress (I → III) and

under stress S (II → IV), where I, II, III and IV represent four different states. The schematic lattice cells with two atoms

in the figure are used to demonstrate the lattice deformation and atoms movements during transitions. The deformation

measurements of different states are defined in the figure. A Green-Lagrangian strain tensor E 

(t) (0) describes the deformation

due to phase transition at zero stress. The deformations from state I to states II and IV are respectively described by E 

(o) (S )

and E 

(t) (S ) . The latter one includes the contributions from both elastic deformation and phase transition. The purpose of the

proposed theory is to predict the barrier � � = ( S ) under stress S using the zero stress barrier � � = (0). 

Substitute Eq. (1) into Eq. (2) , the barrier for phase transition at stress S can be written as 

�� = (S ) = V (t) (S ) − V (o) (S ) − V 0 S : ( E 

(t) (S ) − E 

(o) (S )) . (4)
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Fig. 3. Schematic relationship between the transitions under zero stress and under stress S . The blue box represents a crystal lattice with 2 atoms. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

At both original and transition states (II and IV in Fig. 3 ), we can expand the potential energies in a Taylor series around

zero stress and neglect the terms higher than the second order 

V (o) , (t) (S ) = V (o) , (t) (0) + S : 
∂ V (o) , (t) (0) 

∂S 
+ 

1 

2 

S : 
∂ 2 V (o) , (t) (0) 

∂ S 2 
: S + O(S 3 ) . (5)

This expansion is to build the connection between potential energies V at zero stress and at stress S , for both original state

(I → II) and transition state (III → IV). 

Since both original and transition states (II and IV) are in equilibrium, the variation of enthalpy equals zero, δ�(o),(t) (S ) =
0 , then from Eq. (1) we can get 

S = 

1 

V 0 

∂ V (o) , (t) 

∂ E 

(o) , (t) 
. (6) 

Using this relationship, the first and second order derivatives of V can be written as 

∂ V (o) , (t) 

∂S 
= V 0 S : 

∂ E 

(o) , (t) 

∂S 
, (7) 

and 

∂ 2 V (o) , (t) 

∂ S 2 
= V 0 

[
I : 

∂ E 

(o) , (t) 

∂S 
+ S : 

∂ 2 E 

(o) , (t) 

∂ S 2 

]
, (8) 

where I is the fourth order identity tensor. Substitute Eqs. (7) and (8) into Eq. (5) at S = 0 , we can get 

V (t) (S ) − V (o) (S ) = V (t) (0) − V (o) (0) + 

V 0 

2 

S : 

[
∂ E 

(t) (0) 

∂S 
− ∂ E 

(o) (0) 

∂S 

]
: S + O(S 3 ) . (9)

Meanwhile, we can Taylor expend the strains E 

(o) , (t) (S ) at zero stress to the first order and get 

E 

(t) (S ) − E 

(o) (S ) = E 

(t) (0) − E 

(o) (0) + S : 

[
∂ E 

(t) (0) 

∂S 
− ∂ E 

(o) (0) 

∂S 

]
+ O(S 2 ) , (10)

which is then substitute into Eq. (4) along with Eq. (9) , yielding the barrier at stress S 

�� = (S ) = �� = (0) − V 0 S : ( E 

(t) (0) − E 

(o) (0)) − V 0 

2 

S : 

[
∂ E 

(t) (0) 

∂S 
− ∂ E 

(o) (0) 

∂S 

]
: S + O(S 3 ) , (11)

where �� = (0) = V (t) (0) − V (0) (0) is the barrier at zero stress, and E 

(o) (0) = 0 for zero stress reference state. 

In Eq. (11) , a linear dependence of the barrier on the applied stress can be considered as a generalization of the Bell

theory in terms of a continuum description. In addition, a nonlinear response comes from the second order term, whose

coefficients correspond to the difference of material’s compliances between transition and original states. To estimate the

barriers with Eq. (11) , one firstly needs to use transition state search methods such as FD-NEB to get the barrier � � = (0) and
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the strain E 

(t) (0) of transition state at zero stress. For the second order correction, one needs to calculate the material com-

pliances of both original and transition states. This can be done through molecular statics simulations. Since transition states

are metastable, a second-order optimization method such as quasi-Newton algorithm may be needed, which only searches

the energy minima in the vicinity of the transition states in order to avoid large perturbations during optimization process.

It is noted that, the higher order corrections to the barrier beyond the second order may be needed, when materials exhibit

strong nonlinearity at original or transition state. This could be done by taking the higher orders of V and E expansions,

which will lead to the calculations of higher order material stiffness or compliance for both original and transition states. 

Here, the theory is formulated using the second P–K stress which has mathematical advantages for describing materials

constitutive behavior. Alternatively, following the same process, one can also derive Eq. (11) in terms of the first P–K stress

along with the deformation gradient, which form a work conjugate pair. One advantage of using the first P-K stress is that

it can be experimentally measured when the applied force is known, making the direct comparison between the theory

and experiments easier. On the other side, it is not convenient to use Cauchy stress for describing the stress dependent

barrier when the transition undergoes finite deformation, because Cauchy stress is not a work conjugate to any kind of

strain, making it difficult to write down the work as shown in Eq. (1) . However, there is a special case – the hydrostatic

compression, where the Cauchy stress (the pressure p ) is a constant, so the work is simply p �V where �V is the volume

change. 

There is one situation that needs particular attention when applying the proposed method. The expansion in Eq. (5 ) is to

build the connection between potential energies V at zero stress and stress S , for both original state (I → II) and transition

state (III → IV). Such expansion is always meaningful for the original state. However, it is only meaningful for the transition

state when the following condition is satisfied: the configuration of state III can be mapped to the configuration of state IV

through an elastic deformation. Otherwise, the term V (t) (0) on the right hand side of Eq. (5) cannot be used to represent

the actual transition state at zero stress (III). The above condition is approximately true when the phase transition pathway

under stress S is similar to the one under zero stress. However, such condition may not be satisfied when the transition

mechanism changes beyond a certain stress. In these cases, the following additional steps have to be added in order to

apply the proposed theory. First, the critical stress at which the transition mechanism starts to change has to be identified

from atomistic simulations such as FD-NEB. Then, this critical stress state is taken as a new reference state (instead of zero

stress state) to predict the barriers beyond such stress, following the similar process described above. In this way, the theory

will be applied in a piecewise manner, where the different stress regions are separated by the critical stresses at which the

transition mechanism starts to change. 

Microscopically, the above elastic mapping assumption for transition state can be interpreted as follows: the displace-

ments of atoms from configuration III to IV follow Cauchy-Born rule ( Born and Huang, 1954; Tadmor and Miller, 2011 ),

which states that the displacements of atoms are set by a deformation gradient plus an internal relaxation associated with

the relative motion of sublattices. In reality, in addition to the displacements set by Cauchy-Born rule, there may be ex-

tra atomic displacements coming from phase transition. These extra displacements could be considered in our formulation

implicitly by adding the reaction coordinate (which include both lattice deformation and atomic displacements) as a con-

trol variable, similar to the approach used by Zhu et al. (2005) . However, the reaction coordinate is not an explicit variable

that can be conveniently computed in theory. Therefore, our current formulation is kept simple for the purpose of easy

implementation. 

2.3. A simple example: “Phase Transition” of a 1D chain 

Consider a fictitious 1D chain composed by a series of beads as shown in Fig. 4 a. At the original state, the equilibrium

distance between two neighboring beads is x 0 . This distance is changed by x when a force f is applied. It is assumed that

all the beads are always equally spaced when they are subjected to stretch or compression. The interaction energy between

two neighboring beads is described by a Cosine function 

V(x ) = − cos (2 πx ) , (12)

where −0 . 5 ≤ x ≤ 1 . 5 . Then, under the force f , the enthalpy of the system can be written as 

�(x ) = V(x ) − f x. (13)

Note that all the physical quantities used in this example are unitless for the convenience of discussion. 

The enthalpy profiles of the system at f = 0 and f = ±0 . 6 are shown in Fig. 4 b. There are two possible stable states:

one is at the left valley around original state ( x = 0 ), the other one is around the right valley ( x = 1 ) across an “energy

barrier”. Interestingly, the barrier shifts up and down depending on the direction and magnitude of the applied force f .

From d�/ dx = 0 , the positions of the original (o) and transition (t) states can be evaluated as a function of f 

x (o) ( f ) = 

1 

2 π
arcsin 

(
f 

2 π

)
and x (t) ( f ) = 

1 

2 

− 1 

2 π
arcsin 

(
f 

2 π

)
. (14)

Substitute Eq. (14) into Eq. (13) , we can obtain the exact values of barrier � � = as a function of f , which are plotted as the

solid line in Fig. 4 c. Meanwhile, the barrier can be estimated using the proposed theory. Based on Eq. (11) , the barrier can
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Fig. 4. (a) A chain made by series of beads. The equilibrium distance between two beads is x 0 , and the deformation under force f is x . (b) Enthalpy profiles 

between two neighboring beads at different forces. (c) Comparisons of transition barrier between exact values and approximated ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be written as 

�� = ( f ) = �� = (0) − f [ x (t) (0) − x (0) (0)] − 1 

2 

f 2 
[

d x (t) (0) 

df 
− d x (o) (0) 

df 

]
, (15) 

where x (0) (0) = 0 and x (t) (0) = 1 / 2 , and from d �(o) , (t) /dx = 0 , the second order coefficients can be written as 

d x (o) , (t) (0) 

df 
= 

1 

V (o) , (t) ′′ (0) 
, (16) 

which describes the compliance of the 1D system. In this example, because V (o) (0) 
′′ 

> 0 and V (t) (0) 
′′ 

< 0 , the second order

contribution is always positive, so increasing the value of barriers with respect to the first order approximation. However,

this cannot be generalized to multidimensional material systems in which the second order term can be either positive or

negative, as shown in the examples in Section 4 . 

The barriers of this fictitious 1D system are exactly evaluated, while for a real phase change material, the barrier needs

to be calculated from atomistic simulations using transition state search methods such as finite deformation NEB (FD-NEB)

method. In next section, we briefly introduce the principle of FD-NEB method, which was developed recently for determining

transition paths and barriers of solid-state materials under finite deformation. 

3. Atomistic simulation method: finite deformation nudged elastic band method 

Molecular dynamics (MD) simulations are widely used to study the mechanical behavior of solids by accounting for the

motion of atoms. However, the phase transitions of interest can be many orders of magnitude slower than vibrations of the

atoms, so a direct MD simulation may not be feasible due to the limitation on the accessible simulation time scale. For

example, the transition rate of a phase transition process with a barrier of 0.6 eV can be calculated as k = 834 s −1 with

Eq. (3) where ν is taken as 10 13 s −1 at T = 300 K. Thus, the average time one needs to wait to observe this transition

event is �t = 1 /k = 1 . 2 ms. This time scale is far beyond the capability of present day computers, so such transition event

is not observable in MD simulations. Therefore, many methods have been developed to accelerate MD simulations ( Miron

and Fichthorn, 2003; Voter, 1997; Xu and Henkelman, 2008 ), however it is still challenging to access such long time scales,

especially for large size systems or when the energy and force are evaluated with first principle methods. On the other

hand, the indirect simulation method – transition state search methods, such as nudged elastic band (NEB), have been used

to study transition events. Given the initial and final states of a transition process, the NEB method can be used to find the

minimum energy path (MEP). 

The conventional NEB ( Jónsson et al., 1998; Mills et al., 1995 ) only takes atomic positions as transition variables, so it can

not be directly applied to study solid–solid transitions where lattice deformation and external stress field also contribute

to the search of MEP. Solid-state NEB methods have been proposed to include the influence of lattice deformation and

stress. Recently, we noticed that the previous solid-state NEB algorithm leads to inaccurate barriers and deviated transition

paths, due to an inaccurate evaluation on the external work contributions in enthalpies and barriers. To this end, a finite
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Fig. 5. Schematics of FD-NEB calculation from phase P1 to P2. Blue boxes represent lattice cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deformation NEB (FD-NEB) method ( Ghasemi et al., 2019 ) was formulated by adding finite deformation variables to previous

solid-state NEB method ( Sheppard et al., 2012 ). In addition to the FD-NEB, a pioneering work by Huang et al. (2009) provided

a stress-controlled NEB method which was applied to study the nanoscale fracture mechanisms in silicon. 

The FD-NEB calculation can be illustrated in Fig. 5 , where a crystal material (the lattice is represented by a blue box)

transforms from phase P1 to P2 when it is subjected to a constant stress S app . To describe the finite deformation of the

lattice during phase transition, nonlinear mechanics variables are used to control the search of MEP. FD-NEB can be formu-

lated with either first or second P–K stress in a similar way. To be consistent with our formulation of FD-BT theory, here we

present the idea of FD-NEB with the second P–K stress. As shown in Fig. 5 , a band is initially constructed by connecting a

number of intermediate states between the given initial and final states with elastic springs. These intermediate states are

usually generated by a geometric linear interpolation between the initial and final states as an initial guess. The purpose of

FD-NEB algorithm is to move the elastic band until it converges to the MEP under stress S app . 

For a material containing N atoms, each state on the elastic band has 3 N atomic degrees of freedom. None of the in-

termediate states are in equilibrium due to phase transition, so they are subjected to the potential forces coming from the

gradient of the potential energy f i pot = −∇V( r i 
1 
, r i 

2 
, · · · , r i 

N 
) , where r represents atomic positions. The superscript i repre-

sents i th state along the elastic band. Minimizing these forces only moves the intermediate states into one of the local

energy minima, and thus would not help to find the MEP. Therefore, spring forces are applied in order to keep the interme-

diate states evenly spaced on the elastic band. To avoid the sensitivity of selecting spring constant values for convergence,

only certain components of the forces are used. Specifically, the total force of an intermediate state i is 

f 
i = f 

i 
pot | ⊥ + f 

i 
spr | ‖ , (17)

where f i pot | ⊥ is the potential force perpendicular to the elastic band and f i spr | ‖ is the spring force parallel to the band. 

In addition to atomic degrees of freedom, the finite lattice deformation is also added to MEP search. When subjected

to the external stress, an internal restoring stress is generated inside the lattice. This stress does not equal the applied

stress, since the intermediate states are not in equilibrium. Hence, similar to atomic degrees of freedom, spring stress is

prescribed between neighboring states. It is noted that the internal restoring stress, calculated from atomic simulations (by

either empirical potentials or first-principles methods), is the Cauchy stress defined in current configuration. Therefore, in

FD-NEB, the prescribed P-K stress ( S app ) is converted to a Cauchy stress ( σi 
app ). Then, the total stress acting on the lattice of

intermediate state i is 

σi = ( σi 
app − σi 

cell ) | ⊥ + σi 
spr | ‖ . (18)

where σi 
cell 

and σi 
spr denote the restoring and spring stress respectively. In order to treat the atomic and cell variables on

an equal footing, σapp − σi 
cell 

and σi 
spr are respectively vectorized and combined with f i pot and f i spr to form a generalized

force vector. The atomic positions and cell geometries are simultaneously updated by this generalized force vector using any

force-based optimization algorithms ( Sheppard et al., 2008 ) until the MEP is converged. Finally, the transition barrier ( � � = )
is calculated by the enthalpy difference between the original and transition states 

�� = (S app ) = V � = (S app ) − V 0 S app : (E 

(t) − E 

(o) ) , (19)

where V � = is the potential energy difference between transition and initial states, E 

(t) and E 

(o) are respectively the Green-

Lagrangian strain tensors of transition and original states under stress S app with respect to the reference state (whose volume

is V 0 ). For convenience, the original state under zero stress is selected as the reference state in FD-NEB. 

A large number of FD-NEB simulations are needed in order to obtain the barriers at different stress fields. These cal-

culations are computationally costly if the forces and stresses are calculated from first-principle methods. Therefore, it is

meaningful to use the proposed FD-BT theory as a guide to explore the entire stress space and then use FD-NEB for valida-

tion at selected stress levels. 

4. Examples 

In this section, the FD-BT is applied to calculate the stress dependent barriers of phase transitions of 2D MoTe 2 and

bulk silicon, which exhibit two distinct transition mechanisms. Meanwhile, the theoretical predictions are compared with
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Fig. 6. Cross-sectional and basal plane views of 2D MoTe 2 at different phases. Blue color: Mo; orange/yellow color: Te atoms on the top and bottom layers. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

atomistic simulations with FD-NEB. In the simulations, the energy, interatomic force and stress are evaluated from the den-

sity functional theory (DFT). All the DFT calculations in this study are performed using the plane-wave-based Vienna Ab-

initio Simulation Package (VASP) ( Kresse and Furthmüller, 1996; Kresse and Hafner, 1993 ). Electron exchange and correlation

energies are calculated with the generalized gradient approximation using the Perdew–Burke–Ernzerhof (PBE) functional 

( Perdew et al., 1996 ). The projector augmented wave (PAW) method ( Blöchl, 1994; Kresse and Joubert, 1999 ) is used to rep-

resent ionic cores. The kinetic energy cutoff for the plane-wave basis describing the valence electrons is set to 292 eV and

420 eV respectively for MoTe 2 and silicon, and the corresponding k-point used to sample Brillouin zones are 7 × 9 × 1

and 15 × 15 × 15. A vacuum layer of thickness 3 nm is used to separate the periodic images of MoTe 2 sheet. 

4.1. Phase transition of 2D MoTe 2 

As shown in Fig. 6 , the monolayer MoTe 2 in 2H phase is composed of a layer of hexagonally arranged Mo atoms, sand-

wiched between two layers of Te atoms. 2H phase is semiconductor with a direct band gap. When one of the Te layers in 2H

phase is shifted, the Te atoms are in octahedral coordination around Mo atoms, generating a 1T phase. 1T structure is unsta-

ble in the absence of external stabilizing factors. As a result, it turns into monoclinic and conducting 1T ′ phase, a distorted

version of the 1T structure. MoTe 2 has a lower ground state energy at 2H phase ( Duerloo et al., 2014 ). The dynamic control

of transitions between these two phases can lead to revolutionary device applications such as memory devices ( Wuttig and

Yamada, 2007 ), reconfigurable circuits ( Wang et al., 2016 ) and topological transistors ( Qian et al., 2014 ) at atomically thin

limits. 

A recent experiment showed that nanoindentation applied by Atomic Force Microscope can induce phase transition on

suspended MoTe 2 thin films at ambient condition ( Song et al., 2016 ). In addition, the phase transition of monolayer MoS 2 
and MoTe 2 has been experimentally reported through chemical/thermal doping ( Lin et al., 2014; Ma et al., 2015 ), laser

patterning ( Cho et al., 2015 ) and electrostatic gating ( Wang et al., 2017 ), where stress plays an important role due to thermal

expansion, lattice mismatches and interactions with substrates. So far, the theoretical and computational studies on phase

transition of 2D TMDC are quite limited. Particularly, the role of stress field on the transition barriers has not been explored.

The uniaxial tensile loading along armchair direction is considered in present study. Fig. 7 shows the stress-strain curves

of monolayer MoTe 2 obtained from molecular statics simulations, in which the sheet is stretched on armchair direction while

relaxing stress on the other two directions. For 2D materials, we use 2D stress (unit: N/m) tensor, which have 3 independent

components: S 11 , S 22 and S 12 . The 2H and 1T ′ phases at zero stress are respectively represented by a 0 and b 0 . Note that the

strains are all measured with respect to state a 0 , so the strain of 1T ′ phase at zero stress is not zero. The purpose of the

FD-BT is to predict the barrier of the transition a → b under stress based on the information of the transition a 0 → b 0 . It is

worth pointing out that, there was no sign of phase transition before failure during the stretching of the 2H phase (through

stress or strain control), meaning that the transition is not expected to occur only by stretching when there is no thermal

activation. 

The application of FD-BT requires the inputs from zero-stress phase transition, as shown in Eq. (11) , including the barrier

� � = (0), the strain of transition state E 

(t) (0), as well as the tangent compliances c (o),(t) (0) = ∂E 

(o),(t) (0) / ∂S of both original

and transition states which are needed for the second order correction. Therefore, zero-stress FD-NEB simulation was firstly

performed. The obtained MEP curve is shown in Fig. 8 a, where the reaction coordinate of MEP represents the distance

between two neighboring states on the elastic band in terms of both atom positions and lattice deformation. The snapshots

in Fig. 8 b describe atomic motions during the transition process. In the beginning of the transition process, one Te atom in

the bottom layer (yellow color) shifts out toward the center of 2H hexagon; meanwhile other atoms are slightly displaced

from their original positions, leading to the transition state represented by B. The difference of enthalpies between this

transition state and the original state gives the transition barrier (which has to be overcome to initiate the transition).

Beyond this point, a shallow minimum appears on the MEP at C, indicating a stable intermediate phase. Finally, another Te

atom in the bottom layer moves out by overcoming a small barrier at D, completing the transition process. 
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Fig. 7. Stress–strain relationships of monolayer MoTe 2 at 2H and 1T ′ phases, stretched on armchair direction, where the strain is measured with respect to 

zero stress 2H phase. The solid curves are calculated from the derivatives of potential energy. The inserted images show the unit cells used in simulations. 

Fig. 8. (a) Phase transition MEPs of MoTe 2 obtained from FD-NEB calculations, where the enthalpy is calculated for the computation cell. (b) The snapshots 

show the atomic motion during transition process, where the box represents the computation cell. The lattice constants for stress free 2H and 1T ′ structures 

are respectively 6.15 Å × 3.56 Å and 6.40 Å × 3.42 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FD-NEB simulations were also performed to get barriers at different stress levels. The MEP curves under 3 N/m and

5 N/m are shown in Fig. 8 a. The barrier drops with the increase of applied stress, meaning that a stretch on armchair

direction facilitates the phase transition of monolayer MoTe 2 . The atomic motions during the transitions under stress are

similar to those of zero stress; meanwhile the intermediate phase at C becomes more stable as the increase of tensile stress.

Next, the information obtained from zero stress simulation are taken as inputs to FD-BT for predicting the barriers as a

function of applied stress. For an uniaxial stress applied on armchair direction, Eq. (11) can be simplified as a function of

the applied stress S 11 

�� = (S 11 ) = �� = (0) − A 0 E 
( t ) 
11 

(0) S 11 − A 0 

2 

(c ( t ) 
11 

(0) − c ( o ) 
11 

(0)) S 2 11 + O( S 3 11 ) , (20)

where A 0 is the area of monolayer 2H MoTe 2 sheet at zero stress. The barrier � � = (0) (shown in Fig. 8 a) and the strain

E ( t ) 
11 

(0) are the direct outputs from FD-NEB simulation under zero stress. The tangent compliance of 2H phase c ( o ) 
11 

(0) is

calculated from the stress-strain curve plotted in Fig. 7 . In addition, the tangent compliance of transition state c ( t ) 
11 

(0) can

be obtained from molecular statics simulations. An uniaxial tensile simulation was performed on the structure of transition

state (represented by B in Fig. 8 b). The stress-strain curve of the transition state under uniaxial stress is shown in Fig. 9 a.

Note that the transition state is metastable, so a quasi-Newton algorithm is used for optimization, which only searches the

structures of energy minima in the vicinity of this transition state. Here, only the initial portion of the curve is used to

get the second order tangent stiffness at zero stress, while the whole curve may be useful to get the higher order stiffness

if one extends the formulation of FD-BT by including higher order corrections beyond the second order. The parameters
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Fig. 9. (a) Stress–strain curves for transition state of MoTe 2 stretched on armchair direction, where the strain is measured with respect to zero stress 2H 

phase. The solid curve is calculated from the derivative of potential energy. (b) Comparison of the barriers of the computation cell as a function of applied 

stress. 

Table 1 

The parameters of original 2H and transition state (TS) used in Eq. (20) for predict- 

ing barriers under uniaxial stress. The units for energy, area and material compli- 

ance are respectively eV, Å 2 and cm/N. 

Zero stress barrier 2H area TS strain TS compliance 2H compliance 

� � = (0) A 0 E ( t ) 
11 

(0) c ( t ) 
11 

(0) c ( o ) 
11 

(0) 

1.52 21.86 8.74% 1.42 1.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

used in Eq. (20) are listed in Table 1 . The theoretical predictions and simulation results are compared in Fig. 9 b. While the

theory overestimates the barrier, the estimation considerably improves by including the second order correction, where the

compliance of the transition state is larger than that of the original state, so decreasing the barriers with respect to the first

order approximation. The quality of prediction is related to the materials nonlinearity at original and transition states, and

can be potentially improved by adding higher order corrections to Eq. (11) . 

4.2. Phase transition of silicon 

At ambient conditions, the most stable phase of Si is a diamond structure. Under compressive stress, Si transforms from

the diamond structure (Si-I) to a metallic β- tin structure (Si-II) and continually exhibits many other different phases with

further increase of compression. Releasing loads does not lead to a recovery of the initial Si-I phase but instead to a series

of metastable phases ( Wippermann et al., 2016 ). These make phase transition of Si a rather complicated process, which still

requires thorough investigations despite of the rich studies in the past decades. In this paper, we focus on the transition

from Si-I to Si-II on a pristine Si structure. 

First, we consider the phase transition under an uniaxial compression. Molecular statics simulations are conducted by

using damped dynamics as a force-based optimizer, where the uniaxial compression is applied through a stress control.

The stress-strain curves are shown in Fig. 10 . At the peak stress (16.0 GPa), Si-I directly transforms to Si-II through a strain

burst due to lattice instability. Different from the transition of MoTe 2 that is accompanied with the breaking of covalent

bonds, the transition of Si only involves lattice deformation and atoms rearrangement. The peak stress of Si-I (16.0 GPa) in

Fig. 10 can be considered as the upper bound of transition stress, because it triggers phase transition without the need of

thermal activation. In reality, thermal energy can lower the transition stress, facilitating the material’s ability to overcome

energy barrier. 

Similar to the previous example, FD-NEB simulations are applied at selected stress levels to get transition barriers, which

are then compared with the predictions from FD-BT. The representative MEPs at three different stresses are shown in

Fig. 11 a. The variation of the barriers as a function of the applied stress is shown in Fig. 11 b. The FD-BT predictions with

second order correction compare closely to simulation results. It is noted that, the compliance of the transition state at zero

stress is a negative value, making the second order contribution in Eq. (11) positive and thereby increasing the value of

barriers with respect to the first order approximation. The parameters used in Eq. (11) for barrier predictions are listed in

Table 2 , where � � = (0), V 0 , E 
( t ) 
33 

(0) and c ( t ) 
33 

(0) are used for uniaxial compression. 
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Fig. 10. Stress–strain curves (obtained from molecular statics simulations with stress control) of Si-I and Si-II under uniaxial compression, where the strain 

is measured with respect to zero stress Si-I. Phase transition occurs at the peak stress of Si-I due to lattice instability. The lattice structures shown in the 

figure are used for DFT calculations, where the lattice constants for stress free Si-I and Si-II structures are respectively 5.47 Å × 5.47 Å × 5.47 Å and 

6.92 Å × 6.92 Å × 2.55 Å. 

Fig. 11. (a) Si phase transition MEPs of at different stresses. The inserted crystal structure is for transition state at zero stress. (b) Barrier (of the computa- 

tion cell) comparison between theoretical predictions and atomistic simulations. 

Table 2 

The parameters of original and transition state of Si used in Eq. (11) for predicting bar- 

riers under uniaxial compression and combined loading. The units for energy, volume 

and material compliance are respectively eV, Å 3 and TPa −1 . 

� � = (0) V 0 E ( t ) 
33 

(0) E ( t ) 
11(22) 

(0) c ( t ) 
33 

(0) c ( t ) 
11(22) 

(0) c ( o ) 
11(22 , 33) 

(0) 

3.35 163.40 −29 . 66% 17.15% -2.10 7.68 8.01 

 

 

 

 

 

 

 

Next, we intend to use the theory to predict the barriers under combined loadings, where uniaxial compression is applied

on one direction and equibiaxial tensions are applied on the other two directions. Using the parameters in Table 2 , the

barriers are calculated as a function of two stress components and plotted as contour lines in Fig. 12 . On each contour line,

we randomly select a point and compute the corresponding barrier with FD-NEB simulation. Similar to the case of uniaxial

loading, the predictions are reasonably accurate at the small stresses but the difference gradually increases when the stress

increases. 

5. Discussion 

It is noted that the transition process shown in both Si and MoTe 2 examples is concerted transition , where all the atoms

transform to the new phase simultaneously. This is due to the confinement from the small periodic cells used in FD-NEB
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Fig. 12. The barrier (of the computation cell) contours of the transition from Si-I to Si-II under combined uniaxial compression and equibiaxial tension, 

predicted from FD-BT. Random points on the contour lines (marked by triangles) are selected for comparison with FD-NEB, and the values from simulations 

are shown inside parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulations. By contrast, the other type of transition is nucleated transition , which starts from a localized site, followed by the

propagation of the new phase. Both concerted and nucleated mechanisms could occur in reality depending on the materials

and external excitations. It is indeed challenging to study nucleation-based phase transition with NEB method or other

types of atomistic methods, because the nucleation volume may be greater than the size of computation cell. Moreover, the

defects inside materials also play import roles in nucleation process. To avoid this complexity and computational constrains,

we have chosen concerted nucleation examples to demonstrate the proposed theory. 

As shown in the examples, the accuracy of the predicted barriers is material dependent. The Taylor expansion, conducted

between undeformed and deformed states, is related to the elastic nonlinearity of the material. Silicon shows better pre-

dictions because of the weaker nonlinearity as compared to MoTe 2 . It requires more studies in the future to quantitatively

correlate the nonlinearity or some other potential factors to the accuracy of predictions. 

6. Summary 

Stress plays important role in solid–solid phase transitions and can be utilized as a useful tool in phase engineering

applications. The mechanism of stress modulated phase transition is that the applied stress field can change the transi-

tion barrier which determines the likelihood of phase transition. The stress dependent barriers can be computed by using

transition state search methods such as finite deformation nudged elastic band (FD-NEB) method. However, these methods

are computationally expensive, so it is time consuming to find barriers under many different stresses. This paper presents

a facile approach to quickly estimate the barriers in the entire stress space to certain accuracy. A finite deformation Bell

theory (FD-BT) is developed to predict the stress dependent barriers using the information of zero-stress phase transition.

The method is applied to study two model materials: 2D MoTe 2 and bulk silicon, and it is validated by comparing theo-

retical predictions to FD-NEB simulations. The two model materials demonstrate distinct transition mechanisms: 2D MoTe 2 
experiences covalent bond breaking during transition while the transition of silicon is dominated by lattice instability. The

barriers of both materials exhibit significant stress dependence, which can be reasonably predicted by FD-BT. 
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