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Markov state models (MSMs) and equation-free approaches learn low-dimensional kinetic models

from MD simulation data by performing configurational or dynamical coarse-graining of the state
space. The learned kinetic models enable the efficient generation of dynamical trajectories over
vastly longer time scales than are accessible by MD, but the discretization of configurational space
and/or absence of a means to reconstruct molecular configurations precludes the generation of
continuous atomistic molecular trajectories. We propose latent space simulators (LSS) to learn
kinetic models for continuous atomistic simulation trajectories by training three deep learning net-
works to (i) learn the slow collective variables of the molecular system, (ii) propagate the system
dynamics within this slow latent space, and (iii) generatively reconstruct molecular configurations.
We demonstrate the approach in an application to Trp-cage miniprotein to produce novel ultra-long
synthetic folding trajectories that accurately reproduce atomistic molecular structure, thermody-
namics, and kinetics at six orders of magnitude lower cost than MD. The dramatically lower cost
of trajectory generation enables greatly improved sampling and greatly reduced statistical uncer-
tainties in estimated thermodynamic averages and kinetic rates.

1 Introduction

Molecular dynamics (MD) simulates the dynamical evolution of
molecular systems by numerically integrating the classical equa-
tions of motion!. Modern computer hardware®* and efficient
and scalable simulation algorithms47 have enabled the simu-
lation of billion®®° and trillion-atom systems1®. Advancing the
barrier in time scale has proven far more challenging. Stability
of the numerical integration requires time steps on the order of
femtoseconds commensurate with the fastest atomic motions 11,
which limits simulations to microseconds on commodity proces-
sors 1 and milliseconds on special purpose hardware3. Enhanced
sampling techniques apply accelerating biases and analytical cor-
rections to recover thermodynamic averages 12716 but — except in
special cases and the limit of small bias!7-18
proaches exist to recover unbiased dynamical trajectories from
biased simulations.

- no analogous ap-

The MD algorithm propagates a molecular configuration x, at
time 7 to x,,  via transition densities x; ¢ ~ pc(X;1¢|x) 1920, As-
suming ergodicity, the probability density over microstates con-
verges to the stationary distribution as ;ILTO q:(x) = m(x). Breaking
the time scale barrier requires a surrogate model for pz(X;+z|x;)
that can be more efficiently evaluated and with larger time steps
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mail: andrewferguson@uchicago.edu
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than MD. Accurately approximating this propagator in the high-
dimensional N-atom configurational space x € R3 is intractable.
In general, for sufficiently large 7 there is an emergent low-
dimensional simplicity that admits accurate modeling of the dy-
namics by a low-dimensional propagator p;(y,, ;|y,) within a la-
tent space y € R"<3N, The relation between MD and latent space

dynamics can be represented as 1920,
N
X; 7 llll
MD | pr 6}

Xttt % Virr

This scheme defines three learning problems!?: (i) encoding E of
molecular configurations x to the latent space v, (ii) propagation
P of the latent space dynamics according to transition densities
rt(¥;.|v;), and (iii) decoding (or generating) D of molecular
configurations from the latent space 1.

Markov state models (MSM)21-28 and the equation-free ap-
proach of of Kevrekidis and co-workers2?-3> respectively employ
configurational and dynamical coarse graining to parameterize
low-dimensional propagators, but both methods lack molecular
decoders. Recently, numerous deep learning approaches have
been proposed to learn E, P, and D from MD trajectories, in-
cluding time-lagged autoencoders3®, time-lagged variational au-
toencoders3”, and time-lagged autoencoders with propagators 38,
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Training these networks requires a time-lagged reconstruction
term ||x;4+7r — Do PoE(x,)|| within the loss, which can cause the
network to fail to approximate the true slow modes3. Fur-
ther, time-lagged autoencoders and time-lagged variational au-
toencoders do not learn valid propagators!®, and the inherent
stochasticity of MD appears to frustrate learning of the propaga-
tor and decoder in time-lagged autoencoders with propagators 1.
Deep generative MSMs (DeepGenMSM) simultaneously learn a
fuzzy encoding to metastable states and “landing probabilities”
to decode molecular configurations®. The method computes
a proper propagator and generatively decodes novel molecular
structures, but — as with all MSM-based approaches — it configu-
rationally discretizes the latent space and relies on the definition
of long-lived metastable states.

In this work, we propose molecular latent space simulators
(LSS) as a means to train kinetic models over limited MD sim-
ulation data that are capable of producing novel atomistic molec-
ular trajectories at orders of magnitude lower cost. The LSS can
be conceived as means to augment conventional MD by distill-
ing a kinetic model from training data, efficiently generating con-
tinuous atomistic trajectories, and computing high-precision esti-
mates of any atomistic structural, thermodynamic, or kinetic ob-
servable.

The LSS is based on three deep learning networks indepen-
dently trained to (i) learn an encoding E into a latent space of
slow variables using state-free reversible VAMPnets (SRV) 41 (i)
learn a propagator P to evolve the system dynamics within this la-
tent space using mixture density networks (MDN) 4243 and (iii)
learn a decoding D from the latent space to molecular config-
urations using a conditional Wasserstein generative adversarial
network ((WGAN) #*. Separation of the learning problems in this
manner makes training and deployment of the LSS modular and
simple. The stochastic nature of the MDN propagator means that
the trained kinetic model generates novel trajectories and does
not simply recapitulate copies of the training data. The approach
is distinguished from MSM-based approaches in that it requires
no discretization into metastable states2%-4%, The continuous for-
mulation of the propagator in the slow latent space shares com-
monalities with the equation-free approach23!, but we eschew
parameterizing a stochastic differential equation in favor of a sim-
ple and efficient deep learning approach, and also equip our sim-
ulator with a generative molecular decoder.

2 Methods

A schematic diagram of the LSS and the three deep networks of
which it is comprised is presented in Fig. 1. We describe each
of the three component networks in turn and then describe LSS
training and deployment.

2.1 Encoder: State-free Reversible VAMPnets

The transfer operator .7 at a lag time 7 is the propagator of
probability distributions over microstates with respect to the
equilibrium density u(x) = ¢(x)/7(x) under transition densities
po(X17]x;) 440, For sufficiently large 7 the dynamics may be ap-
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proximated as Markovian so pz(x;+z|x;) is time homogenous,

weel6) = Toul®) = s [ay pelxiyualy). @

In equilibrium systems obeying detailed balance 7(x)p;(y|x) =
n(y)pz(x]y), 7 is identical to the Koopman operator, self-adjoint
with respect to (a|b)z = [a(x)b(x)m(x)dx, and possesses a com-
plete orthonormal set of eigenfunctions {y;(x)} with real eigen-
values 1 =g > A > Ay > .. 414649

Toyi(x) =Lvi(x),  (Wlw)z = 6ij. 3)

The pair (yp(x)=1,49=1) corresponds to the equilibrium distri-
bution at ¢+ — o and the remainder to a hierarchy of increas-
ingly quicker relaxing processes with implied time scales ¢, =
—17/InA;*1. The evolution of u(x) after k applications of .7 is
expressed in this basis as,

k) = 7o) = Tl zeso (-5 e, @
l

The variational approach to conformational dynamics (VAC)
defines a variational principle to approximate these eigenfunc-
tions as ;(x) = Y ;si;x;(x) within a basis {x;} by solving for opti-
mal expansion coefficients s;; 414748, SRVs* — themselves based
on VAMPnets, a deep learning-based method for MSM construc-
tion27, and closely related to extended dynamic mode decompo-
sition with dictionary learning®® — employ deep canonical cor-
relation analysis (DCCA)>! to learn both the optimal expansion
coefficients and optimal basis functions as nonlinear transforma-
tions of the (featurized) molecular coordinates. This is achieved
by training twin-lobed deep neural networks to minimize a VAMP-
r loss function Lsgry = — Y, A5 27. SRVs trained over MD trajec-
tories furnish an encoding E (Eqn. 1) into a m-dimensional latent
space spanned by {y;(x)}",, where m is determined by a gap in
the eigenvalue spectrum. This spectral encoding into the lead-
ing modes of .7 neglects fast processes with implied timescales
t; << 7 (Eqn. 4) and is an optimal parameterization of the system
for a low-dimensional long-time propagator1?.

This slow subspace represents the optimal m dimensional em-
bedding for the construction of the long-time propagator, but in-
formation is lost on more quickly relaxing processes. If there are
faster processes in the system that are known to be of interest
(e.g., fast components of a folding transition), it may be possible
to identify the higher order SRV eigenfunctions corresponding to
these processes and judiciously expand the slow subspace to in-
clude these modes. Contrariwise, it can sometimes also be the
case that processes within the slow subspace (e.g., slow cis/trans
isomerizations) may not correspond to the kinetic process of in-
terest (e.g., folding). In certain situations it can be desirable to
eliminate these slow “nuisance processes”, perhaps because they
correspond to very slow and rarely sampled events that are dele-
terious to constructing a robust kinetic model of the process of
interest. One may eliminate these modes from the slow subspace
a posteriori by simply discarding the SRV eigenfunctions identified
to correspond to these processes, or — if they are known before-
hand as a result of a previous analysis — a priori by subtracting
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Fig. 1 Schematic diagram of the latent space simulator (LSS) comprising three back-to-back deep neural networks. A state-free reversible VAMPnet
(SRV) learns an encoding E of molecular configurations into a latent space spanned by the leading eigenfunctions of the transfer operator (Eqn. 1). A
mixture density network (MDN) learns a propagator P to sample transition probabilities p. (v, .|y,) within the latent space. A conditional Wasserstein
GAN (cWGAN) learns a generative decoding D of molecular configurations conditioned on the latent space coordinates. The trained LSS is used to to
generate ultra-long synthetic trajectories by projecting the initial configuration into the latent space using the SRV, sampling from the MDN to generate
long latent space trajectories, and decoding to molecular configurations using the cWGAN.

them out of the system featurization using deflation®>2.

2.2 Propagator: Mixture Density Networks

At sufficiently large 7 the latent space y(x)={y;(x)}"., supports
an autonomous dynamical system in the leading modes of 7.
We train MDNSs to learn transition densities p (v, ;|y,) from MD
trajectories projected in the latent space. MDNs combine deep
neural networks with mixture density models to overcome poor
performance of standard networks in learning multimodal distri-
butions 4243,
combination of C kernels,

Transition densities are approximated as a linear

C
Pr(Wipcly) = Z (V)0 (Wil (W), 0:(¥,)), (5)
c=1

where we choose ¢, to be m-dimensional Gaussians. The y,-
dependent Gaussian means u.(y,), variances o.(y,), and lin-
ear mixing coefficients o, (y,) are learned by a deep feedfor-
ward neural network that minimizes the loss function Apn =
— Y, Inpc(y! .|w]), where yindexes pairs of time-lagged training
data observations. The normalization Y_; o (y,)=1 is enforced
by softmax activations and the u.(y,) bounded using sigmoid ac-
tivations.

The trained MDN defines the latent space propagator P (Eqn. 1)
and we sample transition densities p:(y; .|y,) to advance the
system in time (Fig. 1). Propagation is conducted entirely within
the latent space and does not require recurrent decoding and en-
coding to the molecular representations that can lead to accu-
mulation of errors and numerical instability 13, The transition
densities are learned from the statistics transitions in the train-
ing data and new trajectories are generated by sampling from
these transition densities. These new trajectories therefore rep-
resent novel dynamical pathways over the latent space and are
not simply recapitulations or approximate copies of those in the
training data. Successful MDN training is contingent on the low-

dimensional and Markovian nature of the latent space dynamics
at large 7 discovered by the SRVs.

2.3 Decoder: Conditional Wasserstein GAN

Generative adversarial networks are a leading neural network ar-
chitecture for generative modeling>*. We employ a cWGAN 4455
to decode from the latent space y to molecular configurations
x by performing adversarial training between a generator G(z)
that outputs molecular configurations from inputs z ~ Z,(z) and
a critic C(x) that evaluates the quality of a molecular configura-
tion x. The networks are jointly trained to minimize a loss func-
tion based on the Wasserstein (Earth Mover’s) distance,

LWGAN = gleav{gEh% [Cw(x)] = Eze . [Cu(G(2))], ©)

where &7, (x) is the distribution over molecular configurations ob-
served in the MD training trajectory and {Cy }yew is a family of
K-Lipschitz functions enforced through a gradient penalty*+33,
To generate molecular configurations consistent with particular
states in the latent space we pass y as a conditioning variable
to G and C56 and drive the generator with d-dimensional Gaus-
sian noise Z,(z) = .4 (0,1) € RY. The noise enables G to gener-
ate multiple molecular configurations consistent with each latent
space location. We train the cWGAN over (x,y?”) pairs by en-
coding each frame y of the MD training trajectory into the latent
space using the SRV. The trained cWGAN decoder D (Eqn. 1) gen-
erates molecular configurations from the latent space trajectory
produced by the propagator (Fig. 1).

3 Results and Discussion

3.1 4-well potential

We validate the LSS in an application to a 1D four-well poten-
tial 23 V (x) = 2(x8 +0.8e 80 4 0.2¢800=0.5) | 5,-40(x+05)%) for
which analytical solutions are available. In this simple 1D system
we construct the propagator directly in x = w € R!, so encod-
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ing and decoding are unnecessary and this test validates that the
MDN can learn transition densities pr(x;1¢|x/) to accurately re-
produce the system thermodynamics and kinetics. We generate a
5% 10° time step Brownian dynamics trajectory in a dimensionless
gauge with diffusivity D=kgT =1000 and a time step Ar=0.001>7.
A MDN was trained using Adam>® with early stopping over the
[0,1] scaled trajectory at a lag time of =100, with C=8 Gaussian
kernels, and two hidden layers of 100 neurons with ReLU activa-
tions®®. The trained MDN was used to generate a 5 x 10* step
trajectory of the same length as the training data. Analytical tran-
sition densities were computed by partitioning the domain into
100 equal bins and defining the probability of moving from bin i
to bin j as p(jli) = Cie~ (i~ for |i — j| < 1, where V; is the po-
tential at the center of bin i and C; normalizes the total transition
probability of bin 4.

The Brownian dynamics and synthetic LSS stationary distribu-
tions are in quantitative agreement with the analytical solution
for the stationary density (Fig. 2a) and show very similar ki-
netic behaviors in their transitions between the four metastable
wells (Fig. 2b). This agreement is due to the excellent corre-
spondence between the analytical and learned transition densities
(Fig. 2¢,d).

@ 1, (b) : Simu!éted‘trajectqry_ :

T 3 _
—— Analytical :‘13
1.0 Simulated S o
Synthet; £
0.8 % -1
0.6

0.4

0.2

x (synthetic)
o

0.0

-1.0 -05 0.0 0.5 1.0 0 10000 20000 30000 40000 50000
X t (x 100 steps)

Analytical transition matrix

a’

-1 0 1
Xt

Propagator transition matrix

(c)

X+t

Fig. 2 Validation of the LSS in a 1D four-well potential. The MDN prop-
agator predicts (a) a stationary distribution, (b) kinetic transitions, and
(c,d) transition densities in excellent accord with analytical and Brownian
dynamics results.

3.2 Trp-cage miniprotein
We train our LSS over the 208 us all-atom simulation of the
20-residue TC10b K8A mutant of the Trp-cage mini-protein per-
formed by D.E. Shaw Research®. Generation of these MD trajec-
tories would require ~2.5 days (2 million CPU-h) on the special
purpose Anton-2 supercomputer or ~6 months on a commodity
GPU card®.

The SRV encoder was trained over a featurization the trajectory
employing backbone and sidechain torsions and Co pairwise dis-

4| Journal Name, [year], [vol.],1-8

View Article Online
DOI: 10.1039/D0SC03635H

tances as informative and roto-translationally invariant descrip-
tors2>. We preprocess and represent the atomistic simulation data
to the SRV in this manner to eliminate trivial rigid translations
or rotations that would otherwise contaminate the learned slow
modes. There are many choices of rotationally and translationally
invariant featurizations, but we have shown in previous work on
Trp-cage that this choice contains more kinetic variance and gen-
erates more kinetically accurate models than either Ca pairwise
distances alone, backbone and sidechain torsions alone, or rota-
tionally and translationally aligned Cartesian coordinates2°. We
trained a SRV with two hidden layers with 100 neurons, tanh acti-
vations, and batch normalization using Adam >8 with a batch size
of 200,000, learning rate of 0.01, and early stopping based on the
validation VAMP-2 score2>41. A lag-time of 7=20 ns was chosen
based on convergence of the transfer operator eigenvalues, and
a m=3-dimensional latent space encoding based on a gap in the
eigenvalue spectrum. The MDN propagator was trained over the
latent space projection of the MD trajectory at a lag time of t=20
ns using Adam®8 with early stopping, C=24 Gaussian kernels,
and two hidden layers of 100 neurons with ReLU activations. The
cWGAN decoder comprised a generator and critic with three hid-
den layers of 200 neurons with Swish®! activations and a d=>50-
dimensional noise vector. The training loss stabilized after 52
epochs. The cWGAN is trained to generate the Trp-cage Co back-
bone by roto-translationally aligning MD training configurations
to a reference structure. Training of the full LSS pipeline required
~1 GPU-h on a NVIDIA GeForce GTX 1080 Ti GPU core.

The trained LSS was used to produce 100x208 us synthetic
trajectories each requiring ~5 s on a single NVIDIA GeForce GTX
1080 Ti GPU core. The LSS trajectories comprise the same to-
tal number of frames as the 208 us all-atom trajectory but con-
tain ~1070 folding/unfolding transitions compared to just 12 in
the training data and were generated at six orders of magnitude
lower cost. This observation illuminates the crux of the value of
the approach: the LSS learns a kinetic model over limited MD
training data and is then used to generate vastly longer novel
atomistic trajectories that enable the observation of states and
events that are only sparsely sampled in the training data. We
now validate the thermodynamic, structural, and kinetic predic-
tions of the LSS.

Thermodynamics. The free energy profiles projected into the
slowest latent space coordinate F(y;)=—kpT In(g(y;)) show ex-
cellent correspondence between the MD and LSS (Fig. 3). The
free energy of the folded (y;~0) and unfolded (y;~0.9) basins
and transition barrier are in quantitative agreement with a root
mean squared error between the aligned profiles of 0.91 kzT. The
LSS profiles contain 10-fold lower statistical uncertainties than
the MD over the same number of frames due to the 100-fold
longer LSS data set enabled by their exceedingly low computa-
tional cost.

Structures. The MD and LSS molecular structures within the
folded basin (y; =~ 0) and metastable transition state (y; =~ 0.45)
possess a relative Co-RMSD of 0.29 nm and 0.37 nm, respectively.
Relative to the Trp-cage native state (PDB ID: 2JOF), the MD and
LSS folded configurations possess a Co-RMSD of 0.20 nm and
0.28 nm, respectively. The mean and standard deviation of the
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Fig. 3 Free energy profiles for the MD and LSS trajectories projected into
the slowest latent space coordinate y;. Shaded backgrounds represent
standard errors estimated by five-fold block averaging. The profiles agree
within a 0.91 kT root mean squared error. Ten representative structures
from the MD and LSS ensembles are sampled from the folded (y;~0),
unfolded (y;~0.9), and metastable (y;~0.45) regions.

time-averaged radii of gyration (R,) for the MD (0.874+0.16) nm
and LSS (0.87+0.13) nm trajectories are indistinguishable with
standard errors computed by five-fold block averaging. These re-
sults demonstrate that the LSS molecular structures are in excel-
lent accord with MD.

Kinetics. We compare the MD and LSS kinetics through the
autocorrelation times corresponding to the relaxation time scales
associated with the m=3 leading kinetic processes. The autocor-
relation C;(7) = (w;(t + 1)y (1)) /{wi(¢)y;(¢)) of each process y; is
computed as an average over the MD data by projecting the train-
ing trajectory into the slow latent space through the trained SRV,
whereas for the LSS data we use the latent space trajectory pro-
duced by the MDN. We fit the autocorrelation functions with a
decaying exponential C;(t) = exp(—7/t;) (cf. Eqn. 4) and report ;
as the implied relaxation time scale associated with y;(¢). Stan-
dard errors o, in t; are estimated by breaking the LSS trajectory
into K=5 contiguous blocks of equal length, computing ¥ over
each of the k=1...K blocks, and estimating o;, — assuming the
block size to be large enough to assume independent and uncor-
related estimates — from the standard deviation computed over
the K estimates {t*}K 62, The standard error provides a esti-
mate of the deviation of the estimated value of #; from the true
value. All three time scales are in excellent agreement and again
the LSS uncertainties are approximately 10-fold lower than the
MD (Table 1).

Table 1 Implied time scales of leading Trp-cage modes. Standard errors
estimated by five-fold block averaging.

Timescale MD (us) LSS (us)
51 3.00 £ 0.61 2.89 +£0.12
153 0.54 £ 0.37 0.43 £ 0.04
13 0.45+0.12 0.42 £ 0.01

We then employ time-lagged independent component analysis
(TICA) 46:63-69 1 determine whether the LSS trajectory possesses
the same slow (linear) subspace as the MD. We featurize the tra-

Chemical Science

View Article Online
DOI: 10.1039/D0SC03635H

jectories with pairwise Ca distances and perform TICA at a lag
time of 7=20 ns. Projection of the free energy surfaces into the
leading three MD TICA coordinates show that the leading kinetic
variance in the MD data is quite accurately reproduced by the LSS
(Fig. 4). The only substantive disagreement is absence in the LSS
projection of a small high-free energy metastable state at (TIC1
~ 0, TIC3 =~ —2.5) corresponding to configurations with Pro18
dihedral angles y ~ (—50)°. These configurations are only tran-
siently occupied due to rare Prol8 dihedral flips that occur only
twice during the 208 us MD trajectory and are not contained in
the m=3-dimensional latent space.

MD LSS

] 6 6
2 =
5 Bi
~ 4 43
) o
= 3 3¢
2 2%
-2 1 1%

0 0

2 6

6

1 s 5K
m 01 4 45
S] 30
F_q] 3 S
2 2g
-2 1 1€

-3 0 0

2 -2 0 2

TIC1 TIC1

Fig. 4 Free energy profiles of the MD and LSS trajectories projected into
the leading three MD TICA coordinates.

4 Conclusions

We have presented LSS as a method to learn efficient kinetic mod-
els by training three state-of-the-art deep learning networks over
MD training data and then using the trained model to generate
novel atomistic trajectories at six orders of magnitude lower cost.
The spirit of the approach is similar to MSM-based and equation-
free approaches that use limited MD training data to parameter-
ize highly-efficient kinetic models that can then be used to gener-
ate dynamical trajectories over vastly longer time scales than are
possible with conventional MD. In contrast to these approaches,
the absence of any discretization of the configurational space and
provisioning with a molecular decoder enables the LSS to pro-
duce continuous atomistic molecular trajectories. Importantly,
the probabilistic and generative nature of the approach means
that the generated molecular trajectories are novel and not sim-
ply a reproduction of the training data, and the statistics of these
trajectories accurately reproduce the structural, thermodynamic
and kinetic properties of the molecular system.

The dramatic reduction in the cost of trajectory generation
opens a host of valuable possibilities: vastly improved sampling of
configurational space and dynamical transitions enable estimates
of thermodynamic averages and kinetic rates with exceedingly
low statistical uncertainties; parameterization of kinetic models

Journal Name, [year], [vol.], 1-8 |5
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with modest training data enable the production of ultra-long
trajectories on commodity computing hardware; representation
of the kinetic model as the parameters of a trio of deep networks
enables efficient sharing of a “simulator in a box” that can then be
used for rapid on-demand trajectory generation. The properties
of the trained kinetic model - the dimensionality of the slow la-
tent space, the structural correspondence of the slow modes, and
the transition probabilities of the propagator — also provide fun-
damental insight and understanding of the physical properties of
the molecular system.

As with all data-driven approaches, the primary deficiency of
the LSS approach is that the resulting kinetic models are not nec-
essarily transferable to other conditions or systems and are sub-
ject to systematic errors due to approximations in the molecular
force fields and incomplete sampling of the relevant configura-
tional space in the training data. The latter issue means that
although the generated LSS trajectories are — similar to MSM-
based and equation-free approaches — largely interpolative. The
stochastic nature of the MDN propagator and generative nature
of the cWGAN generator means that we may anticipate local ex-
trapolations beyond the exact training configurations®. There
is no expectation, however, that the trained model will discover
new metastable states or kinetic transitions, and certainly not do
so with the correct thermodynamic weights or dynamical time
scales.

The present work has demonstrated LSS in a data-rich train-
ing regime where the MD training data comprehensively samples
configurational space. The next step is to establish an adaptive
sampling paradigm — similar to that in MSM construction?? and
some enhanced sampling techniques’%73 — to enable its appli-
cation in a data-poor regime. The adaptive sampling approach
interrogates the kinetic model to identify under-sampled states
and transitions that contribute most to uncertainties in the model
predictions (i.e., “known unknowns”) and initializes new MD sim-
ulations to collect additional training data in these regions. This
interleaving of MD training data collection and model retraining
can dramatically reduce the required quantity of training data?2.
Moreover, new simulations initialized in under-sampled regions
may also occasionally be expected to transition into new config-
urational states not present in the initial training data (i.e., “un-
known unknowns”)72. Iterating this process until convergence
can expand the range of the trained kinetic model to encompass
the relevant configurational space and minimize the cost of train-
ing data collection.

Finally, we also envisage applications of the LSS approach be-
yond molecular simulation to other fields of dynamical modeling
where stiff or multi-scale systems of ordinary or partial differ-
ential equations, or the presence of activated processes or rare
events, introduces a separation of time scales between the inte-
gration time step and events of interest. For example, there may
be profitable adaptations of the approach in dynamical modeling
within such fields as cosmology, ecology, immunology, epidemiol-
ogy, and climatology.
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Availability

Codes implementing the three deep networks required by the LSS
are available at https://github.com/hsidky/srv/tree/

newgen/.
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