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ABSTRACT

Solid-state nudged elastic band (SSNEB) methods can be used for finding solid-solid transition paths when solids are subjected to external
stress fields. However, previous SSNEB methods may lead to inaccurate barriers and deviated reaction paths for transitions under stress
and finite deformation due to an inaccurate evaluation of the external work contributions in enthalpies. In this paper, a finite deformation
nudged elastic band (FD-NEB) method is formulated for finding transition paths of solids under finite deformation. Applications of FD-NEB
to a phase transition of silicon from the diamond phase to the 3-tin phase under uniaxial compression are presented. The results are compared
with those from the generalized solid-state nudged elastic band method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113716

I. INTRODUCTION

The Nudged Elastic Band (NEB) method is a widely used tran-
sition state search method for finding transition paths and barri-
ers. The barriers can then be used to calculate chemical reaction or
transition rates within the transition state theory in the harmonic
approximation.’ The transition paths reveal atomic scale mecha-
nisms during transition. Given the initial and final states of a transi-
tion process, the NEB converges to a minimum energy path (MEP),
i.e., the most probable transition path. The NEB method has been
applied to study a wide range of problems such as materials phase
transitions,”” dislocation motions,"” fracture formations,’ surface
diffusion,” and so on.

The NEB method was first proposed in the mid-1990s*’ and
since then there have been a number of improvements. One impor-
tant improvement is to generalize the method for studying tran-
sitions of solid-state materials. The conventional NEB only takes
atomic positions as transition variables, while the lattice geome-
tries are not adjustable in the optimization process. Hence, it can-
not be directly applied to study solid-solid transitions where lattice
deformation and external stress fields also contribute to the MEP.
To this end, solid-state NEB methods were proposed to include
the influence of lattice deformation. Trinkle et al. coupled the

conventional NEB with a full relaxation on the lattice cell."’ By con-
trast, Caspersen and Carter used the NEB exclusively for the lattice
cell while always relaxing the atomic positions (a rapid-nuclear-
motion approximation).'' Noting that these two approaches are
only appropriate for mechanisms dominated by either atomic or
lattice changes, Sheppard et al. proposed a generalized solid-state
nudged elastic band (G-SSNEB) method,'” which treats the atomic
and lattice variables on equal footing so that transitions involv-
ing changes in any combination of degrees of freedom are prop-
erly described. Similar to the concept of G-SSNEB, Qian et al
developed a variable cell nudged elastic band (VC-NEB) method
in which force vectors are the derivatives of the enthalpy surface
under hydrostatic pressure with respect to both strain and atomic
positions. "

We note that, when a stressed solid undergoes finite deforma-
tion during transition, the barriers evaluated from these methods
may not be accurate depending on the choice of stress and defor-
mation measurements. In this paper, a finite deformation nudged
elastic band (FD-NEB) method is proposed based on the concept of
G-SSNEB for determining the MEP of solid-state materials under
finite deformation. The remainder of the paper is organized as fol-
lows. To provide readers a basic background, we first summarize
the principles of NEB and G-SSNEB methods and then discuss the
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limitations for studying finite deformation. After that, the FD-NEB
method is formulated by adding finite deformation variables to the
framework of the G-SSNEB method. Finally, an example on stress
dependent phase transitions of silicon from the diamond phase to
the S-tin phase is used to demonstrate the application of the FD-NEB
method.

1. NEB/G-SSNEB AND LIMITATIONS
A. NEB method

In a NEB calculation, a band is initially constructed by connect-
ing a number of intermediate states between the given initial and
final states with elastic springs. These intermediate states are usually
generated by a linear interpolation between the initial and the final
as an initial guess. The task of finding the MEP is then transferred to
minimizing the total energy of the elastic band. The “nudged” part
is to avoid the deviation of the elastic band from the MEP due to the
spring force when the path is curved, the so-called “corner cutting”
problem.

For a system containing N atoms, each state on the elastic band
has 3N degrees of freedom, so the configuration space of each state
is described by a 3N-dimension vector R = (r1, 12, ..., *n), where
r represents atomic positions. Note that none of the intermediate
states are in equilibrium, so they are subjected to the potential forces
coming from the gradient of the potential energy,

Foot = ~TV(R), (1)

which is a 3N-dimension force vector, evaluated directly from
atomistic calculations (either through empirical potentials or first-
principles methods). The superscript i represents ith state along the
elastic band. Just minimizing these forces would of course only move
the intermediate states into one of the local energy minima, and thus
would not help to find the MEP. Therefore, in order to keep the
intermediate states evenly spaced on the elastic band, spring forces
are applied between adjacent states, which are also 3N-dimension
force vectors. To avoid “corner cutting” and the sensitivity of select-
ing spring constant values for convergence, only certain components
of the forces are used in minimizing the band energy. Specifically, the
total force of an intermediate state i is

£ =Pl + Pl @
where f;0t| L s the potential force perpendicular to the elastic band
and f, ’Spr| | is the spring force parallel to the band. The tangent vector

of the elastic band at each state is defined as the geometry change
from its higher-energy neighbor.'* The total force calculated by
Eq. (2) is used to drive the elastic band to the MEP by force-based
optimization algorithms."” The optimization converges when the
total force is reduced to zero. Then, the exact transition state or sad-
dle point (the highest energy point along the MEP) can be obtained
with the climbing image method."®

B. Solid-state NEB method

The degrees of freedom in the NEB described above are usu-
ally atomic positions only, and the geometry of the supercell is
not adjustable during the search of the MEP. The solid-state NEB
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method generalizes the atomic configurational space by adding lat-
tice degrees of freedom. Consider a crystal lattice subjected to a
constant Cauchy stress tensor oapp. Due to lattice deformation, an
internal restoring stress o'y, is generated inside the lattice cell, which
can be evaluated directly from atomistic calculations. At equilib-
rium conditions, the applied stress 6.y, equals to the restoring stress
o.. However, the intermediate states on the elastic band are not in
equilibrium during the transition process, s0 6Ly # Gapp On these
states. Similar to the NEB, springs have to be prescribed between
neighboring states. The resultant spring stress is represented by oipr.
Then, the fotal stress acting on the lattice of the intermediate state
iis

¢ = (Gapp - 0'zcell)| Lt 0';pr| I (3)

In G-SSNEB, the atomic and cell Variables have_been treated on an
equal footing. To achieve this, Gapp — 0 and oy, are, respectively,
;Ot and fipr in Eq. (2) to form a
generalized force vector, which are then projected in the directions
perpendicular and parallel to the elastic band. To achieve better con-
vergence, a scaling factor is applied to the stresses to ensure their
magnitudes scale similarly as the atomic forces."”

The atomic positions and cell geometries are simultaneously
updated by the generalized force vector until the MEP is converged.
Finally, the transition barrier (IT*) is calculated by the enthalpy
difference between the initial and transition states,

vectorized and combined with

Hi(“app) = Vi(“aPp) — VoGapp :e(t)> 4

where V” is the potential energy difference between transition and
initial states, Vy is the volume of the initial lattice, and eV is the
strain tensor at the transition state with respect to the initial state.
The symbol “.” represents the inner product (i.e., a double contrac-
tion) of second order tensors. It should be noted that the strain
defined in G-SSNEB is different from the conventional strains used
in mechanics (see discussions in Sec. 1T A).

C. Limitation for finite deformation

In G-SSNEB, stress is measured by the Cauchy stress, which
is (force in current state)/(area in current state) by definition. As a
known fact in continuum mechanics, Cauchy stress is not a work
conjugate to any kind of strain, including the strain defined in G-
SSNEB. Therefore, the inner product in Eq. (4) is ill-defined and
does not yield correct work done by external stress under finite
deformation.

This can be simply illustrated by an example shown in Fig. 1,
where a cubic crystal undergoes phase transition when it is sub-
jected to a constant compressive Cauchy stress gap. Due to the
Poisson effect, the cross section area increases upon compression,
so the applied total force, calculated by o4pA, also increases dur-
ing transition. Hence, the work done by this varying force has
to be calculated by an integration given the force-displacement
relationship (which is usually not a prior knowledge for transi-
tion). The work calculated from Eq. (4), denoted by gappAc(l — o),
can only serve as an approximation for small deformation when
A~ Ap.

Indeed, in a laboratory, it is the applied force that is easily con-
trolled not the Cauchy stress due to the difficulty of tracking the
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FIG. 1. Phase transition of a cubic crystal under a constant compressive Cauchy
stress.

deformed area. Therefore, other types of stresses, such as the first
or second Piola-Kirchhoff (P-K) stress (detailed discussion on these
stresses is in Sec. I1I A) are also used in mechanics for finite defor-
mation. For example, the first P-K stress, denoted by a second order
tensor P, is the (force in current state)/(area in reference state).”
Based on this definition, when the applied force is constant, the stress
P also stays constant. In the previous example, if P is used as a con-
trol variable for searching the MEP, the work can then be correctly
calculated as PyppAo(l - lp).

Assuming that the applied Cauchy stress stays constant dur-
ing the transition process, is it possible to evaluate the correct work
with Cauchy stress? In this case, the power done by Cauchy stress
per unit volume is ¢ : € where € is the rate of a small strain tensor
(which is called the power conjugate of Cauchy stress);'’ therefore,
the work could be calculated by an integration of the power along
the deformation path. However, it is practically difficult to get an
integrable deformation path in NEB calculation. More importantly,
the work calculated by integration may become path dependent and
thus nonphysical. Therefore, it is challenging to get the exact value
of barriers under constant Cauchy stress due to the difficulty of eval-
uating correct external work, making it difficult to quantify the error
of G-SSNEB for transitions under finite deformation. There is a spe-
cial case, the hydrostatic compression, where the Cauchy stress (the
pressure p) is constant. In this case, the work is simply pAV where
AV is the volume change. It is worth pointing out that Eq. (4) only
provides a first-order approximation of the work term for small
deformations in this case. For example, when a cube with unit length
is hydrostatically compressed by a unit pressure into a cube with
a half of unit length, the correct work should be 7/8 while Eq. (4)
yields 3/2.

Depending on the scenarios, it is certainly of interest for
researchers to examine their previous results, when Cauchy stress
was used for barrier calculations in their studies. First of all, if
applied stress is zero, there is no work evaluation so the barrier cal-
culated by G-SSNEB is accurate. When applied stress is not zero,
one needs to check the change of the surface area on which the stress
is applied. If the change is small and negligible, the barriers calcu-
lated by G-SSNEB are acceptable. For example, during a transition
under pure shear deformation, if the lattice surface area varies lit-
tle, G-SSNEB results provide a good approximation even though the
lattice shape could be substantially sheared. In addition, as discussed
above, the calculations for hydrostatic compression cases (when the
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volume change between the initial and transition states is large) also
require examination if Eq. (4) was used.

When the first or second P-K stress is used for the SSNEB calcu-
lation, the lattice deformation should be measured with their work
conjugate pairs: deformation gradient or Green-Lagrangian strain.
It is important to note that the correction cannot be done by only
simply converting 6, and € into the stress and strain of the cor-
rect types at the evaluation of work, because the change of the stress
type affects the position of the transition state and MEP. Likewise,
one cannot simply take the images from G-SSNEB and recalculate
the enthalpy using P-K stress. Therefore, a different formulation on
the computation method is needed.

lll. FD-NEB ALGORITHM
A. Description of finite deformation

A crystal can be modeled by a lattice cell that is replicated
by periodic boundary conditions along three lattice vectors hy, hs,
and hs. Then, the cell geometry can be described by a cell matrix
H-= [hl h, hs]. Like in G-SSNEB, we can further confine h; and h;,
respectively, to axis-1 and plane 1-2, as shown in Fig. 2. In this way,
the rotational degrees of freedom of the lattice are eliminated and H
only includes 6 independent variables,

Hyy Hy Hsy
H=| 0 Hx» Hsx|. (5)
0 0 Hs

The change of the nonzero component Hj; can be considered as the
kinematics resulting from the corresponding o;; acting on the cell,
which is defined in Eq. (3). This feature has been used in G-SSNEB
for stress based cell optimization.

To describe finite deformation, a reference state has to be spec-
ified so that deformation and stress can be evaluated based on this
state. While there are no restrictions on choosing the reference state,
for convenience, we select the initial state under zero stress as the
reference state in FD-NEB calculations. The lattice vectors and cell
matrix of this reference state are represented by h3(« = 1,2,3) and
H°. For an arbitrary state i on the elastic band, the lattice vectors
and cell matrix are represented by h’, and H'. Under a homoge-
neous finite deformation, k% can be mapped to k., by a second order
deformation gradient tensor F,

' -
' -

h1 = 111, 0,0]"

FIG. 2. Schematic of the lattice cell used in FD-NEB calculation, defined by 3 lattice
vectors.
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h, = F'h, (6)

where F' represents a finite deformation mapping of state i. Using
the cell matrix, F can be written as

F = (H)H")" )

The work conjugate of F is the first P-K stress P, which is related to
the Cauchy stress by

P=JoF ', (8)

where J = detF is the Jacobian of the deformation gradient. The inner
product VoP:(F — I) provides the correct work done by a constant
stress P under finite deformation, where the identity tensor rep-
resents the undeformed state. Therefore, F and P can be taken as
control variables in FD-NEB. As discussed in Sec. II C, one advan-
tage of using P is that it can be directly controlled and measured in
some experiments when the applied force is known.

In continuum mechanics,””'* another commonly used work
conjugate pair is the second P-K stress tensor (S) and the Green-
Lagrangian strain tensor (E), which are defined by

S=J(F) 'o(F) " ©)
and
E= %[(F)TF—I]. (10)

The second P-K stress is conceptually defined by (force in refer-
ence state)/(area in reference state), a tensor entirely defined in the
reference configuration, so it does not have a direct physical inter-
pretation. However, the second P-K stress has mathematical advan-
tages for many theoretical formulations such as describing materi-
als constitutive behavior. Therefore, it could be useful if one wants
to integrate FD-NEB calculation to higher level thermodynamic
modeling methods in which the second P-K stress is needed.

It is noted that, in G-SSNEB, the strain is defined as € = HYH!
— I, where HY is for the deformed cell. Therefore, G-SSNEB actually
uses the deformation gradient (HdefH_ 1) instead of the conventional
strains to measure the deformation.

B. Add P-K stress to MEP search

In FD-NEB, the finite deformation variables defined above are
used for finding MEPs and computing transition barriers. There are
two possible ways to do this. The first way is to convert the restoring
stress (obtained from atomistic calculations, so the Cauchy stress)
into P-K stress, which can be combined with the prescribed P-K
stress and spring stress to form a new total P-K stress. Then, the cell
optimization can be done with this total P-K stress. Instead of this
way, we take another approach which requires minimum modifica-
tion to G-SSNEB. For each state on the elastic band, the prescribed
P-K stress is converted to a Cauchy stress based on Eq. (8) or (9). For
example, if the first P-K stress is used, the prescribed Cauchy stress
on state i is calculated as

1 i T

Gipp = 7Papp(F1) > (11)
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where Pypp is the applied first P-K stress. In this way, the cell opti-
mization is always controlled by the total Cauchy stress. The same
spring stress and scaling factors used in G-SSNEB can be applied
here.

After the MEP is obtained based on the modified stress, the
transition barrier is calculated as

1" (Papp) = V" (Papp) = VoPapp : (F(t) - F(O))> (12)

where V* is the potential energy difference between transition and
initial states, F) and F® are, respectively, the deformation gradients
of transition and initial states under stress Papp with respect to the
reference state (whose volume is V). To use the second P-K stress,
one just needs to replace Papp and F in Eq. (12), respectively, with
Sapp and E.

Before running FD-NEB, the lattice and atomic positions at
both the initial and final states have to be relaxed under the tar-
get stress Papp by using any force-based optimization such as the
damped dynamics algorithm. Similar to what is applied in FD-NEB,
P.pp is first converted to oapp. Then, the residual stress ¢ = oapp
— 0 together with the atomic forces can be gradually reduced to
zero by adjusting the structure geometry such that the lattice can be
optimized to the target stress Papp.

C. Implementation of FD-NEB

FD-NEB is implemented based on the Atomic Simulation Envi-
ronment (ASE), an open source Python package which has also been
used for G-SSNEB. The advantage of using ASE is that it provides an
interface to various external atomistic computational codes, such as
Vienna Ab initio Simulation Package (VASP) and LAMMPS. ASE
can create an “atom object” that has information about the potential
energy, atomic positions and forces, lattice geometry, and Cauchy
stress. These atomic attributes will be read by FD-NEB for calcu-
lating the total forces and stresses defined above. Finally, the calcu-
lated forces and stresses will be passed to a force-based optimization
algorithm for updating atomic positions and lattice vectors. The FD-
NEB computation code is developed based on the G-SSNEB code. It
is implemented based on an open source project Transition State
Library for ASE (TSASE).

IV. EXAMPLE: PHASE TRANSITION OF SILICON
UNDER STRESS

The phase transition of silicon is used to demonstrate the appli-
cation of FD-NEB for solid-solid transition under external stress
fields. Under ambient conditions, the most stable phase of Si is a dia-
mond structure. Under compressive stress, Si undergoes a first order
phase transition from the diamond structure (Si-I) to the metal-
lic B-tin structure (Si-II). With further increase of compression, Si
continuously exhibits many other different phases. Releasing loads
does not lead to a recovery of the initial Si-I phase but instead to
a series of metastable phases.'” Therefore, phase transition of Si is
a rather complicated process, and there are still many unknowns
despite decades of research on both experimental”’*” and theoret-
ical”’ ** sides. Particularly, we have not found any transition state
calculations on Si to show how external stress changes the phase
transition barriers.
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Here, we focus on the transition from Si-I to Si-II on a pris-
tine Si structure. Meanwhile, the transition under uniaxial com-
pression is considered. An important feature of this phase tran-
sition is that the Si lattice is deformed up to 35% (measured
between initial and transition states) and hence a finite deformation
problem.

The energy, interatomic force, and stress were evaluated from
the density functional theory (DFT). All the DFT calculations in this
study were performed using the plane-wave-based Vienna Ab initio
Simulation Package (VASP""*). Electron exchange and correlation
energies were calculated with the generalized gradient approxima-
tion using the Perdew-Burke-Ernzerhof (PBE) functional.”’ The
projector augmented wave (PAW) method’”’! was used to repre-
sent ionic cores, and the kinetic energy cutoff for the plane-wave
basis describing the valence electrons was set to 319 eV. A6 x 6 x 6
k-point mesh was used to sample the Brillouin zone.

The atomic structure of Si used in this study at different phases
is shown as the inserted images in Fig. 3(a). The supercell contains 8
atoms. At zero stress, there is no work evaluation in the MEP calcu-
lation, so FD-NEB yields the same results as G-SSNEB, as shown in
Fig. 3(a). The reaction coordinate primarily involves lattice degrees
of freedom. When a constant load is applied, the first P-K stress
stays constant throughout the transition process while the Cauchy

(@) Q
plcsove
€ .
g 0.3| transition 0— 1
E state et
5 0.2 Si-II
[0}
C
W 0.1
o ¢ Si-I
0 1
b) 0.1
( ) ____47.6mev
.0 N0 24.0 mev
5 ~
§ .04+ Cauchy stress first P-K |
2 stress
&
5 -0.2
[
w
-0.3
-0.4
0 Reaction Coordinates 1

FIG. 3. (a) Zero stress MEP. The inserted images show atomic structures of Si-I
(547 A x 547 A x 5.47 A), Si-ll (6.92 A x 6.92 A x 2.55 A), and transition state
(6.35 A x 6.35 A x 3.45 A). (b) Comparison of MEPs calculated by using Cauchy
stress (with G-SSNEB) and first P-K stress (with FD-NEB) at 10 GPa compressive
stress. MEPs are fitted with splines.
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FIG. 4. Barriers as a function of applied stress. The differences are calculated by

(Héauchy - H;K)/H;K'

stress varies. If one disregards this practical loading constrains, sec-
ond P-K stress can also be used legitimately. Although the Cauchy
stress leads to ill-defined and incorrect enthalpy evaluations, the cal-
culations with both the Cauchy and P-K stresses are conducted at
different stress levels for comparison. The typical MEP is shown
in Fig. 3(b) for a 10 GPa uniaxial stress. It is not surprising that
different stress representations not only lead to different barriers
but also different paths. This difference becomes more significant
with increasing applied stress, demonstrated by the variation of bar-
riers with stress in Fig. 4. It is noted that the barrier disappears
when the applied Cauchy stress is beyond 12 GPa, which means
that the transition could occur in this case without any thermal
activation.

The transition pathway calculated with the Cauchy stress is
qualitatively similar to the ones calculated with P-K stress in this
example. However, it may not be the case for other material systems.
If two or several (stress sensitive) competing transition mechanisms
exist simultaneously, the calculation conducted with the Cauchy
stress may lead to a different pathway due to the incorrect evaluation
of enthalpy.

V. SUMMARY

Solid-solid transitions are usually accompanied with finite lat-
tice deformation. Accurate evaluation of the transition barriers is
critical for computing kinetic rates of the transition. Under applied
stresses, the work done by the external load contributes significantly
to the barrier height and needs to be evaluated carefully. In this
paper, we emphasize that the previous solid-state NEB algorithm
may lead to inaccurate barriers and deviated reaction paths when
the Cauchy stress is used for work evaluations under finite defor-
mation. The FD-NEB method is formulated by introducing finite
deformation variables to the G-SSNEB method and implemented
based on facile modifications to the previous algorithm. An example
of silicon phase transition is presented to demonstrate the difference
brought by the new implementation.
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