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With an unprecedented combination of mechanical and electrical properties, polymer nanocomposites

have the potential to be widely used across multiple industries. Tailoring nanocomposites to meet

application specific requirements remains a challenging task, owing to the vast, mixed-variable design space

that includes composition (i.e. choice of polymer, nanoparticle, and surface modification) and

microstructures (i.e. dispersion and geometric arrangement of particles) of the nanocomposite material.

Modeling properties of the interphase, the region surrounding a nanoparticle, introduces additional

complexity to the design process and requires computationally expensive simulations. As a result, previous

attempts at designing polymer nanocomposites have focused on finding the optimal microstructure for only

a fixed combination of constituents. In this article, we propose a data centric design framework to

concurrently identify optimal composition and microstructure using mixed-variable Bayesian optimization.

This framework integrates experimental data with state-of-the-art techniques in interphase modeling,

microstructure characterization and reconstructions and machine learning. Latent variable Gaussian

processes (LVGPs) quantifies the lack-of-data uncertainty over the mixed-variable design space that consists

of qualitative and quantitative material design variables. The design of electrically insulating nanocomposites

is cast as a multicriteria optimization problem with the goal of maximizing dielectric breakdown strength

while minimizing dielectric permittivity and dielectric loss. Within tens of simulations, our method identifies

a diverse set of designs on the Pareto frontier indicating the tradeoff between dielectric properties. These

findings project data centric design, effectively integrating experimental data with simulations for Bayesian

Optimization, as an effective approach for design of engineered material systems.

1. Introduction

The launch of the Material Genome Initiative (MGI)1 has
revolutionized the way advanced material systems are
designed with targeted performance. MGI strives to elucidate
the processing-structure–property (PSP) relationships2 for
material design. A holistic design strategy for bi-directional
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Design, System, Application

While polymer nanocomposites display an unprecedented combination of mechanical and electrical properties, tailoring them to meet application specific
requirements remains a challenging task, owing to the vast, mixed variable design space that includes composition (i.e. choice of polymer, nanoparticle &
surface modification) and microstructures of nanocomposite material. Modelling properties of the interphase region introduces additional complexity to
the design process and requires computationally expensive simulations. This article demonstrates that a data centric design framework, where each step of
design process is guided by experimental and/or simulated data, can overcome these challenges. Using design of nanocomposites for electrical insulation
as an exemplar, we describe the integration of experimental data with sophisticated computational simulations for microstructure characterization,
interphase modelling, and structure–property prediction. A novel latent variable Gaussian process (LVGP) approach enables mixed variable Bayesian
optimization for concurrent composition and microstructure optimization to expedite the search for Pareto designs under multiple performance criteria.
While discussions are centered on nanocomposites, the concepts of data centric design, mixed variable Bayesian optimization and multicriteria design are
ubiquitous and immediately applicable to other material systems.
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traversal of PSP relationships requires us to address some
key issues – cost effective processing techniques,
microstructure representation and reconstruction,
dimensionality reduction and tractable optimization
techniques, to name a few. In the field of polymer
nanocomposites, goal-oriented design has proven to be a
difficult task due to several reasons.

First, limited understanding of complex
polymer(matrix)–nanoparticle(filler) interactions and their
influence on properties hinders the selection of the
optimal combination from the vast space of possible
combinations. While finite element analysis (FEA) models
have been developed to simulate structure–property
relationships for polymer nanocomposites,3–5 modeling
interphase behavior remains a prominent challenge.
Researchers have investigated interphase behaviors and
their origin both analytically and experimentally.5–7 Recent
experiments have demonstrated that the local polymer
properties significantly change near the polymer surface
via measurement of properties in model
nanocomposites.7,8 While direct measurement of
interphase properties in nanocomposites is challenging
experimentally, one method to calculate the interphase
properties is to inversely tune the parameters in micro-
scale model constitutive equations or finite elements
analysis using the bulk composite properties.3,9–11

However, this tuning procedure is very time-consuming
given the complexity of experimental data and the
simulation cost of FEA.

Second, the high dimensionality of nanocomposite
microstructures requires specialized techniques for
characterization of micrographs with reduced dimensionality
and establishing its relationship with processing conditions
and properties. To this end, computational microstructure
characterization and reconstruction (MCR)12 techniques
provide a quantitative representation of microstructures and
the ability to reconstruct realizations with desired features.
Among the existing methods, physical descriptors13,14 and
spectral density function (SDF)15–18 have been widely adopted
for design of material systems due to their physically
meaningful characterization, relative ease of reconstruction
and low dimensional representation. The selection of MCR
method for a material system and ascertaining associated
parameters is accomplished by analyzing the micrographs
obtained from different processing conditions.

Third, calibration of interphase parameters and selection
of MCR technique requires a database, where each
nanocomposite sample is labelled with processing conditions,
microstructure, and properties. NanoMine19,20 – a online
database with built-in data curation capabilities provides
access to several nanocomposites reported in the literature.
However, articles seldom report all the aforementioned labels,
which hinders the development of PSP relationships
necessary for targeted design of nanocomposites.

Fourth, the high computational cost of physics-based
property evaluation methods prohibits their direct usage

in the iterative design process that could require hundreds
of property evaluations. To alleviate this problem, Bayesian
optimization (BO)21,22 has emerged as a viable proposition
in material design.23–25 However, these applications of BO
involve only quantitative design variables in the form of
descriptors (aka features) known to influence material
properties; while mixed-variable problems containing both
qualitative and quantitative variables is common in
material design. Choice of constituents in any material
system can be treated as qualitative variables, while
microstructure descriptors, processing, and operating
parameters (temperature, RPM, wavelength etc.) are
quantitative variables. For example, nanocomposite design
involves concurrent optimization of qualitative (choice of
polymer, nanoparticle, surface modification) and
quantitative (microstructure descriptors) variables. The
latent variable Gaussian process (LVGP)26 provides an
intuitive way to predict material properties from mixed-
variable inputs and improves the performance of single
criterion BO as compared to existing GP methods.27

However, materials design requires mixed-variable
multicriteria BO since suitability for commercial
application relies heavily on multiple criteria.

These factors hinder the establishment of a
comprehensive methodology to fully incorporate processing,
structure, and property information for nanocomposite
materials into the design process. Combinations of
experimental, theoretical, and simulated investigations28–32

have improved our understanding of the influence of
materials and processing conditions on nanocomposite
morphology and properties. These studies are typically
guided by researcher's knowledge and intuition. In recent
years, there has been a push toward the “fourth paradigm” of
science33 which seeks to leverage the increasing data
availability to develop tools that can effectively extract
knowledge to guide a data-driven search of optimal materials.
However, previous attempts at data-driven nanocomposite
design have been limited to design of microstructure for a
prespecified combination of polymer, nanoparticle and
surface modification.34,35

This article presents a data-centric design framework and
the associated techniques to leverage existing data for
multicriteria nanocomposite design. The framework is
flexible to incorporate data generated by experiments as well
as simulations or machine learning to overcome existing
challenges in establishing structure–property relationships.
Nanocomposite design is cast as a mixed-variable
optimization problem to concurrently identify optimal
composition and microstructure. Central to the design
strategy is integration of LVGP, which enables mixed-variable
machine learning and uncertainty quantification, with
multicriteria BO to navigate complex, non-linear design space
and identify a diverse Pareto frontier. While discussions on
data and modeling tools are centered on polymer
nanocomposites, the concept of data centric design is generic
and applicable to any material system.
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2. Data-centric nanocomposite
design framework

Despite their attractive mechanical and electrical properties,
commercial application of polymer nanocomposites is
plagued by a lack of goal-oriented design methodology. In
this context, we present the data-centric design framework,
guided by the philosophy that integrating curated databases
with physics-based simulations and machine learning
expedites nanocomposite design.

Fig. 1 depicts the mixed-variable BO framework exemplified
by the design of insulating materials, indicating the various
modules involved and information flow between them. The
framework is initiated from a materials database (module 1)
comprising nanocomposite samples with varying
compositions, corresponding microstructures and
measurement of properties such as dielectric loss. Composition
is defined by the choices of polymer, nanoparticle and surface
modification. Microstructure descriptors influenced by
composition and processing conditions, e.g., nanoparticle
dispersion, are quantified from micrographs using the MCR
techniques. The identified range of microstructure descriptors
will be used as bounds in the design process.

The database also contains experimental measurements of
nanocomposite properties, which can be used to calibrate
simulation models (module 2) and train machine learning
models for situations where finite element simulations
(module 3) are too expensive or simulation models are
premature (module 4). For example, experimental
measurements of bulk nanocomposites data are used for
calibrating the nanoparticle–polymer interphase parameters
necessary to accurately predict properties via FEA. With
bounds for design variables identified and models to predict
dielectric properties, BO (module 5) expedites the search for
high-performing nanocomposites designs. The steps included
in the BO procedure can be summarized as follows:

I. A machine learning model is trained on existing data to
predict material properties of interest from design variables
and quantify prediction uncertainty.

II. An acquisition function uses the predictions and
associated uncertainties to select the design that promises
the largest improvement in properties.

III. Properties of the selected design are evaluated and
added to the dataset.

This process is repeated for a prespecified number of
iterations or until a global optimum (for single criterion
design)/Pareto front (for multicriteria design) is identified.
While GP are frequently used in BO, existing GP models were
developed for quantitative variables and the associated
correlation functions cannot accommodate qualitative inputs.
We overcome this limitation by leveraging the recently
developed LVGP† approach26,27 which implicitly converts

qualitative variables to continuous latent variables for
evaluating correlations. Since functional materials must
satisfy multiple performance criteria, we extend the LVGP
based BO for multicriteria optimizations.

In this article, we demonstrate the data-centric design
process for electrically insulating polymer nanocomposites,
with potential application in high voltage rotating
machines.36 Three major electrical properties to be optimized
are breakdown strength, dielectric permittivity and dielectric
loss. Breakdown strength (Ud) is the minimum voltage at
which current flows through an insulating material.
Dielectric permittivity (ε) characterizes the degree of electrical
polarization experienced by the material and dielectric loss
(tan δ) is related to the amount of heat generated under an
alternating electric field. High Ud, low ε and low tan δ are
ideal but tradeoffs between Ud vs. ε and ε vs. tan δ have been
observed.35,37

For the design of insulating materials, these properties are
known to be influenced by composition (choice of filler,
polymer, surface modification) and nanoparticle dispersion.
We consider nanocomposites with two types of polymers –

polystyrene (PS) and polymethylmethacrylate (PMMA)
containing silica nanoparticles with three choices of surface
modifications – chloro-, amino- and octyl-silanes.
Nanoparticle dispersion is quantified from transmission
electron microscopy (TEM) images using the spectral density
function (SDF).15–18 Dielectric permittivity ε and loss tan δ are
evaluated using FEA, where interphase properties are
characterized by a shift in the nanocomposite properties w.r.t
pure polymer properties and obtained by calibration (module
2) based on the bulk properties from experiments. In module
3 SDF based microstructure reconstruction38 is used to
generate 2D representative volume elements (RVEs) with
desired filler area fraction and dispersion for FEA. Module 4
is an empirical machine learning model employing Random
Forrest technique39 which is trained on experimental data
present in nanocomposite database to predict the breakdown
strength Ud as a function of both qualitative and quantitative
material design variables.

In module 5, the mixed-variable BO problem is performed
by leveraging the built-in uncertainty quantification of LVGP
models for performing single and multicriteria optimization
using the expected improvement40 and expected maximin
improvement41 acquisition functions respectively. At each
iteration, the LVGP model is updated with a new design
whose dielectric properties are evaluated using modules 3
and 4.

The design framework presented here has two significant
benefits. First, its modularity allows for selection,
replacement, and customization of methods within each
module without affecting the rest of the framework. For
example, the machine learning model used for Ud can be
replaced by a physics-based simulation model in the future.
The microstructure characterization & reconstruction method
can be selected based on the nature (nanoparticle or
nanotube) of the filler. Second, diverse applications can be

† An implementation of LVGP in R programming language is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=LVGP.
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explored using the same framework by modifying the
objectives. For example, we can design nanodielectrics by
maximizing ε and minimizing Ud, tan δ in Module 5 without
modifying the rest of the framework.

3. Implementing data centric design
framework

In the following subsections, we describe the techniques that
are used to support the implementation of the proposed
materials design framework, using the design of insulating
polymer composites as an example.

3.1 Nanocomposite database preparation (Module 1)

A database comprising nanocomposite samples labelled by
their composition, processing conditions, microstructures
and dielectric properties is essential for identifying design
variables and developing the structure–property relations. For
design of insulating nanocomposites, we developed a
database of samples with varied composition and
dispersions.

Silica nanoparticles (diameter 14 nm) in methyl ethyl
ketone were procured from Nissan Inc. The surface of the
nanoparticles was modified using three monofunctional
silane coupling agents: aminopropyledimethylethoxysilane
(amino), chloropropyledimethylethoxysilane (chloro) and
octyldimethylmethoxysilane (octyl), from Gelest Inc.
Polystyrene (PS) from Goodfellow Corporation and
polymethylmethacrylate (PMMA) from Scientific Polymer
Products Incorporated is used as the polymer. Surface
modification of the nanoparticles is carried out in
accordance to the procedure outlined by Natarajan et al.42

The choice of polymer and surface modification determine

nature of interactions between nanoparticle and polymer
matrix. Our analysis43 has shown that nanoparticle–polymer
compatibility, quantified by ratio of work of adhesion,
determines the likelihood of deagglomeration during
extrusion. Incompatible systems such as amino modified
silica in PMMA matrix experienced less deagglomeration as
compared to compatible systems.

Nanocomposites with 2 wt% filler loading were prepared
in a Thermo Haake Minilab, co-rotating twin screw extruder.
Mixing parameters such as screw speed and specific energy
input were varied to obtain a range of different dispersion
states. A JEOL 2010 transmission electron microscope (TEM)
was used to characterize the dispersion state of the
nanocomposites. The TEM images were binarized using the
Niblack algorithm.44,45 Dielectric spectroscopy measurements
was carried out for each nanocomposites sample prepared
for this study, details of which is available in ref. 43.

3.2 Microstructure characterization and reconstruction
(Modules 1 & 3)

MCR enables extraction and quantitative representation of
nanoparticle dispersion from TEM images of
nanocomposites. The extracted representation will serve as
microstructure parameters in PSP mapping and design
optimization. In this article, dispersion is extracted using
SDF, a frequency domain microstructure representation
capable of capturing spatial correlations of complex
heterogeneous materials. Mathematically, SDF ρ(k) can be
evaluated as:

ρk = |{}|2, (1)

Fig. 1 Data centric design framework for polymer nanocomposites.
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where  is the binarized microstructure, (.) is the Fourier
transform operator and k is the frequency vector. For
isotropic microstructures, SDF can be radially averaged about
zero frequency such that the frequency vector k is reduced to
a scalar k; making SDF a one-dimensional function of
frequency. Although it is known to be the Fourier transform
of a two-point autocorrelation function and hence
encapsulates equivalent morphological information, Yu
et al.18 have shown that SDF is a more convenient
representation to parametrize and design microstructures.
These features are also evident from the analysis of
nanocomposite microstructures in our database (module 1).
After binarizing TEM images using the Niblack algorithm45

and assuming isotropy, SDF was evaluated using eqn (1). We
noticed that the SDF of all microstructures approximately
follows an exponential distribution that can be parametrized
with two variables – shape parameter α and scale parameter
θ:

ρ kð Þ ¼ α × exp − k
θ

� �
: (2)

TEM images gathered from samples subjected to different
processing conditions were characterized using SDF and
parameters α and θ were ascertained by curve fitting using
eqn (2). The average R2 value for fitting was 0.90. Images with
exceptionally large nanoparticle agglomerates are not
considered for this analysis as they do not significantly

impact bulk nanocomposite response for loss or permittivity.
Fig. 2 shows three microstructures along with their one-
dimensional SDF and curve fitting. Filler dispersion increases
through Fig. 2(A–C) and is reflected in a slower decay rate of
SDF which can be quantified by θ. Each nanocomposite
sample is represented by the average values of α and θ

estimated from the analysis of TEM images. It was noticed
that α varies in a narrow interval [0.39, 1.84] and has very
little influence on the SDF profile. On the other hand, scale
parameter θ varies between [1.49, 46.85], changing the rate of
decay of SDF and consequently characterizing the dispersion
of the filler aggregates. Thus, we will consider θ as a
microstructure design variable and fix α to its mean value
1.1. The range of θ identified here will be used to define
bounds for these variables in design formulation.

Microstructure reconstruction is an integral part of
material design framework, since material properties must
be evaluated for the microstructure represented by design
variables at each iteration of optimization (module 3). In this
study, we are using the fast Fourier transform based
reconstruction method developed by Iyer et al.38

3.3 Interphase calibration and finite element analysis for
dielectric permittivity and loss (Modules 2 and 3)

Each objective function evaluation (module 3) is
accomplished via finite element (FE) computation of the
effective dielectric permittivity and loss of an RVE

Fig. 2 Three representative microstructures with varying dispersions and their SDF (blue curve) and corresponding curve fit using eqn (2) (red dashed
curve). The design variable θ's value for each image shown in inset. Increasing values of θ signifies more disperse nanoparticles in microstructures A to C.
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constructed using microstructure descriptor (dispersion) and
composition (polymer type and surface modification type)
recommended by BO. Incorporating interphase material
properties into each FE simulation corresponding to the
given combination of polymer type and surface modification
type is a necessary intermediate step between constructing an
RVE and computing its dielectric response.11 Generally, we
specify the permittivity and loss of the interphase in the form
of five shifting factors that are applied to the polymer
properties in the frequency domain to generate the complete
frequency domain interphase properties.3,46 Frequency
dependent dielectric properties, real (ε′(ω)) and imaginary (ε″
(ω)) permittivity, of a polymer are expressed as superposition
of independent Debye functions with different relaxation
time (τi) and intensity (Δεi)

ε′ ωð Þ ¼ ε∞ þ
Xn
i¼1

Δεi

1þ ωτið Þ2 ; (3)

ε″ ωð Þ ¼
Xn
i¼1

Δεiωτi

1þ ωτið Þ2 ; (4)

Shift factors C, Mα, Sα, Mβ, Sβ (α and β relaxation modelled
separately) scale polymer relaxation time (τi) and intensity
(Δεi) to generate interphase relaxation time (Sατi, Sβτi) and
interphase intensity (MαΔεi, MβΔεi). Superposition of Debye
functions, as shown below, gives frequency dependent
interphase properties

ε′int ωð Þ ¼ ε∞ þ C þMα

X
τi>τ0

Δεi

1þ ωSατið Þ2

þMβ

X
τi<τ0

Δεi

1þ ωSβτi
� �2 ; (5)

ε″int ωð Þ ¼ Mα

X
τi>τ0

ΔεiωSατi
1þ ωSατið Þ2 þMβ

X
τi<τ0

ΔεiωSβτi

1þ ωSβτi
� �2 ; (6)

where τ0, relaxation time corresponding to critical frequency,
is used to make distinction between low frequency (α) and
high frequency (β) regime. More details can be found in ref.
46 and 47.

In this study, we focus on the design problem at a specific
frequency target, 60 Hz. Therefore, the calibration problem
reduces from the task of finding five shifting factors to
finding two scale factors. These scale factors (SFreal, SFimag)
simply scale the polymer permittivity (ε′) and loss (ε″) at 60
Hz to generate the corresponding interphase properties
ε′int; ε″intð Þ at 60 Hz.

ε′int ω ¼ 60 Hzð Þ ¼ SFreal × ε′ ω ¼ 60 Hzð Þ; (7)

ε″int ω ¼ 60 Hzð Þ ¼ SFimag × ε″ ω ¼ 60 Hzð Þ; (8)

Calibration of these scale factors (module 2) is performed
to minimize difference between the dielectric spectroscopy
response of the FE simulation and that measured in

experiments at 60 Hz, for each of the six material
combinations that span the design space. This calibration
can be accomplished either with manual tuning by trial and
error iterations3,46 or using black-box optimization methods,
for instance, adaptive sampling using Bayesian approach,47

the former being used here. The trial and error calibration
approach begins with simulation of the two phase
microstructure (no interphase) to obtain the initial error with
respect to the composite values at 60 Hz. Based on this error,
an initial assumption on the scaling factors for the
interphase is made and used as input in a three phase model
(with interphase) and the new output properties are predicted
in FE. The values of the scale parameters are then varied
iteratively until the error between the FE predicted properties
for the three phase composite and the experimental data is
less than the target acceptable error. A similar manual
procedure can be followed, with some additional
considerations, while tuning frequency dependent interphase
description as explained in ref. 46.

The calibration protocol (module 2) is performed once for
each of the six possible material combinations. The RVE
construction for the FE simulation is based on a
microstructure constructed by averaging microstructure
descriptors across all processing conditions (30 TEM images
per processing condition) for that composition. Since a single
interphase property is expected for each material
combination, we select the most representative experimental
response (from data across multiple processing conditions)
for tuning the scale factors. These assumptions, while
necessarily containing approximations on material response,
are sufficient to demonstrate the nanocomposite design
process. Notably, this study does not attempt to calibrate the
interphase separately for each processing condition although
we acknowledge such calibration across processing
conditions or a predictive model of interphase properties
should be explored in the future, towards the physical
validation of a predicted design and can possibly be done
using data available in NanoMine (module 1). Table 1 lists
dielectric properties of pure polymers obtained in
spectroscopy experiments and scaled interphase properties
obtained by manual tuning for each material combination.
These calibrated interphase properties are then used in the
design process to assign appropriate interphase values for
each design iteration according to material composition.

Table 1 Dielectric properties (relative to vacuum permittivity of 8.85 ×
10−12 F m−1 (ref. 3)) of interphase and pure polymer at 60 Hz

Polymer – surface modification Permittivity Loss

PMMA 3.44 0.170
PS 2.02 0.001
PMMA-chloro 3.10 0.120
PS-chloro 6.00 0.010
PMMA-nitro 2.70 0.050
PS-nitro 4.80 0.023
PMMA-octyl 4.20 0.250
PS-octyl 5.70 0.035
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3.4 Machine learning for breakdown strength prediction
(Module 4)

Dielectric breakdown of nanocomposites is a complex
phenomenon and requires atomic scale simulations to
decode the complex interactions occurring in the interphase.
As current atomistic models are immature, we use a random
forest39 model trained on experimental data for rapid
evaluation of Ud as a function of material design variables
during optimization. Random forest technique was chosen
due to its ability to handle mixed-variables, superior
computational efficiency and minimal possibility of
overfitting. Training data comprised Ud measurement
(expressed in kV mm−1) of 51 samples at 60 Hz. Predictors
used for predicting Ud are the two qualitative (polymer type,
surface modification type) and one quantitative (θ) design
variables. A 10-fold cross validation study revealed that the
random forest model with 500 trees predicts Ud accurately
with a relative root mean square error of 0.38 and re-
substitution R2 = 0.92 (Fig. 3(A)). We observe the dataset to
form two clusters; a PMMA based low Ud cluster and a PS
based high Ud cluster. The strong influence of polymer is also
confirmed by its large predictor importance estimate derived
from the random forest model as shown in Fig. 3(B).

3.5 Latent variable GP modelling for mixed-variable problems
(Module 5)

One of the key components of BO is a statistical model that
predicts the material properties from design variables and
quantifies lack-of-data uncertainty. While Gaussian processes
(GP) are frequently used in BO, the standard GP methods
were developed under the premise that all input variables are
quantitative, which does not hold for concurrent composition
and microstructure design of nanocomposite with two
qualitative variables. We recently proposed using LVGP26,27

that maps the levels of the qualitative factor(s) to a set of

numerical values for some latent quantitative variable(s). As
illustrated in Fig. 4, our method is based on the belief that
any qualitative factor must correspond to some underlying
high-dimensional quantitative physical attributes that fully
characterize that factor. Estimating the numerical latent
variable values for the levels of the factor is essentially
finding a mapping from the underlying high-dimensional
space to the latent space, although we do not construct the
mapping explicitly. The latent variables do not have explicit
physical meanings, but they provide an inherent structure for
the levels of the factor(s), which leads to substantial insight
into the effects of the qualitative factors. For clarification, the
latent variables are only used internally inside LVGP models.
When LVGP models are used for predictions, they still take
mixed-variable inputs in the original mixed-variable input
spaces.

To describe the LVGP approach, the input variables are
denoted as w = (x, t), where x = (x1, x2,…,xp) represents p
quantitative variables and t = (t1, t2,…,tq) is the vector of q
qualitative variables. With i = 1, 2,…,q, the qualitative

variable ti has mi levels l1
ðiÞ
;l2;
ðiÞ
…;lmi

ðiÞn o
. The nanocomposite

design problem under study has one quantitative variable
(dispersion parameter θ), while the choice of polymer and
surface modification are modeled as two qualitative variables
with two (PMMA, PS) and three (octyl, chloro, amino) levels
respectively.

The output variable is denoted as y, and a set of data
points of input–output pairs are noted as {(w1, y1),…,(wN,
yN)}. In context of nanocomposites, the output variable can
be one of the three dielectric properties. Then, consider the
GP model

Y(·) = μ + G(·), (9)

Fig. 3 (A) Prediction accuracy of the random forest trained to predict breakdown strength. (B) Estimate of predictor importance deduced by
random forest model. The larger the importance estimate for a predictor, the stronger its influence on breakdown strength.
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where μ is the constant prior mean, and G(·) is a zero-mean
GP with covariance function k(·,·) = σ2r(·,·|φ). σ2 is the prior
variance of the GP, and r(·,·|φ) is the correlation function
parameterized with φ. The true model y(·) is regarded as a
realization of the GP Y(·). Once the form of the correlation
function r(·,·|φ) is specified, the hyperparameters (μ, σ2, φ)
can be estimated through maximum likelihood estimation
(MLE) or other principles such as minimizing cross-
validation errors. If the independent variables of the
correction function r(·,·|φ) are only the continuous variables
x, one can use the popular Gaussian correlation function

r x; x′jφð Þ ¼ exp −
Xp
i¼1

φi xi − x′ið Þ2
( )

; (10)

which quantifies the correlation between G(x) and G(x′) for
any input locations x = (x1,…, xp) and x′ ¼ x′1;…; x′p

� �
based

on their 2-norm distance scaled by φ. However, in the mixed-
variable problem, it is not straightforward to incorporate the
qualitative variable t in such a correlation function, as the
difference ti − t′i is undefined. The LVGP model handles this
by mapping the qualitative variables t to quantitative ones.

In LVGP models, the mi levels of the qualitative variable ti
are mapped to mi latent numerical vectors

z ið Þ l1
ðiÞ� �

;…; z ið Þ lmi

ðiÞ� �n o
of a latent variable vector z(i) ∈ d,

where d is the dimensionality of z(i). Modelers are free to
choose the value of d as a modeling parameter, although
setting d = 2 has been shown to be advisable for most
problems. The original mixed-type input variables w = (x, t)
are thus mapped to purely continuous variables (x, z(1)(t1),…,
(z(q))(tq)). A correlation function like eqn (10) can be
subsequently constructed as

r w;w′jφ;Zð Þ ¼ exp −
Xp
i¼1

φi xi − x′ið Þ2 −
Xq
i¼1

‖z ið Þ tið Þ − z ið Þ t′ið Þ‖22
( )

;

(11)

where Z is the collection of all the latent parameters

z 1ð Þ l1
1ð Þ

� �
;…; z 1ð Þ lm1

1ð Þ
� �

; z 2ð Þ l1
2ð Þ

� �
;…; z qð Þ l qð Þ

mq

� �n o
. With this

correlation structure, hyperparameters (μ, σ2, φ, Z) are
obtained by MLE as in standard GP modelling. More details
of this procedure and examples can be found in Zhang
et al.26

LVGP serves as the machine learning model predicting
the optimization objective(s) from the design variables i.e.
step I of the BO procedure described in section 2. We use
LVGP models with two-dimensional latent space
representation for all optimization results reported in
section 4. Uncertainty quantification provided by LVGP is
used accomplish Step II of the BO procedure as described
below.

3.6 Bayesian optimization (Module 5)

To meet the demand for electrical insulation, our goal is to
identify nanocomposites with high Ud, low ε and low tan δ.
The design space consists of three variables, two qualitative
and one quantitative, as summarized in Table 2. The choice
of polymer and surface modification are qualitative variables
with two (PS, PMMA) and three (octyl, chloro, amino) levels
respectively. Dispersion is a quantitative variable with bounds
identified using SDF in section 3.2. We present both single
and multicriteria BO strategies for this case study, using the
same set of design variables with different objective
formulations.

For single criterion BO, we formulate an objective
function that weighs all three normalized properties
(indicated by *) equally and adds/subtracts each property
depending on whether it needs to be minimized
(maximized):

Fig. 4 Illustration of high-dimensional underlying space of an arbitrary qualitative factor and the mapped latent space. The factor has levels l1, l2,
and l3, and is fully characterized by physical attributes v1, v2,…. The mapping g: v → z is implicitly constructed and found during the estimation of
the latent variable values {z(l1), z(l2), z(l3)}.

Table 2 Summary of design variables used in case study

Variable Type Range/levels

Polymer type (P) Qualitative {PMMA, PS}
Surface modification type (S) Qualitative {Chloro, octyl, amino}
Filler dispersion (θ) Quantitative [1.49, 46.85]
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min
s∈S;p∈P;m∈M tanδ*þε* −U*d

S : Chloro;Octyl;Aminof g
P : PMMA;PSf g

M :microstructures with 1:49≤ θ ≤ 46:85;

(12)

where objective is to be minimized over a design space
consisting of all possible combinations of surface
modification (S), polymers (P) and microstructures (M).
LVGP modeling is used to model the objective function
with design variables S, P & M as inputs. Expected
improvement40 is used as the acquisition function due to
its ability to balance exploration and exploitation of
design space, thus converging to optimum rapidly. Eqn
(12) can be modified by adding weights to each property
expressing designer's priority for optimizing one property
over the others. For example, maximizing Ud can be
prioritized by assigning a weight factor of 10 in the
objective function:

min
s∈S;p∈P;m∈M

tanδ*þ ε* − 10U*d (13)

where S, P and M are the same as in eqn (12). The
modification of objective function subsequently affects the
location of optimum in mixed-variable design space and
will be discussed in section 4.1.

Multicriteria optimization aims to find candidate designs
lying on the Pareto frontier48 – a characteristic boundary
comprising designs where no criteria can be improved
without the deterioration of others. The general multicriteria
optimization problem can be formulated as

min
w∈W

y1 wð Þ; y2 wð Þ;…; ys wð Þ� 	
; (14)

where w is the design input, W is the design space, s is the
number of criterion, and {y1(·), y2(·),…,ys(·)} is the set of the
criterions that share the same design inputs. To identify the
Pareto frontier for eqn (14) numerically, the criteria are
evaluated at a certain number of design inputs. Of all the
evaluated design points, one selects the set of design points
that are not dominated by any others. Here, a design point w
is not dominated by another one w′ if there exists at least
one i ∈ {1, 2,…,s} such that yi(w) < yi(w′). This set of design
points is regarded as a representation of the true Pareto set.

To implement the BO approach for the multicriteria
problem in eqn (14), we use the expected maximin
improvement (EMI)41 acquisition function described as
follows. Let the current Pareto set be composed of input set
PW = {w1, w2,…,wk} and output set PY = {y1, y2,…,yk}, where k
is the number of points in the Pareto set and yi = [y1(wi),
y2(wi),…,ys(wi)]

T, i = 1, 2,…,k. For any given new input w0, the
corresponding outputs are predicted by the LVGP models as
Y0(w0) = [Y1(w0), Y2(w0),…,Ys(w0)]

T, where Yj(w0), j = 1, 2,…,s is
a random variable. To quantify how much the random
outputs Y0(w0) would improve the current Pareto set, we use
the minimax improvement metric

I Y0 w0ð Þð Þ ¼ min
wi∈PW

max yj wið Þ −Yj w0ð Þ
n os

j¼1
∪ 0f g

� �
 �
; (15)

which is also a random variable. The larger the value of
I(Y0(w0)) is, the more improvement the output Y0(w0) is
considered to make.

With this formula, if the output Y0(w0) would be
dominated by at least one point in the current Pareto set,
then I(Y0(w0)) = 0, which means no improvement. Otherwise,
I(Y0(w0)) would be a positive value quantifying the
improvement. The value of I(Y0(w0)) is illustrated by a two-
criteria example case in Fig. 5, with one of the candidate
points being I(Y0) = 0 and the other two points with a positive
value I(Y0).

The criterion for choosing the new evaluation input w�
0 is

to maximize the expected value of improvement given in eqn
(15), i.e.,

w*0 ¼ argmax
w0∈W

E I Y0 w0ð Þð Þð Þ: (16)

When the original problem (eqn (14)) has mixed-variable
input space W, eqn (16) is a mixed-variable optimization
problem. To solve eqn (16), we use a zero-order optimization
strategy, where we generate a large set of candidate points in
the input space, and then choose the one with the largest
EMI as w*0. For evaluating the expectation in eqn (16), we use
Monte Carlo simulation, as the analytical formula for EMI is
too complex when s ≥ 3, which is the case for nanocomposite
design problem discussed here.

With three dielectric properties of interest, eqn (14) is
adapted for multicriteria nanocomposite design as follows:

min
s∈S;p∈P;m∈M tanδ; ε; −Ud;

S: Chloro;Octyl;Aminof g
P : PMMA;PSf g

M :microstructures with 1:49≤ θ ≤ 46:85;

(17)

where the variables have the same meaning as in eqn (12).
We use three independent LVGP models to predict the three
dielectric properties from design variables S, P and M.

Fig. 5 Values of the improvement metric I(Y0) in a sampling process
with two criteria.
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4. Optimization results and discussion

We performed 35 and 70 iterations of BO for single and
multicriteria formulations respectively, as specified by eqn
(12) and (17) respectively. Each BO is initiated with 30
random initial samples where the values of quantitative
variable {θ} are generated by Latin hypercube design and
qualitative variables, polymer and surface modification type
are sampled uniformly.

4.1 Results from single criterion Bayesian optimization

We performed ten replicates of single criterion BO and each
replicate is initiated with 30 random samples. We observed
that all replicates consistently converge to optimal design
with the objective value being −0.562, which corresponds to
the design {θ = 1.49, P = PS, S = octyl} with material
properties tan δ = 0.0018, ε = 2.211 and Ud = 127.67 kV mm−1.
Fig. 6(A) shows optimization history for one replicate and
depicts evolution of design during optimization. We observe
that octyl-modified silica nanoparticles in PS with low
dispersion is ideal to meet our requirements of high Ud, low
tan δ and ε. These findings are consistent with our previous

investigations that found tan δ and ε increase with
dispersion. Not surprisingly, the choice of polymer has a
significant impact on the objective as indicated by Fig. 6(B).
All PMMA based designs have large objective values
compared to PS based designs. As a consequence, only 16
PMMA designs were evaluated in total (15 of which were
provided in the dataset used for initialization) and BO
strongly favored evaluation of PS based designs. We also
notice that the objective value of optimum design (−0.562)
shows a 75.9% improvement over pure PS properties
(−0.319).

To demonstrate the efficacy of BO in identifying the
optimal designs for problems with limited computational
budget, we compare its performance against genetic
algorithm (GA).49 MATLAB's implementation of GA for
mixed integer optimization was used in this study and
applied to problem formulation defined by eqn (12). For a
fair comparison with BO, GA was configured to terminate
after 65 objective function evaluations (seven generations
with a population size of eight). Fig. 6(C) compares the
optimal designs identified by 10 replicates of GA versus
BO. We see that regardless of initial samples provided, BO

Fig. 6 (A) Optimization history for single criterion BO that converged to objective = −0.562 along with two designs evaluated in the process (B)
distribution of evaluated designs, grouped by polymer type. Dashed lines denote objective values for PS & PMMA polymers (C) comparison of ten
replicates of BO and GA for single criterion optimization.
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can consistently converge to the optimum design while
GA is highly susceptible to the initial population. This
shows that the BO strategy of utilizing LVGP model
uncertainty quantification to intelligently select new
designs for evaluation makes it robust and faster at
approaching global optimum compared with other
algorithms that do not use this information.

We also performed optimization using eqn (13) where
Ud is assigned a weight factor of 10. In this case, BO

converged to design {θ = 13.52, P = PS, S = amino} with
material properties tan δ = 0.0055, ε = 2.888 and Ud =
134.601 kV mm−1. In comparison to optimal design found
using eqn (12), this design has higher Ud at the expense
of higher tan δ and ε due to more disperse nanoparticles.
This exercise demonstrates that approaching a
multicriteria design problem using a single criterion
optimization technique is sensitive to formulation of
objective function.

Fig. 7 Visualization of latent variables for polymer and surface modification variables. Each row represents the latent variables estimated by the
LVGP model used for corresponding property.
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Fig. 8 Summary of 70 iterations of multicriteria Bayesian optimization. SC12 and SC13 denote optimal single criterion solutions identified from eqn
(12) and (13) respectively.

Fig. 9 Influence of design variables on dielectric properties of nanocomposites on Pareto front. Dashed lines indicate property of polymer only
system.
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4.2 Results from multicriteria Bayesian optimization (MBO)

70 iterations of MBO were performed starting with 30
random initial samples. Three independent LVGP models
are used to evaluate the three criteria. Fig. 7 displays
the 2D latent space for two categorical variables –

choices of polymer and surface modification for the
LVGP models used in multicriteria optimization. LVGP
constrains the first category (PMMA for polymers, octyl
for surface modification) to the origin and second
category (PS for polymer, chloro for surface
modification) to the z1 axis. The Euclidean distance
between categories is used to calculate the correlation
function as indicated in eqn (11).

Fig. 8 plots the random initial samples and 16 designs
that were identified on the Pareto front. A noticeable feature
in this plot is that the initial samples create two clusters
corresponding to two polymers under consideration. The
cluster located in the low Ud, high tan δ and ε region (top left
corner in Fig. 8) exclusively contains PMMA based samples
and is not favorable to meet the design criteria. This is
consistent with the findings in Fig. 6(B). On the other hand,
PS-based samples have higher Ud, lower tan δ and ε;
suggesting that they are better suited for electrical insulation
application compared to PMMA samples. This is also
reflected in the fact that designs evaluated by MBO are
predominantly PS based. Notice that the Pareto front
obtained by MBO shows significant improvement with regard
to random initial samples and thus underlines the capability
of uncertainty driven MBO to locate improved designs. The
two optimal designs identified by single criterion BO are
located in different regions of the Pareto front. While we had
to repeat single criterion BO with different objective
formulations, one simulation of MBO discovers these designs
automatically to present the modeler with a diverse set of
designs for consideration.

The influence of design variables on dielectric properties
via Fig. 9, which displays the properties of 16 Pareto front
identified by MBO. Compared to pure PS properties, PS based
nanocomposites have higher dielectric properties values.
These properties are also positively correlated to θ; they
increase as dispersion increases. However, the rate of
increases decreases beyond θ ∼ 15. While Chloro
modification is ideal for minimizing tan δ, it also contributes
to higher ε. On the other hand, designs with octyl and amino
surface modifications have lower ε but higher tan δ as
compared to those with Chloro surface modification. Thus,
we see a tradeoff between the three properties of interest.
Selecting one among the several Pareto front designs for
detailed analysis and testing depends on the modeler's
preference based on the application, how the material is
deployed, and device level performance.

Once the optimal design is identified, the corresponding
processing condition can be obtained by mapping the
optimized design variables to processing energy using the
PS relationship established in our previous work:44

Īfiller = f(matrix)sinh2(2WPF/WFF − 1)log(Eγ + 1) + C0, (18)

where Īfiller is the normalized interphase area, f(matrix) and
C0 are polymer dependent constants, WPF/WFF is the filler-
matrix compatibility descriptors and Eγ is the processing
energy descriptor that we seek. For illustration, we choose
the design (b) in Fig. 8, favoring high breakdown strength, as
our optimal solution. Microstructure reconstruction
corresponding to θ = 11.92 was performed and Īfiller was
found to be 0.189. For PS, f(matrix) and C0 are 0.00995 and
0.08798 respectively. For octyl-modified silica nanoparticles
dispersed in PS, WPF/WFF = 1.15. Plugging these values in eqn
(18) leads to Eγ = 32.77 J g−1. Thus, we can identify designs
satisfying application specific material properties and deduce
processing parameter necessary for manufacturing.

5. Conclusions

This article presented a data-centric mixed-variable Bayesian
optimization framework for design of a polymer
nanocomposite with both qualitative and quantitative
variables. Initiated by a nanocomposite database, our
framework integrated empirical data with state-of-the-art
techniques in interphase calibration, SDF based MCR for
dimensionality reduction, and FEA-based structure–property
simulations. Experimental property measurements are also
leveraged for training machine learning models to predict
material properties when theory based simulation models are
lacking. Going beyond traditional BO implementations for
quantitative design variables, mixed-variable modelling
enabled by LVGP models allowed us to parsimoniously
incorporate qualitative variables in a BO based design
process. This capability is critical to accomplish concurrent
composition and microstructure design which is inherently a
mixed-variable optimization problem. Since functional
materials must often meet multiple performance criteria, we
extended LVGP based BO to multicriteria optimization using
the expected maximin improvement acquisition function.

The efficacy of our data-centric framework was
demonstrated through a case study focused on insulating
nanocomposite design. The design formulation for single
and multicriteria BO was presented using two qualitative
(types of polymer and surface modification) and one
quantitative (filler dispersion) variables. Modifying the weight
assigned to breakdown strength demonstrated that single
criterion BO is sensitive to objective formulation and does
not have a unique solution when applied to multicriteria
problems. On the other hand, multicriteria BO provides a
variety of designs representing tradeoffs among dielectric
properties, allowing the modeler to select a solution based on
their preference. Processing energy required for fabrication
of optimal design was evaluated using processing to structure
mapping, to complete the bi-directional traversal across PSP
paradigms and demonstrate the material genome approach
to material design. While LVGP based BO is applicable to any
engineering design problem, the unique ability to facilitate
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concurrent optimization of composition and microstructure
w.r.t. one or more properties, makes it a powerful tool for
materials design.

In the future, developing accurate simulation models
based on molecular dynamics and density functional theory
is necessary for understanding and evaluating material
properties such as dielectric breakdown strength and
interphase behavior. Additionally, we are continuously
expanding NanoMine, the polymer nanocomposite data
repository, by introducing standardized data curation
workflows, data visualization capability and sophisticated
interphase calibration and FEA tools described in this article.
Several MCR methods including SDF are currently available
in NanoMine.‡ We envision NanoMine to drive the
widespread adoption of data centric design methodology in
the nanocomposite community.
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