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ABSTRACT The availability of whole genome sequencing data from multiple related populations creates
opportunities to test sophisticated population genetic models of convergent adaptation. Recent work by Lee
and Coop (2017) developed models to infer modes of convergent adaption at local genomic scales, providing
a rich framework for assessing how selection has acted across multiple populations at the tested locus. Here I
present, rdmc, an R package that builds on the existing software implementation of Lee and Coop (2017) that
prioritizes ease of use, portability, and scalability. I demonstrate installation and comprehensive overview of
the package’s current utilities.
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INTRODUCTION

Convergent adaptation occurs when natural selection indepen-
dently orchestrates the evolution of the same set of trait or traits
in multiple populations (Takuno et al. 2015; Tishkoff et al. 2007;
Yeaman et al. 2016; Losos 2011). Efforts by Lee and Coop (2017)
used coalescent theory to develop composite likelihood models
to infer which among several competing modes of convergent
adaptation best explains allele frequencies at a putatively selected
region. These models provide rich statistical information about the
inferred adaptive mutation, including its location along the region,
the strength of selection, migration rate, age, and its initial allele
frequency prior to selection.

To facilitate use of the convergent adaptation models of Lee and
Coop (2017), I developed rdmc, an R package implementing their
models that was designed to be easy to use, portable, and scal-
able. In this short manuscript, I provide an overview of the usage
and installation of the package, concluding with opportunities for
future improvements and expansion to the software.

MATERIALS AND METHODS

Lee and Coop (2017) described three distinct modes of convergent
adaption: independent mutations, where two or more popula-
tions independently gain the selected mutation; migration, where
the mutation occurs once and subsequently migrates to multiple
populations prior to fixation; and standing variation, where the
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mutation was present at low frequency in the ancestral population
prior to divergence. The models are composite likelihood-based,
where likelihood calculations are made over a grid of user-chosen
input parameters.

Data requirements

Using rdmc requires two kinds of allele frequency data. The first is
allele frequencies from unlinked neutral sites across all populations.
The second is allele frequencies from at least three populations
that have putatively undergone convergent adaptation at a specific
locus, and three or more populations that did not. Sample allele
frequencies can be estimated with a number of existing software
resources including VCFtools (Danecek et al. 2011) and ANGSD
(Korneliussen et al. 2014). Typically, the allele frequencies at sites
that have putatively undergone convergent adaptation will have
been identified prior to using rdmc. Numerous methods exists
for identifying such regions, such as finding overlapping selective
sweeps in multiple populations (Stetter et al. 2020), or by identi-
fying regions with elevated FST values between populations that
putatively did and did not experience convergent adaptation (Ho-
henlohe et al. 2010). Additionally, rdmc requires an estimate of
the per base recombination rate for the region or regions of inter-
est, and an estimate of the effective population size. Assuming
a mutation rate, effective population size can be estimated from
genetic diversity (Gillespie 2004), or inferred via multiple meth-
ods (Gutenkunst et al. 2010; Schiffels and Durbin 2014; Excoffier
and Foll 2011). Likewise, local recombination rates can be derived
from genetic maps (Swarts et al. 2014), or inferred (Chan et al. 2012;
McVean and Auton 2007; Adrion et al. 2020). At the time of writing,
all available models in rdmc assume a single effective population
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size for all populations. Depending on which modes of convergent
adaptation are being investigated, users must also provide vectors
of selection coefficients, migration rates, allele frequency ages, and
initial allele frequencies prior to selection. The exhaustive list of
required inputs and their definitions is given in Table 1.

Installation and dependencies
Installation of rdmc requires the r package devtools (Wickham et al.
2020b). With devtools available, the package can be installed and
made locally available with the following R commands:

devtools :: install_github(’silastittes/rdmc’)

library(rdmc)

In addition to devtools, rdmc depends on several other packages.
Namely, MASS (Venables and Ripley 2002), dplyr (Wickham et al.
2020a), tidyr (Wickham and Henry 2020), purrr (Henry and Wick-
ham 2019), magrittr (Bache and Wickham 2014), and rlang (Henry
and Wickham 2020). All dependencies are automatically installed
or updated when the installation command above is issued. I en-
courage users to update to the most recent version of R prior to
issuing any of the commands featured here.

Specifying parameters and input data
For convenience, the original simulated example data generated
by Lee and Coop (2017) are provided with the installation and can
be loaded with:

#load example data

data(neutral_freqs)

data(selected_freqs)

data(positions)

The example data consists of 10,000 simulated base pairs from
six populations, three of which (with indices 1,3,5) independently
mutated to the selected allele at position 0, along with three other
populations that evolved neutrally. Allele frequencies must be
be passed to rdmc as a matrix, where each row is a population
and each column is a locus. Users should note that the simulated
positions here take on values between zero and one, but that base
pair positions along the chromosomes of empirical data should not
be altered prior to fitting the models.

When fitting possible convergent adaptation models, several
quantities are reused regardless of which modes of convergent
adaptation are of interest. In efforts to minimize computation,
all parameters and quantities that are common across models are
stored in a single named list generated with the function parame-
ter_barge() that can be used when fitting any of the possible models.
The list of quantities is generated using:

#specify parameters and input data.

param_list <-

parameter_barge(

Ne = 10000,

rec = 0.005,

neutral_freqs = neutral_freqs ,

selected_freqs = selected_freqs ,

selected_pops = c(1, 3, 5),

positions = positions ,

n_sites = 10,

sample_sizes = rep(10, 6),

num_bins = 1000,

sels = c(

1e-4,

1e-3,

0.01,

seq (0.02, 0.14, by = 0.01),

seq (0.15, 0.3, by = 0.05) ,

seq(0.4, 0.6, by = 0.1)

),

times = c(0, 5, 25, 50, 100, 500, 1000, 1e4, 1e6),

gs = c(1 / (2 * 10000) , 10 ^ -(4:1)),

migs = c(10 ^ -(seq(5, 1, by = -2)), 0.5, 1),

sources = selected_pops ,

locus_name = "test_locus",

cholesky = TRUE

)

where all the arguments are fully described in Table 1. This
command also determines the grid of parameter values (namely
the arguments, sels, times, gs, migs, sources, and n_sites or positions)
that will be used in the likelihood calculations. Depending on
which modes of convergent adaptation are being studied, some of
these grid parameters may not be used for inferences. Users must
still input values for all of the grid parameters.

Naturally, features of the input data (the density and amount
of variation in the allele frequencies, the effective population size,
and the mutation and recombination rates), will impact the model
results, and will determine the resolution we have to infer the
model parameters. The number and density of points along the
grid of parameters also affect the resolution one has to make in-
ferences. However, computation time and memory usage may
become infeasible if these grids are made too large.

Fitting the models
Once the parameter barge is constructed, all models can be fit us-
ing this list of quantities as the only data input. All of the mode
types (neutral, independent mutations, standing variation with
and without a source population, migration, and mixed-modes)
are implemented using the same function, mode_cle(), passing the
desired mode as an argument to the function. The neutral, in-
dependent mutations, migration, and standing variation with a
source population modes can be fit, respectively with:

#fit composite likelihood models

neut_cle <- mode_cle(param_list , mode = "neutral")

ind_cle <- mode_cle(param_list , mode = "independent")

mig_cle <- mode_cle(param_list , mode = "migration")

sv_cle <- mode_cle(param_list , mode = "standing_source")

Models of mixed modes, where specified populations are mod-
eled under different modes, can be also implemented by modifying
the parameter list object in-place. Specifically, mixed modes are
constructed by adding the sets and modes arguments, which groups
the population indices according the vector of modes, and specifies
which modes are to be used. For example, to fit a model where
populations with indices 1 and 3 adapted via standing variation,
and population 5 gained the same mutation independently, and
another mixed-mode model where populations 1 and 3 adapted
via migration, and population 5 mutated independently:

#update barge to fit a mixed -mode model

param_list <-

update_mode(

barge = param_list ,

sets = list(c(1, 3), 5),

modes = c("standing_source", "independent"))

#fit mixed -mode model

multi_svind <- mode_cle(param_list , "multi")

#update to another mixed -mode

param_list <-

update_mode(

barge = param_list ,

sets = list(c(1, 3), 5),

modes = c("migration", "independent"))

#fit mixed -mode model

multi_migind <- mode_cle(param_list , "multi")

Regardless of which mode is used when calling mode_cle(), the
data frame returned will always contain the same 10 features: The
6 grid parameters generated by parameter_barge() (Table 1), the com-
posite likelihood score calculated over all possible combinations
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� Table 1 Description of the arguments used with the func-
tion parameter_barge().

Function argument Description
neutral_freqs Matrix of allele frequencies at putatively

neutral sites with dimensions, number of
populations x number of sites.

selected_freqs Matrix of allele frequencies at putatively
selected sites with dimensions, number of
populations x number of sites.

selected_pops Vector of indices for populations that expe-
rienced selection.

positions Vector of genomic positions for the selected
region.

n_sites Integer for the number of sites to propose as
the selected site. Sites are uniformly placed
along positions using seq(min(positions),
max(positions), length.out = n_sites). Must
be less than or equal to length(positions).
Cannot be used with sel_sites.

sel_sites Optional vector of sites to propose as se-
lected site. Useful if particular sites are sus-
pected to be under selection. Cannot be
used with n_sites.

sample_sizes Vector of sample sizes of length number
of populations. (i.e. twice the number of
diploid individuals sampled in each popu-
lation).

num_bins The number of bins in which to bin alleles a
given distance from the proposed selected
sites.

sets A list of population indices, where each
element in the list contains a vector of pop-
ulations with a given mode of convergence.
For example, if populations 2 and 6 share
a mode and population 3 has another, sets
= list(c(2,6), 3). Only required for fitting
models with mixed modes. Must be used
in conjunction with the "modes" argument.

modes Character vector of length sets defining
mode for each set of selected populations
("independent", "standing", and/or "migra-
tion"). Only required for fitting models
with mixed modes. More details about
the modes is available on help page for
mode_cle

sels Vector of proposed selection coefficients.
migs Vector of proposed migration rates (propor-

tion of individuals of migrant origin each
generation). Cannot be 0.

times Vector of proposed times in generations the
variant is standing in populations before se-
lection occurs and prior to migration from
source population.

gs Vector of proposed frequencies of the stand-
ing variant.

sources Vector of population indices to propose as
the source population of the beneficial al-
lele. Used for both the migration and stand-
ing variant with source models. Note: the
source must be one of the populations con-
tained in selected_pops.

Ne Effective population size (assumed equal
for all populations).

rec Per base recombination rate for the puta-
tively selected region.

locus_name String to name the locus. Helpful if mul-
tiple loci will be combined in subsequent
analyses. Defaults to "locus".

cholesky Logical to use cholesky factorization of co-
variance matrix. Used for both inverse and
determinant. Faster, but not guaranteed to
work for all data sets. TRUE by default. if
FALSE, ginv from MASS is used.

of the grid parameters, the indices of the selected populations,
and the names of the locus and mode that were used. To always
maintain the same number of columns, missing (NA) values are
added when variables are not used for a given mode type. As
will be shown below, this design facilitates combining results from
multiple models for downstream analyses.

RESULTS AND DISCUSSION

Benchmarking
The computation time and memory usage of rdmc increases with
the complexity of the model and size of the input data used. Com-
pared to the original code implemented by Lee and Coop (2017),
rdmc is slightly faster computationally, and requires substantially
less memory. However, the reduced time and memory allocation
for rdmc only occurs when Cholesky factorization is used to obtain
the inverse of the neutral and selected covariance matrices (Ta-
bles 1 and 2). Alternatively, the matrix inverses are obtained using
ginv() from the MASS package (Venables and Ripley 2002), which
requires a larger memory allocation, but will still approximate
the inverse even if the covariance matrix is not positive definite.
Users are therefore encouraged to use the default parameter_barge()
argument cholesky = TRUE unless Cholesky factorization fails.

The composite likelihood calculations are made over a grid of
input parameters chosen when constructing the parameter barge
(code shown above), hence, a denser grid will also have a consid-
erable impact on time and memory usage. The size of the example
data provided gives a realistic sense of memory and time usage for
potential empirical data. While most modern laptops are capable
of handling the required memory, many users will be interested in
genome-wide analysis, where the mode of convergence for many
separate regions are of interest. In these instances, cloud or high
performance computing environments will be more appropriate.
Making rdmc a portable and easy to install R package simplifies
running separate genomic regions as independent jobs in parallel
using workflows such as Snakemake (Köster and Rahmann 2012)
or Nextflow (Di Tommaso et al. 2017).

� Table 2 Benchmarking of three rdmc model types. Compu-
tation time, memory allocation, and the number of garbage col-
lections are reported for the original (dmc) code written by Lee
and Coop (2017), and the two matrix inversion methods avail-
able in rdmc (ginv and chol.). Median time was estimated using
5 iterations of each model. Execution time is reported in seconds.
Benchmarking was conducted using the R package, bench (Hes-
ter 2020). Code was executed in an interactive job on the UC
Davis Farm HPC (2.00GHz Intel Xeon CPU, 124GB RAM).

model version median
time

memory garbage
collections

ind. dmc 15.1 230.6MB 1
ind. chol. 12.9 109.2MB 3
ind. ginv 18.4 195.6MB 1
migration dmc 264.6 2.9GB 19
migration chol. 182.3 1.6GB 55
migration ginv 321.5 2.8GB 18
std.var dmc 780.2 8.6GB 52
std.var chol. 537.4 4.8GB 136
std.var ginv 898.5 8.6GB 49

Extracting useful quantities and visualization
Once the models of interest have finished, the common format of
the returned data frames allows all of the inferences to be combined
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into a single data frame, which simplifies creation of statistical and
graphical summaries, and storage:

#rdmc loads dplyr::bind_rows()

all_mods <-

bind_rows(

ind_cle ,

mig_cle ,

sv_cle ,

multi_svind ,

multi_migind

)

#save results to file

readr :: write_csv(neut_cle , "rdmc_neutral.csv")

readr :: write_csv(all_mods , "rdmc_modes.csv")

With a single data frame containing output from all tested mod-
els, there are many visualization and summary methods available
in the R ecosystem (R Core Team 2020). For example, the maxi-
mum composite likelihood estimate of the selection coefficient for
each model can be accessed with:

#rdmc loads dplyr::group_by() and magrittr ::%>%

all_mods %>%

group_by(model) %>%

filter(cle == max(cle)) %>%

select(selected_sites , sels , model)

#returns (model names edited here for space)

# A tibble: 4 x 3

# Groups: model [4]

selected_sites sels model

<dbl > <dbl > <chr >

1 0.0017 0.03 independent

2 0.0017 0.03 migration

3 0.0017 0.03 stdvar -stdvar -ind.

4 0.0017 0.03 mig.-mig.-ind.

Visualizing the composite likelihood values by genomic posi-
tion (relative to the neutral composite likelihood) (Figure 1) can be
done with:

library(ggplot2)

library(cowplot)

theme_set(theme_cowplot(font_size = 18))

neut <- unique(neut_cle$cle)

all_mods %>%

group_by(selected_sites , model) %>%

summarise(mcle = max(cle) - neut) %>%

ggplot(aes(selected_sites , mcle , colour = model)) +

geom_line() +

geom_point() +

xlab("Position") +

ylab("Composite␣likelihood") +

theme(legend.position = "n") +

scale_color_brewer(palette = "Set1")

Lastly, one can visualize the likelihood surface with respect to
specific parameter, such as selection (Figure 1):

#visualize likelihood surface wrt selection

all_mods %>%

group_by(sels , model) %>%

summarise(mcle = max(cle) - neut) %>%

ggplot(aes(sels , mcle , colour = model)) +

geom_line() +

geom_point() +

ylab("Composite␣likelihood") +

xlab("Selection␣coefficient") +

scale_color_brewer(palette = "Set1")

Concluding remarks and future developments

rdmc was made to facilitate the use of convergent adaptation mod-
els of Lee and Coop (2017). The package is easy to install, and
requires only a few lines of code to generate and analyze the out-
put. By making rdmc an R package, the code is highly portable
and has relatively few, highly maintained dependencies, making
it simpler to adopt to different computing systems. Because of its
portability and ease of use, rmdc also simplifies downstream tasks
which facilitates usage at large scales, such as modeling thousand
of genomic regions simultaneously on high performance comput-
ing resources.

Several elaborations to the currently available utilities in the
rdmc package could be addded. Since the methods developed
in Lee and Coop (2017), additional models have been developed,
including ones that can use putatively selected deletion variation,
strong selection, concurrent sweeps, and variation in population
size among populations (Oziolor et al. 2019). Lee and Coop (2017)
also introduced parametric bootstrapping to evaluate support for
alternative modes. While not currently incorporated into rdmc,
future development of the package would include functions to
perform bootstrapping. However, for the same reasons mentioned
above, rdmc should facilitate creation and computation of bootstrap
replicates in parallel.

WEB RESOURCES

The source of the package and workflow outlined above are avail-
able at https://github.com/silastittes/rdmc. The package is re-
leased under GNU General Public License (v3.0). All of the pre-
sented analyses were computed on a personal laptop (x86_64,
Apple) using R version 4.0.0 2020-04-24).

The original code associated with Lee and Coop (2017) is avail-
able https://github.com/kristinmlee/dmc.
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