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ABSTRACT: The nanoparticle (NP) design space allows for
variations in size, shape, composition, and chemical ordering.
In the search for low-energy structures, this results in an
extremely large search space which cannot be screened by brute
force methods. In this work, we develop a genetic algorithm to
predict stable bimetallic NPs of any size, shape, and metal
composition. Our method predicts nanostructures in agreement
with experimental trends and it captures the detailed chemical
ordering of an experimental 23,196-atom FePt NP with nearly
atom-by-atom accuracy. Our developed screening process is
extremely fast, allowing us to generate and analyze a database of
5454 low-energy bimetallic NPs. By identifying thermodynamically stable NPs, we rationalize bimetallic mixing at the
nanoscale and reveal metal-, size-, and temperature-dependent mixing behavior. Importantly, our method is applicable to any
bimetallic NP size, bridging the materials gap in nanoscale simulations, and guides experimentation in the lab by elucidating
stability, mixing, and detailed chemical ordering behavior of bimetallic NPs.
KEYWORDS: bimetallic nanoparticles, thermodynamic stability, mixing, phase diagram, genetic algorithm, machine learning,
density functional theory

Metal nanoparticles (NPs) are extremely versatile
materials, finding applications in a wide variety of
fields including catalysis, pigmentation, medicine,

and optics.1 Many of these applications take advantage of
structurally dependent properties, by tuning the NP
composition, chemical ordering, size, and shape. NP
composition (type and ratio of metal atoms) can govern
catalytic turnover frequencies,2 magnetic properties,3 and
electronic structure.4 Chemical ordering (metal atom distri-
bution within the NP) determines the makeup and location of
active catalytic sites,5 which can greatly affect adsorption
energy6,7 and the stability of the NP itself.8 NP size (number of
metal atoms in the NP) can control optical,9,10 magnetic,11

adsorption,12 and electronic13 properties. NP shape (the spatial
arrangement of atoms) can also control the formation of active
chemical sites12 and adsorption properties.7 It is the interplay
between size, shape, composition, and chemical ordering that
gives rise to NP characteristic properties, and controlling these
structural features tailors NPs to specific applications.
Structural control at the atomic level has been a long-

standing goal in the field of nanotechnology.14 Although
certain types of NPs can be produced with atomic level
precision,15−17 atom-by-atom control tends to be impractical
or impossible. As a result, the exact, atomically precise NP
structures present under experimental conditions are typically

not known. A lot of work has focused on predicting the
expected structures computationally by using ab initio methods
like density functional theory (DFT). These include global
optimization studies18,19 as well as metal segregation analyses,
which capture the preference of a heterometal dopant to either
mix into the bulk or segregate to the surface of a metal
nanomaterial (thus predicting core−shell properties).20−24

Despite the high accuracy of DFT, the method is only
computationally tractable for NPs up to ∼2 nm in diameter,
limiting it to a small subset of experimental systems. This is
due to the O(N3) scaling of DFT (for N basis functions),25

which makes it difficult to perform calculations for systems
larger than a few hundred atoms and impractical for systems
with thousands of atoms. The computational expense makes
DFT a poor choice for the high-throughput screening of NPs
(over all expected shapes and sizes). Therefore, approaches
that bypass DFT, albeit maintaining a similar accuracy without
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the computational constraints, are needed to predict
experimental NP structures.
To overcome the computational limitations of traditional

DFT, several methods have appeared in literature that rapidly
determine NP energetics, including density-functional-based
tight-binding methods,26 a semiempirical effective medium
theory (EMT),27 and cluster expansion models.8,28,29 Recently,
Yan et al. developed the bond centric (BC) model.30 As an
extension to the square-root bond-cutting (SRB) model,31 the
BC model accurately captures the cohesive energy (CE) and
thus the stability of NPs through a sum of half-bond
contributions. By capturing the coordination environment
and accounting for differences in bond-dissociation energy
between metal−metal pairs, the model can be applied to NPs
of any size, shape, and metal composition. Importantly, this
includes bimetallic NPs, which have a continuous interest as
tunable structures for use as catalysts,32 permanent magnets,33

and biosensors.34

Although the BC model overcomes the size constraints of
DFT, enabling screening over any size and shape, it is still no
match to simulate the vast configurational space exhibited by
bimetallic systems. Consider a bimetallic 55-atom NP with
arbitrary structure and chemical formula AxB55−x. At a given
composition, the number of possible chemical orderings is
expressed as 55-choose-x. For example, A21B34 would have
≈1014 different chemical orderings despite the constrained size
and shape. Although structural degeneracy from symmetry may
allow for a slight reduction in the number of possible
combinations, it does not reduce the search space by an
appreciable amount. In addition, in the case of a bimetallic
system with N atoms, where each atom can be one of the two
metals, there are up to 2N NPs of different composition. We
note that for smaller systems, symmetry can enable the
effective use of brute force methods to screen the configura-
tional space.35 However, the problem of sample space quickly
arises (as shown with our 55-atom example) and only
continues to increase with NP size.
Although bimetallic NPs exist within a massive configura-

tional space, not all chemical orderings are expected to exist
under experimental conditions. Instead, each of these many
possible NPs has an intrinsic thermodynamic preference (i.e.,
stability, measured by CE), and only the favorable ones are
expected to be produced in situ. As a result, only a subset of the
sample space determines the experimental distribution of
bimetallic NPs. Accurate NP structural prediction is imperative
for design toward specific applications since small changes in
structure sharply affects the physicochemical properties of NPs.
Herein, we develop a genetic algorithm (GA)parametrized
by the BC modelthat maximizes stability by modifying the
chemical ordering of bimetallic NPs of any size, shape, and
composition. Taking advantage of the GA’s computational
speed and efficient sampling of the configurational space, we
further validate the BC model by revealing strong agreement
between the predicted and experimental structure of a 23,196-
atom FePt NP.36 Furthermore, our optimization framework
enables us to directly compare the BC model to EMT.27

Scaling up our approach, we additionally determine low-energy
chemical orderings for 5454 NPs of varying sizes, shapes, and
compositions for the bimetallic alloys AgCu, AgAu, and AuCu.
The results are then collectively analyzed, enabling us to
connect composition and size with nanoscale mixing behavior.
Finally, we use our predictions to generate temperature-
dependent bimetallic phase diagrams as a function of NP size

and composition. Importantly, we introduce a high-throughput
screening methodology for the discovery of thermodynamically
stable bimetallic nanostructures, applicable to realistic systems,
bridging the materials gap between theory and experiment.

RESULTS AND DISCUSSION
We began by benchmarking our GA to assess how rapidly it
would find low-energy states. We selected AgCu as a model
system since it is known to favor a Cu-core Ag-shell
configuration.37 Utilizing our GA, we benchmarked an
icosahedral Ag1234Cu1635 NP to see if it would capture the
expected core−shell behavior, despite being presented with an
extremely large search space (≈10849 possibilities excluding
symmetry). Figure 1 reveals that the GA converges to the

experimentally expected core−shell NP. Furthermore, the GA
was able to screen the 1.45 × 106 NPs used for this benchmark
at a rate of 70,000 NPs/min on a single core of a typical
desktop computer. A random search, having less overhead
compared to the GA, screens NPs at a faster rate (≈400,000
NPs/min). However, the speed advantage of random search is
undermined by the absence of an optimization scheme, and the
approach does not efficiently sample the vast configuration
space. This results in a failure to (i) converge to the core−shell
mixing behavior expected by experiment and (ii) find chemical
orderings as low in energy as those found by the GA (Figure
1).
Consequently, there are clear differences in the surface

makeup of the GA-optimized NP and the best NP from
random search. Furthermore, although the GA converges to a
structure with some Cu atoms on the surface, this does not
stem from difficulties in finding the minimum. Rather, this
stems from the composition we chose: The subsurface and
core atoms are completely filled by Cu, and there is nowhere
else to place the remaining Cu atoms but on the surface.
To further gauge the accuracy and scalability of our

optimization framework, we next apply our GA to an
Fe6569Pt16627 NP for which the structure has been exper-

Figure 1. Benchmark of GA performance. We compare GA
optimization (blue) against random search (red) on an icosahedral
Ag1234Cu1635 NP. Darker solid lines and lighter shaded regions
represent the mean and standard deviation (STD) of a generation,
respectively. Dotted lines indicate the minimum CE found at a
given generation. The minimum CE structures are inlaid.
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imentally determined.36 Through the elemental radial dis-
tribution functions shown in Figure 2, we reveal that the GA-
optimized NP (Figure 2a) captures the Fe-rich surface and Pt-
rich core exhibited in the experimental NP (Figure 2b). It is
worth noting that using percent composition exaggerates the
composition differences in shells with fewer atoms. For
example, in the first shell (radius = 0−2.5 Å), there are five
atoms. Because one atom in this shell is different, this is
reflected by a 20% difference between this shell’s percentage
composition and experiment. The differences are less
exaggerated in shells with larger number of atoms. For
example, in a shell containing 500 atoms, a difference of one
atom would be reflected by just 0.2% in composition.
Additionally, we note that the BC model only considers

thermodynamic effects. Therefore, slight differences between
the GA-optimized and experimental NPs could be attributed to
kinetic effects within the large experimental system (e.g., cluster
growth, atomic diffusion, mass transfer, etc). More important
than the radial distribution is, arguably, the distribution of
atoms at the surface, where interfacial phenomena (e.g.,
adsorption and catalysis) occur. Hence, it is important that
the methodology accurately captures the surface composition.
We observe that the GA produces an excellent prediction of
the true experimental surface. The results are in stark contrast
to a random search approach (Figure 2c) where we generated
many random chemical orderings (sampling the same number
of NPs as the GA) and report the most favorable based on
their CE. The random NP search completely fails to capture
both the radial distribution as well as the surface composition
of the experimental NP. Overall, the results demonstrate the
success of the GA to effectively sample a massive configura-
tional space of experimental bimetallic NPs. Importantly, we
show that our methodology allows for the fast and accurate
screening of NPs which are far beyond the reach of DFT.
The screening of bimetallic NPs for their chemical ordering

is an emerging field. For example, in 2018 Larsen et al.8

demonstrated the use of mixed integer programming coupled
with a semiempirical EMT27 for the direct optimization of NP
chemical ordering. The authors investigated icosahedral 309-

atom AgAu NPs, determining the global ground-state chemical
ordering for all possible compositions. These EMT global
minima provide a data set to directly compare the BC model
and assess its effectiveness in capturing optimal mixing
behavior. Thus, we used our GA to optimize the same set of
NPs. We note that although the GA-optimized NPs are not
guaranteed to be global minima (due to the algorithm’s
stochastic nature), they are expected to be relatively close. We
next selected a subset of NPs from both data sets and
calculated the excess energy (EE) of each system using DFT.
The results, shown in Figure 3, reveal that for every case, our
GA-optimized NPs exhibit lower EE (i.e., higher thermody-
namic preference to mix) than the global minimum structures
from EMT. In addition, we observe differences in the
composition predicted to be the minimum in energy. The
GA predicts a minimum-energy composition close to 50/50

Figure 2. Comparison of different methodologies for identifying optimal chemical ordering. Shown are the structures of (a) the GA-derived
Fe6569Pt16627 NP to (b) the experimental structure reported by Yang et al.36 and (c) the lowest-energy NP identified via random search. Core-
centered radial distributions of Fe−Pt composition are represented as bar plots. The NP structures are inlaid.

Figure 3. Comparison of different methodologies of optimizing
chemical ordering. DFT is used to compare the EE of 309-atom
AgAu icosahedral NPs with chemical ordering optimized using
EMT (blue) and the BC model (red) at different compositions. X
indicates the composition predicted to be of minimum energy by
the respective method.
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Ag/Au, which shows a strong agreement with DFT
calculations. Conversely, EMT deviates from DFT in capturing
the correct EE trend and the most favorable composition. To
be more confident that the minimum-energy composition is
close to 50%, we additionally checked the optimized chemical
orderings predicted by our GA near this composition and
found that the overall EE trend holds (i.e., most favorable
mixing near 50/50 Ag/Au). We note that the results only
compare the capabilities of the BC model to EMT and do not
make any comparison to the two optimization approaches.
Nevertheless, our results prove that, unlike EMT, the BC
model correctly captures mixing behavior of AgAu NPs.
Based on our successful results with the predicted structure

of the Fe6569Pt23196 NP, and the comparison with a recent
method of screening NPs for their chemical ordering, we
investigated a large variety of bimetallic alloy systems. We
investigated the alloys AuCu, AgAu, and AgCu, chosen because
they have all been shown to be described well by the BC
model.30 Icosahedrons, cuboctahedrons, and elongated pen-
tagonal bipyramids (EPBs) of up to 3871 atoms (≈4 nm
diameter) were investigated. For systems with up to 309
atoms, all possible compositions were investigated. Above this
size, compositions were investigated in 10% increments as
closely as the chemical formula would allow.
We choose these particular morphologies because they

generally result in clusters containing so-called “magic
numbers” of atoms (13, 55, 147, etc). This is important in
the identification of low-energy NP structures, as NPs with
magic numbered sizes tend to be of high stability.38 In
addition, we note the synthetic accessibility of these
morphologies.39−41 The EPB structure is particularly relevant
to the study of nanowires, which have been demonstrated in
Ag to grow via a continued elongation of this morphology.41

Although irregular morphologies such as the Fe6569Pt16627 NP
(Figure 2) are oftentimes experimentally synthesized, we have
demonstrated that our methodology extends well to even these
systems as long as a reasonable bond network can be
estimated. Hence, our choice of these morphologies should
be sufficient to probe the limits of our methodology, as they
provide a wide range of possible coordination environments in
experimentally relevant nanostructures. Furthermore, their
“regular” shape lends itself well to the programmatic
generation of reasonable NP structures at any size.
Overall, we report minimum-energy configurations for 5454

different structures. We illustrate a small fraction of the range
of structures in Figure 4, where each NP shown is the most
stable chemical ordering and composition at the given size,
shape, and metal pair. Considering the number of energy
calculations required for the GA to converge, and the scaling
behavior of DFT (limited to systems of approximately
hundreds of metal atoms), this study is computationally
infeasible using first-principles methods. In addition, because
of the number of possible configurations each NP can assume
(ignoring symmetry, 2N per cluster of N atoms), an exhaustive
brute force search of our chosen chemical space is impossible
even with the computational speedup provided by the BC
model. It is only by combining a computationally inexpensive
method (the BC model) with a tried-and-tested optimization
technique (GA) that we have the capacity to determine NPs
toward global optimum chemical ordering within this
tremendous materials space. Based on our results shown in
Figure 4, we find an agreement between our algorithm’s
predictions and literature reports. For example, AgAu NPs

have been produced with both core−shell and homogeneously
mixed motifs, however the core−shell structure is metastable
due to the tendency for Ag and Au to alloy. Upon a heating−
cooling cycle, the thermodynamically stable, homogeneous-
mixed AgAu structure emerges,42 which is generally what our
model predicts as the most stable chemical ordering for AgAu
NPs of all shapes and sizes. In the case of AgCu, a DFT-based
global optimization observed Cu-core/Ag-shell NPs to be the
most favorable, which was attributed to the tendency for the
two to remain in (and undergo transformation to) an unmixed
state in the bulk.43 This core−shell behavior is exactly what we
observe with our GA algorithm. In fact, the most favorable
chemical ordering and composition for every shape and size
AgCu NP was found to be a perfect Ag-shell Cu-core structure.
Chemical ordering parameters as a function of homoatomic

and heteroatomic bond counts have been applied by other
groups as a useful tool to uncover mixing trends within
bimetallic systems.37,44,45 However, these parameters usually
reduce the bond counts down to a single value to find
correlations with structural properties of interest, like size or
composition. Instead of distilling the counts down to a single
parameter, we developed a visualization of NP mixing. The
plots shown in Figure 5 enable us to depict each bond type
along with NP size. As an example on creating the plots for a
bimetallic NP made of elements A and B, we calculate each
bond type (A−A, B−B, and A−B) as a fraction of the total
number of bonds (FA−A, FB−B, FA−B). Conveniently, each
fraction must be between 0 and 1, and all three must add up to
1 (eq 1).

+ + =− − −F F F 1A A B B A B (1)

Using our calculated bond fractions, we next build a scatter
plot of FA−A vs FB−B and rotate the axis such that the origin is at
the top of the graph. By leveraging the unity sum constraint of
eq 1, we can then draw horizontal lines of constant mixing (i.e.,
constant values of FA−B). The bottom-most line in the plot
would be a completely unmixed system with no heteroatomic
bonds, as shown in Figure 5a (labeled “FA−B = 0”). At the
origin would be a system with no bonds between the same
atom type (i.e., only heteroatomic bonds, labeled “FA−B = 1” in
Figure 5a). As an example, the NP represented as a star in
Figure 5a has a heteroatomic bond fraction of 0.4 due to the
homoatomic bond fractions (shown with thin dashed lines) of
0.2 and 0.4. Since this representation is normalized by total
bond counts, we can plot bimetallic NPs of any size, shape, and

Figure 4. Images of the lowest-energy composition and chemical
ordering observed for a sample of the NPs investigated, illustrating
the breadth of our study. NPs of size 13, 561, and 3871 atoms are
shown. Left three columns: AuCu. Center three columns: AgAu.
Right three columns: AgCu. Top row: Icosahedrons. Middle row:
Cuboctahedrons. Bottom row: EPBs.
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composition on a single plot, enabling global mixing trends to
emerge.
Our GA-optimized AuCu, AgAu, and AgCu NP results are

presented through bond composition plots in Figure 5b−d.
Figure 5c reveals that AgAu exhibits the highest degree of
mixing regardless of NP size, which strongly agrees with
experimental observations.37 AuCu systems yield similar results
(Figure 5b), although there is a slight influence by the NP size
on the mixing behavior, as depicted by the different heights
(degree of mixing) of the colored points (different NP sizes).
Interestingly, for the AgCu system, Figure 5d illustrates
unfavorable mixing behavior, which clearly contrasts with
results from the other d9 metal pairs. These conclusions agree
with experimental observations that AgCu NPs tend to
minimize the number of heteroatomic bonds via obtaining a
Cu/Ag core/shell morphology.43 Overall, we show that mixing
is diminished as the AgCu NPs grow in size, which suggests
that the degree of mixing can be tuned by controlling NP size.
These results can also be analyzed in reference to a “fully
random” system, where the bond fractions share equal
likelihood and are determined strictly from probability (see
Supporting Information Section 3). Using this system as a
reference (the dashed line in Figure 5), the results reveal that
AgAu NPs favor heteroatomic bonds, while AgCu NPs favor
homoatomic bonds.
We note that the trends demonstrated in Figure 5 only show

structural trends resulting from the low-energy structures our
GA identified within particular alloys and only show whether
an alloy is mixed to a lesser or greater degree than a perfectly
random alloy (the dashed line in Figure 5). In other words, just
because one alloy has a high degree of mixing in these plots
does not imply that it is more energetically favorable than
another alloy. Instead of rationalizing thermodynamics from

structure, we can rationalize structure from thermodynamics.
Thermodynamics can be leveraged to rationalize the structural
tendency for these materials to either alloy (AgAu and AuCu)
or core−shell (AgCu) NPs. In Table 1, we list the DFT-

calculated enthalpies of formation for bulk crystal cells of
AuCu, AgAu, and AgCu (for simplicity, in each case both
metals exist in a 1:1 ratio) reported by the Open Quantum
Materials Database (OQMD).46,47 In cases where the OQMD
reports multiple potential structures, we use the one with the
most-favorable enthalpy of formation. In our case, energetics
(and as a result, structure) at the nanoscale appear to reflect
the energetics of the bulk mixing behavior: The AgAu and
AuCu bulk alloys listed in Table 1 have favorable formation
energies. This indicates that mixing is energetically preferred in
bulk and is also what we observe at the nanoscale, and this
energetic preference causes the GA to give rise to the structural
trends (i.e., preference to mix) we see in Figure 5b,c.
In contrast, AgCu has an unfavorable formation energy in

bulk (Table 1), which implies segregation and decomposition
are energetically preferred at the bulk scale. This energetic
preference to unmix is reflected at the nanoscale (Figure 5d) in
the structure of the AgCu NPs, which tend to minimize the
formation of Ag−Cu bonds. Indeed, it is generally difficult to

Figure 5. Bond composition plots. (a) Guiding plot illustrating the theoretical mixing limits from no heteroatomic bonds (FA−B = 0) to no
homoatomic bonds (FA−B = 1), with a NP example having 40% heteroatomic bonds (star). Light gray lines represent constant mixing (i.e.,
constant fraction, F, of heteroatomic bonds). The black dashed line indicates a system with fully random mixing (see Supporting
Information Section 3 for its derivation). Points on the plots represent (b) AuCu, (c) AgAu, and (d) AgCu NPs at all sizes and compositions
studied (5454 total structures), demonstrating the chemical ordering that is thermodynamically preferred. NP sizes are color-coded by
number of total metal atoms (NAtoms).

Table 1. Bulk Enthalpies of Formation for AuCu, AgAu, and
AgCua

alloy OQMD entry number enthalpy of formation (eV/atom)

AuCu 31283 −0.053
AgAu 327735 −0.041
AgCu 307818 +0.111

aData collected from the OQMD46,47.
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mix Ag and Cu. In the solid phase, the maximum solubility of
Ag in Cu is only 4.9%, and the maximum solubility of Cu in Ag
is 14.5%.48 Alloys which have higher levels of dissolved Ag or
Cu are known to exist, but are metastable.48 Similarly, although
AgCu NPs have been produced, they exhibit issues with
stability, and spinodal decomposition has been generally
observed to occur above 210−230 °C.49,50 Despite this, the
presence of AgCu NPs experimentally reveals the importance
of assessing entropy: Their formation must be entropically
driven due to their positive enthalpy of formation.
We apply the regular solution approximation, assessing the

configurational entropy of mixing as defined in eq 4. We
assume that differences in vibrational entropy across NPs of a
given alloy will be small enough that they can be neglected,
which is supported by test calculations presented in Supporting
Information Tables S1 and S2. These results show that at
constant size, shape, and composition, changes in chemical
ordering result in minimal changes to the vibrational entropy
of a NP. Additionally, they show that changes in the
composition of these systems result in relatively small changes

to the vibrational entropy. Although more accurate methods of
approximating NP configurational entropy exist (e.g., using
Monte Carlo methods),51,52 they would add additional
computational complexity, prohibiting an analysis at the scale
presented (5454 NPs ranging from 13 to 3871 atoms).
Moreover, we note that the regular solution approximation is
well known to adequately describe NP mixing behavior and
phase trends.53−57 Thus, we use the regular solution
assumption (i.e., assume ideal mixing behavior for entropic
contributions) as a proof-of-concept to approximate compo-
sition and temperature effects of competing morphologies
within a given alloy.
By combining configurational entropy and enthalpy, we can

evaluate morphological preferences via the Gibbs free energy
of mixing. From here, we can construct a Boltzmann
population (see Computational Methods) of the three
morphologies. In Figure 6, we visualize the effect of size and
composition on the Boltzmann populations at 298 K. Three
morphologies are considered: icosahedral, cuboctahedral, and
EPB. There are of course many other morphologies for these

Figure 6. Morphology phase diagrams for the (a) AuCu, (b) AgAu, and (c) AgCu systems at 298 K. The right-hand column plots the
preferred morphological phase as a function of the number of atoms and composition of the system. The legend is given by the ternary
diagrams on the left-hand side, which show the percentage of the Boltzmann population taking on cuboctahedral, icosahedral, or EPB
morphology. White points, for example, indicate all three morphologies are equally favorable. In addition, the size of the points on the
ternary diagrams corresponds to NP size.
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systems beyond those we consider, hence this analysis is
primarily intended as a proof-of-concept of our GA’s utility in
the prediction of nanoscale phase diagrams. Nevertheless,
Figure 6 reveals important trends between metal pairs as well
as the three morphologies. For instance, although the
icosahedral morphology can be a significant fraction of the
population, it never seems to be the dominant phase. Instead,
whenever there is a dominant set of phases, it is typically the
cuboctahedron and EPB in competition with each other, which
is shown by the lack of red present in our phase diagrams in
Figure 6. Additionally, we observe strong size effects on
morphology preference within our results. In all three
morphologies, as size grows, a greater fraction of the atoms
is fully coordinated in the interior of the NP, and all atoms
would be fully coordinated at the limit of an infinitely large NP
(i.e., they would converge to the bulk). Since the only
difference in coordination between the three geometries occurs
at the surface, the three shapes are at their most dissimilar
when the ratio of surface atoms is maximized. In other words,
when comparing similarly sized systems, differences in energy
are at their greatest when the NPs are at their smallest. This is
especially prevalent in the AuCu system (Figure 6a), where
there is a heavy energetic preference toward EPB at small sizes,
gradually converging toward a mix of EPB, cuboctahedron, and
icosahedron at larger sizes. Overall, the population-based
results presented in Figure 6 provide a more nuanced view
than one which only considers the lowest-energy phase to be
the dominant one. Importantly, they show that both size and
composition play a central role in governing the NP
morphology distribution. Furthermore, we investigated the
effect of temperature on our Boltzmann populations and report
in the Supporting Information variations of Figure 6 calculated
at 77 K (Figure S1), 640 K (Figure S2), and 1073 K (Figure
S3). These results reveal a rich distribution of structures at
higher temperatures, and a stronger preference for specific
structures at low temperatures, highlighting the importance of
temperature on NP morphology distributions.

CONCLUSIONS
In summary, we have developed a methodology which blends
the recently developed BC model30 with machine learning
(GA) for the rapid prediction of stable bimetallic NPs of any
size, shape, and metal composition. We demonstrated the
speed and accuracy of our GA through a benchmark study
optimizing the chemical ordering of a 2869-atom icosahedral
AgCu NP. The benchmark shows the effectiveness of the GA
in capturing expected experimental trends compared to
random guess. We further demonstrated the accuracy and
applicability of our approach by predicting the chemical
ordering of an experimentally determined Fe6569Pt16627 NP,
achieving (i) an extremely close radial distribution of the
composition and (ii) an accurate prediction of the surface
composition of the NP (important for surface science
applications, such as catalysis). Using results from our
model, we compared the BC model to EMT27 and
demonstrated that the BC model has superior predictive
power toward capturing mixing behavior of bimetallic NPs
when compared to DFT calculations. Moreover, we predicted
the chemical ordering of 5454 bimetallic AuCu, AgAu, and
AgCu NPs in a variety of sizes, shapes, and compositions,
rationalizing experimental observations. The developed GA
code and NP database are available free of charge on GitHub.
We introduced a visualization scheme for mixing within a NP,

allowing the effective rationalization of mixing behavior
between a variety of bimetallic nanostructures (different NP
sizes and metal compositions). Using this visualization scheme,
we connect mixing behavior to NP size and demonstrate that
mixing in AgCu NPs decreases with NP size. In conjunction
with Boltzmann statistics, we developed temperature-depend-
ent size-composition phase diagrams for each of the three alloy
systems to study the distribution of three competing
morphological phases. By investigating a variety of alloy
compositions, sizes, and shapes, we demonstrate that our
optimization scheme accurately captures low-energy NPs
without needing to resort to DFT, with the benefit of being
applicable to a broad range of NP sizes (simulating tens of
thousands of atoms vs several hundred with DFT). Overall, our
methodology allows for the identification of stable bimetallic
NPs with atomically precise chemical ordering, which is
essential for enabling the simulation of realistic, experimentally
relevant NPs. As a result, our work advances the elucidation of
the bimetallic NP genome.

COMPUTATIONAL METHODS
Density Functional Theory. DFT calculations were performed

using CP2K58 implementing Quickstep.59 The PBE functional60 was
used (unrestricted Kohn−Sham approach) in conjunction with a
DZVP basis set,61 GTH pseduopotentials62 with a 500 Ry cutoff, and
an SCF convergence within 10−8 Ha. A box size of 30 × 30 × 30 Å
was applied for all systems. In addition, we utilized Fermi−Dirac
smearing with an electronic temperature of 300 K. For vibrational
frequency calculations, the Hessian was constructed via CP2K’s built-
in finite difference method with displacements of 0.02 Bohr.
Geometries were optimized until forces were below 4.5 × 10−4 Ha/
Bohr. In the case of 13- and 55-atom NPs, the energetic minimum
was confirmed via the lack of imaginary modes in the vibrational
analysis. In cases where imaginary vibrational frequencies were
observed, a tighter force convergence criterion of 10−4 Ha/Bohr was
used in conjunction with an SCF convergence criterion of 10−9 Ha. If
imaginary frequencies remained despite the enhanced convergence
criteria, the structure was not considered for further analysis. In all
cases, vibrational analysis was performed with an SCF cutoff of 10−9

Ha and 0.02 Bohr displacements for the central differencing scheme.
Thermodynamic Properties. CE is conceptually the average

bond energy holding a NP or crystal together. Thermodynamically,
this can be represented as the energy gained or lost in the separation
of all the atoms in a nanocluster to an infinite distance. This is
described in eq 2 as the difference in energy of the cluster (with
formula AxBy) and each separate atom (with single atoms denoted as
A1 and B1).

=
− +

+
E xE yE

x y
CE

( )
A B

A B A B

x y

x y 1 1

(2)

EE can be calculated from CE and provides a measure for which we
can quantify the tendency of two metals to mix in a NP: The more-
negative the EE, the more favorable the mixing.LNMMMMM \̂]]]]]= − + + ++ +

x
x y

y
x y

EE CE CE CEA B A Bx y x y x y (3)

Entropy of mixing (ΔSmixA Bx y
) is calculated per eq 4.63 We denote

fractional composition via Χ; for example, ΧA = 0.5 indicates 50% of
the atoms in the cluster are of type A, and kB is Boltzmann’s constant.

Δ = Χ Χ + Χ ΧS k( log log )mixA B A A B B Bx y (4)

In Supporting Information Section 1 (Connecting Excess Energy
with Enthalpy of Mixing), we show an approximation relating the EE
with the enthalpy of mixing (ΔHmix). This approximation allows us to
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determine the free energy of mixing (ΔGmix) for any of the AxBy
systems presented in this work (eq 5).

Δ = Δ − Δ ≈ − ΔG H T S T SEEmix mix mix mix (5)

Utilizing the free energy of mixing, we calculate the Boltzmann
distribution probabilities64 (pi) for the presence of the three different
shapes studied at a given size, composition, and temperature T (eq 6):

=
∑

Δ

=
Δp e

(e )i

G k T

j
G k T

/

1
3 /

i

j

mix B

mix B
(6)

Finally, bond fractions are calculated for a given structure as the
percentage of that type of bond relative to all bonds in the system
(e.g., CA−A represents the count of A−A bonds). The bond fraction F
is calculated via eq 7:

= + +−
−

− − −
F

C
C C CA A

A A

A A B B A B (7)

Genetic Algorithm. To determine the optimal chemical ordering
of a bimetallic NP at a given size, shape, and composition, we
implemented a GA using Python and C. The GA begins by creating
an initial population (generation 0) of 50 bimetallic NPs with random
chemical ordering. Each bimetallic NP is represented as a binary array,
where zeros correspond to the first atom type in the alphabetized
chemical formula (e.g., AgCu would represent Ag as 0, and Cu as 1).
As a consequence of these constraints, all arrays have the same length
and sum to the same value. To propagate to the next generation, the
population is first evaluated for stability using the BC model,30 given
in eq 8: L

N
MMMMMMM \

^
]]]]]]]∑ γ γ= +

n
CE 1 CE

CN CN

CE

CN CN
m

i
i

i i
j

j

j j
NP 1

bulk,

bulk,

bulk,

bulk, (8)

The BC model calculates the CE of a NP with n atoms by summing
contributions from all bonds m in the system. Half-bond
contributions between atoms i and j are calculated by their respective
coordination number (CN), bulk CN (CNbulk), bulk CE (CEbulk), and
a weight factor based on gas phase bond dissociation energies (γ).
The model was implemented in C, enabling rapid screening of
stability for virtually any size bimetallic NP.
Once CE values were calculated for each NP k, fitness scores f were

developed using eq 9, where |CENP|min is the minimum absolute value
of CE within the population.

= | | − | |f CE CEk kNP, NP min (9)

This scales the fitness scores such that the least stable NP in the
population has a fitness of 0. We next used the roulette wheel
selection algorithm65 to determine NP as parents for mating. The
probability of NP k (pk) being selected for mating was based on its
fitness score relative to the population, as given in eq 10:

= ∑ =
p

f
fk

k

i
n

i1 (10)

To ensure that concentration was constrained, we developed a
pairwise crossover algorithm to mate two parents into two NP
children (Figure 7).
The approach first finds all positions that do not match between

the parents (blue numbers in the parents of Figure 7). Next, a pair of
these positions are repeatedly chosen at random until each parent has
one of each atom type (0 and 1) selected within the pair (highlighted
boxes in Figure 7). The atom types over the selected pair are then
swapped between parents. The pair selection and swapping continue
until half of the different positions are exchanged. The process results
in two children NPs that exhibit chemical ordering traits from both
parents. After using the pairwise crossover algorithm to create 49
children (leaving one position in the population to pass on the current
most stable NP), 80% of the NPs are mutated. Mutations are achieved
by randomly swapping 1s and 0s within a NP. The number of swaps is

calculated using eq 11, where N0 and N1 are the number of atom type
0 and 1, respectively.

= ×n N N0.02 min( , )mutation swaps 0 1 (11)

Employing eq 11 provides a mutation scheme that maintains
genetic diversity within the NP population at any size and
concentration. After mutation, the fittest NP from the previous
population is added to the 49 NPs, completing the population and
propelling the GA to the next generation. The overall algorithm
continues until the most fit NP remains the same over 2000
generations. At this point, we apply a Metropolis−Hastings algorithm
on the most stable NP for 5000 steps in an effort to find a potentially
more stable structure with a similar chemical ordering. The resulting
minimum CE structure is returned as our GA-optimized NP. Code
which implements the GA is available on GitHub (https://github.
com/mpourmpakis/ce_expansion). The linked repository includes all
required functions for GA simulations as well as functions to visualize
and analyze the results. Also included is a python package to build and
interface with a SQL database of GA results.
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