

A Scalable FPGA Engine for Parallel Acceleration of Singular Value Decomposition

Abstract
Singular value decomposition (SVD) is a fundamental

computational kernel and tool wildly used in data analytics
such as least squares regression, principle components
analysis (PCA), and pattern recognition. While a number of
dedicated hardware processors have been proposed to
accelerate the computationally intensive SVD computation,
these designs suffer from poor flexibly and scalability, and/or
lack full consideration of compute and data movement
challenges associated with SVD. This paper presents a
scalable parallel SVD FPGA engine based on the Hestenes-
Jacobi method. We propose Maximum Data Sharing ordering
(MDS ordering), which maximizes on-chip data reuse, and
significantly reduce the expensive off-chip data movements
and bandwidth requirement. Our SVD engine can flexibly
decompose rectangular matrices with variable sizes, speed up
SVD computation by 80x to 300x when compared with
software SVD solvers such as the Eigen package running on
high-performance CPUs, and process much larger matrices
than the previously reported FPGA designs.

Keywords
Singular Value Decomposition, Hestenes-Jacobi Method,

FPGA, Hardware Acceleration, Data Reuse

1. Introduction
As a fundamental computational kernel and tool, Singular

Value Decomposition (SVD) has been widely adopted in data
analysis such as pattern recognition [14]. However, SVD is
computationally intensive and most SVD algorithms have a
complexity cubic in problem size, rendering SVD is a key
bottleneck, particularly for real-time data processing [15].

Among all SVD algorithms, the family of Jacobi methods is
most accurate and numerically stable. While the Jacobi
methods have a low theoretical convergence rate, they are
amenable to parallel processing and have been targeted
extensively for hardware acceleration. Two kinds of Jacobi
methods have been implemented for dedicated hardware SVD
processors. A systolic array approach based on the classic two-
sided Jacobi algorithm was proposed in [2]. Modified systolic
SVD architectures have been implemented on recent FPGAs
[3][13]. However, the two-sided Jacobi algorithm strictly
requires the input matrix to be square. Moreover, systolic
arrays suffer from poor scalability.

In comparison, the one-sided Hestenes-Jacobi method [1] is
more appealing for hardware acceleration, e.g. on GPU [4][5],
as it overcomes the key limitations of the two-sided Jacobi
algorithm, e.g. being applicable to general rectangular
matrices. Nevertheless, these designs fail to provide large
speedups over SVD solvers on general-purpose CPUs, which
may be attributed to frequent thread synchronizations as
discussed in [4]. On FPGA, a fixed-point design is
demonstrated in [7]. Its many limitations include low dynamic
range, limited on-chip, and small problem scale with the
maximum demonstrated matrix size of 32 ൈ 128. [8] presents
an FPGA architecture that only computes the singular values
without singular vectors for relatively large matrices from

100 ൈ 100 to 2𝑘 ൈ 2𝑘. The key issue here is that it does not
explore on-chip data reuse, leading to severe performance
degradations once the on-chip cache is used up. While
bandwidth and data reuse have been studied under a different
context of distributed systems [9], these issues have been
rarely focused on in recent SVD FPGA processors.

We present a scalable parallel SVD FPGA engine based on
the Hestenes-Jacobi method. Unlike the existing FPGA SVD
processors, we present an in-depth analysis of data reuse
opportunities and propose a new data ordering scheme
maximizing on-chip data reuse, and significantly reducing the
expensive off-chip data movements and bandwidth
requirement by 2𝑘 , where 𝑘 is the number of parallel
processing components. Furthermore, we explore not only the
common column-based parallel processing but also the
additional opportunity from row-based parallel processing,
further improving throughout and relaxing the need for on-
chip caching. Our FPGA architecture and SVD engine can
flexibly decompose rectangular matrices with variable sizes,
speed up SVD computation by up to two orders of magnitude
compared with software SVD solvers such as the Eigen
package running on high-performance CPUs, and process
much larger matrices than previously reported FPGA designs.

2. Background

2.1 Singular Value Decomposition (SVD)
SVD factorizes a given 𝑚 ൈ 𝑛 𝑨௠ൈ௡ matrix into:
 𝑨௠ൈ௡ ൌ 𝑼௠ൈ௡𝚺௡ൈ௡𝑽௡ൈ௡

𝑻 (1)
where both 𝑼 and 𝑽 are unitary matrices and 𝚺 is a diagonal

matrix. The diagonal elements of 𝚺 (𝜎ଵ, 𝜎ଶ ⋯ 𝜎௡) are called the
singular values of 𝑨.

2.2 Hestenes-Jacobi Algorithm
The Hestenes-Jacobi method rewrites SVD as:
 𝑩 ൌ 𝑨𝑽 ൌ 𝑼𝚺 (2)
Thus, the decomposition of 𝑨 is equivalent to applying a

right-hand side unitary transformation and orthogonalizing the
matrix. Since B is orthogonal, the right-hand side
transformation 𝑽 can be split into a series of iterative
orthogonal transformation as:

 𝑽 ൌ 𝑱ଵ𝑱ଶ𝑱ଷ𝑱ସ ⋯

where: 𝐽௣,௤ ൌ

 𝑝 𝑞

𝑝

𝑞

⎣
⎢
⎢
⎡
1 ⋯ 0

⋮
 𝑐 ⋯ െ𝑠
 ⋮ ⋱ ⋮
 𝑠 ⋯ 𝑐

⋮

0 ⋯ 1⎦
⎥
⎥
⎤

௡ൈ௡

 (3)

In each 𝑱 matrix, by choosing the correct rotation

parameters, two columns in 𝑨 can be orthogonalized:

𝑨௣
ᇱ , 𝑨௤

ᇱ ൌ ሾ𝑨௣, 𝑨௤ሿ ∙ ቂ
𝑐 െ𝑠
𝑠 𝑐 ቃ , 𝑤ℎ𝑒𝑟𝑒 𝑨௣

ᇱ ∙ 𝑨௤
ᇱ ൌ 𝟎 (4)

Rotation parameters can be calculated with eq. (5) in [10]:

 𝑙𝑒𝑡 𝑄 ൌ 𝑛௣ െ 𝑛௤, 𝑃 ൌ 2𝑐𝑜𝑣, 𝑉 ൌ ඥ𝑄ଶ ൅ 𝑃ଶ

 𝑖𝑓 𝑄 ൒ 0: 𝑐 ൌ ට௏ାொ

ଶ௏
, 𝑠 ൌ

௉

ඥଶ௏ሺ௏ାொሻ

 𝑖𝑓 𝑄 ൏ 0: 𝑠 ൌ ට௏ିொ

ଶ௏
, 𝑐 ൌ

௉

ඥଶ௏ሺ௏ିொሻ
 (5)

The process of orthogonalizing all possible column
combinations is called a sweep. When convergence is reached
after certain sweeps, i.e. all columns are closely orthogonal to
each other, 𝚺 and 𝑼 matrix can be extracted by:

 𝚺 ൌ √𝑩𝑻𝑩, 𝑼 ൌ 𝑩/𝚺 (6)
Without losing generality, we assume all matrices have a

size of 𝑚 ൈ 𝑛, 𝑚 ൐ 𝑛. The original Hestenes-Jacobi algorithm
without data ordering optimization is shown in algorithm 1:

3. Data Ordering

3.1 Data Reuse in Hestenes-Jacobi Architecture
At each sweep in the Hestenes-Jacobi algorithm, different

column pairs can be processed simultaneously with multiple
processing units (PU). In existing architectures, the PU is fully
pipelined to maximize throughput [8] while the number of
PUs implementable is severely limited by the available
bandwidth as shown in Fig. 1. Data caching and reuse shall be
exploited to minimize the frequent data movements between
the on-chip processing units and off-chip memory. To exploit
the parallel computation and data reuse, data ordering is
introduced to determine which two columns of the matrix shall
be processed by each PU at a given processing step to allow
column-based parallel processing.

Fig. 1: General Hestenes-Jacobi architecture.

3.2 Existing Round-Robin and Ring Ordering
Round-robin ordering and ring ordering are two popular

orderings adopted in many Hestenes-Jacobi applications [9].
In this paper, we adopt these two data ordering as the basis for
comparison. With the input matrix with 8 columns and 2 PUs,
an example of round-robin ordering and ring ordering is
shown in Fig. 2 and Fig. 3, respectively.

Fig. 2: Round-robin ordering: “a,b” present the indexes of

the two columns processed by a PU at a given step.

Round-robin ordering is easy to generate but there is no

sharing of column data between different PUs or steps. Ring
ordering can reuse data within the same PU by caching the
column orthogonalized in the previous step. But the data reuse
between different PUs requires complex interconnection
network on-chip.

Fig. 3: Ring ordering: columns in red are cached and reused

in the same PU at the next step.

4. Proposed Data Ordering and SVD Architecture

4.1 Proposed Maximum Data Sharing Ordering
We make two key observations on the possible data reuse in

Jacobi like algorithms by caching processed columns in local
PU memory:

a. Column processed in the previous step may be reused
by the same PU in the next step.

b. Column processed in the precious step can be reused
by another PU in the next step.

Unlike the existing orderings, we propose a new Maximum
Data Sharing (MDS) ordering simultaneously exploring the
above two opportunities, as shown in Algorithm 2.
Furthermore, the MDS ordering not only maximizes the data
reuse between on-chip PUs, but also simplifies the required
architecture, i.e. the communication network between PUs.
We show an example of this ordering for a matrix with 8
columns and 4 PUs in Fig. 4.

4.2 Proposed Linearly-Connected (LC) PU Array
Important to note that the data sharing between different

PUs in the proposed ordering has a fixed pattern with no
requirement for a complex interconnection network. To take
advantage of this property, a linearly-connected (LC) PU array
architecture is designed as shown in Fig. 5.

Fig. 4: Proposed data ordering. Columns with a red index

are reused by the same PU while ones with a blue index are
reused by another PU in the following step.

Fig. 5: Proposed linearly-connected (LC) PU array.

In each PU, two local memories cache the two columns to
be orthogonalized and are configured as either private or
shared during the process. The memory in which any column
to be reused by the same PU in the next step resides is

configured as private. Otherwise, the memory is configured as
shared. By the end of each step when the columns in each PU
have been updated, the column from the private memory (ones
with red indices in Fig. 4) will be written back to the same
memory while the column from the shared memory (ones with
blue indices in Fig. 4) will be sent to the shared memory of the
“next” PU. In the next step, the memories of each PU will be
configured again and the same process continues.

As an example, data sharing in MDS ordering for a matrix
with 8 columns in an array of two PUs, e.g. the first two steps
of PU1 and PU2 in Fig. 4, is shown in Fig. 6.

Fig. 6: Data sharing in the proposed LC PU array.

In general, assume that matrix has n columns and the PU
array has a size of k. In our MDS ordering, during a sweep,
there will be

௡

ଶ௞
 steps where the columns processed in current

step cannot be reused in the next step. In this case, all PUs
have to flush the cached data and refill new data. The new data
loading will be resolved sequentially as shown in Fig. 7. In
all other steps, only two PUs (as shown in Fig. 5) need to
communicate with the memory and the required bandwidth is
reduced by a factor of 2k.

Fig. 7: Data flow for PU array when data sharing is not
available.

4.3 Row-based Parallelism and Vector PU
The design of a Hestenes-Jacobi SVD accelerator requires a

careful balancing in use of two types of resources:
a. Logic/compute resources, limiting the number of PUs

that can be realized;
b. On-chip memory (BRAM) resources, limiting the

maximum column size and number of columns can be
cached.

For matrices with a large height, the local memory of each
PU shall be sufficiently large to cache one or multiple
columns. Due to the high requirement of local memory per
PU, the number of PUs that can be supported by the available
on-chip memory resources would be fairly small, even though
the logic/compute resources may be under-utilized.

We propose to introduce row-based
parallelism to add additional degree
design freedom, and to fully utilize the
available logic/compute resources and
achieve the maximum speedup possible.
In this case, vector norm computation and
column update are split into multiple
column segments, which are processed in
parallel in addition to the adopted column-
based parallelism discussed before.

In this case, the PU we presented earlier
is extended to a vector PU as shown in Fig.
8. Within the vector PU, each PU block is
responsible for caching and updating one
segment of a column pair.

4.4 Proposed SVD Architecture
with Row & Column-based
Parallelism

The overview of our proposed
Hestenes-Jacobi SVD architecture is
shown in Fig. 9. Our system consists of mainly three parts: a
vector PU array, a data ordering generator, and a rotation
parameter calculator. The data ordering generator is
responsible for generating desired column indices based on the
MDS ordering for all PUs. The vector PU array has multiple
vector PUs. At a given step, each vector PU caches a column
pair, calculates the corresponding norms, and updates the two
columns. An input FIFO and an output FIFO are used to
synchronize data between the PU array and off-chip memory.

Fig. 8: An example of a vector PU.

5. Implementation Details

5.1 Data Ordering Generator
The generation of data ordering is done by the data ordering

generator. Algorithm 2 is utilized to generate the MDS
ordering for arbitrary matrix sizes with simple sequential
logic. The data ordering generator can also be reconfigured to
generate the round-robin ordering and ring ordering, allowing
us to make comparison between different data orderings.

5.2 Processing Unit
Covariance calculation and column updating in Algorithm

1 are done in each PU which consists three modules:
covariance calculator, update kernel, and local memory.
Fig.10 shows a single PU (w/o row-based parallelism).

Fig. 9: The proposed SVD architecture with the MDS
ordering and both column and row-based parallelisms.

A vector PU (Fig. 8) has multiple single PUs (i.e. PU1, …).

Fig.10: A single processing unit (PU).

The covariance calculator consists three floating point
multiplier and three floating point accumulators (Fig. 11
(left)). The accumulated results will be used to calculate
rotation parameters. The update kernel with four floating point
multipliers and two floating point adders performs Jacobi
rotation with eq. (4), and is shown in Fig.11 (right).

Fig. 11: Covariance calculator (left) and update kernel

(right).

5.3 Rotation Parameter Calculator
The calculation of rotation parameters is performed in

rotation parameter calculator with eq. (5), which has a
comparator, five adders/subtractors, three multipliers, three
square root operators and a divider. Two shift registers are
utilized to hold the inner value P and Q (Fig. 12).

Fig. 12: Design of rotation parameter calculation.

6. Performance Evaluation

6.1 Implementation and Experimental Setup
Our proposed Hestenes-Jacobi accelerators are

implemented on a Xilinx ZC706 evaluation board. All data in
the architecture is represented in the IEEE754 single precision
floating point format and compute components utilize the
Xilinx Floating point generator [11]. The on-chip logic is
functioning at a frequency of 150MHz. The input matrix and
SVD results are stored in the DRAM at the Cortex-A9 ARM
core side. The data communication is based on the Xilinx
direct memory access (DMA) IP [12].

To demonstrate the proposed architecture, we implement
three designs. The first design has an array size of 20 with no
row-based parallelism. Each single PU has 0.5Mb local
memory and is able to cache columns of a size up to 4,096.
The second design is a 10 single PU array system with no row-
based parallelism, the local memory size of each PU is also
0.5 Mb. The third design is a vector array containing 10 vector
PUs with each vector PU consisting of two single PUs.

6.2 Resource Utilization and Power Dissipation
Resource utilizations (in percentages of total amount

available on the FPGA) and power dissipations of the three
design are summarized in Table 1, which are approximately
proportional to the total number of single PUs in each design.

Table.1: Resource utilizations and power dissipations.
Utilization:

%
20 Single
PU Array

10 Single
PU Array

10 Vector
PU Array

LUTs 41.8 21.8 42.2
FFs 33.6 17.4 33.81
DSP48 79.1 40.4 79.3
BRAMs 52.1 26 26
Power(W) 3.886 1.964 3.91

6.3 Performance Analysis
Comparison of execution time is made between our FPGA

designs and two software SVD routines in the Eigen library.

The Jacobi algorithm and Bidiagonal-Divide-and-Conquer
(BDC) algorithm for SVD in the Eigen package are evaluated
on a Xeon E5-2680 CPU clocked at 2.8GHz. The execution
times of different implementations are reported in Table 2.
Normalized execution times with respect to those of the 20
single PU array clocked at 150MHz are shown in Fig. 13.
Compared with the methods in the Eigen library, our
accelerator significantly speeds up the runtime by up to 300X.

Fig. 13: Normalized execution times of Eigen Jacobi &

Eigen BDC @2.8GHz and 20 Single PU Array @150MHz.

Comparison between the three FPGA designs are shown in
Fig. 14. The 10 Vector PU Array and 10 Single PU Array both
run at 150MHz and have the same total utilized BRAM
resources while the introduction of the proposed row-based
parallelism in the former speeds up the runtime by about 2X.
More generally, when on-chip memory is the dominant
limiting factor, use of row-based parallelism allows one to
explore available logic resources for additional speedups
without requiring more on-chip memory.

Fig. 14: Normalized execution times of the 20 Single PU

Array, 10 Vector PU Array and 10 Single PU Array all
running at 150MHz on the FPGA.

0

50

100

150

200

250

300

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o
rm

al
iz
ed

 E
xe
cu

ti
o
n
 T
im

e

Matrix Size

Eigen Jacobi Eigen BDC 20 Signle PU Array

0.0

0.5

1.0

1.5

2.0

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o
rm

a
liz
ed

 E
xe
cu

ti
o
n
 T
im

e

Matirx Size

20 Single PU Array 10 Vector PU Array 10 Single PU Array

Matrix Eigen-Jacobi Eigen-BDC 10 PU Array 20 PU Array 10 Vector PU Array
100 ൈ 100 0.3067 0.2367 0.0067 0.0038 0.0040
200 ൈ 200 2.1533 1.0000 0.0349 0.0191 0.0201
500 ൈ 500 32.7433 7.5500 0.3684 0.1943 0.2005

1𝑘 ൈ 1𝑘 271.2830 41.7800 2.4738 1.2770 1.3020
2𝑘 ൈ 2𝑘 2220.7900 260.0030 17.8956 9.1080 9.2080
4𝑘 ൈ 4𝑘 20933.3197 1784.7700 135.5832 68.4320 68.8319

Table 2: Execution times (seconds) of the Eigen-Jacobi routine, Eigen-BDC routine, and our FPGA designs.

To analyze our proposed MDS ordering, matrices with
various dimensions are tested with the round-robin ordering,
ring ordering, and the proposed MDS ordering with the same
available bandwidth based on the 20 single PU array design.
The execution times of three different data ordering are shown
in Table 3. The normalized execution time is shown as Fig.15.
When the bandwidth is the limiting factor, the MDS ordering
is able to achieve significant performance boosts as the data
reuse on-chip is well utilized. While in the round-robin and
ring ordering, PUs have to poll for the ownership of the bus to
communicate with the off-chip memory and cannot function
at maximum throughput. With the MDS ordering, we are able
to implement more PUs and achieve higher level of
parallelism under the same limiting bandwidth, and can
achieve close to 20x speedups over the round robin ordering.

Table.3: Execution time(s) of three data ordering.

Matrix Round-
robing

Ring MDS

100 ൈ 100 0.021 0.013 0.004
200 ൈ 200 0.165 0.093 0.019
500 ൈ 500 2.533 1.330 0.194

1𝑘 ൈ 1𝑘 20.133 10.319 1.277
2𝑘 ൈ 2𝑘 160.529 81.276 9.108
4𝑘 ൈ 4𝑘 1282.115 645.104 68.432

Fig. 15: Normalized execution time of three orderings.

7. Conclusion
In this paper, we propose a new MDS data ordering and

SVD accelerator architecture on FPGA. Our design is able to
achieve up to 300X speedup compared with the Eigen library.
Our experiments also show that the proposed ordering is able
to allow for higher degrees of parallelism for the Jacobi like
algorithm and can reach better performance when the
bandwidth is limited. Compared with some existing
architectures for SVD acceleration, our approach improves at
the following aspects: first, the design provides a full solution
for matrices of arbitrary dimension; second, the MDS ordering
maximizes the data reuse and allows for higher parallelism of
the system; third, the proposed vector PU architecture
explores additional row-based parallelism by exploring
available logic resources without demanding more on-chip
memory.

8. References
[1] Hestenes, M.R., “Inversion of matrices by

biorthogonalization and related results”, J. Soc.Indus.
Appl.Math.6 (1958), 51-90.

[2] Brent, R.P., and Luk, F.T., “The solution of and
symmetric eigenvalue problems on multiprocessor
arrays”, SIAM J. Sci. Statist. Comput. 6 (1985) 69–84

[3] W. Ma, et.al, “An FPGA-based singular value
decomposition processor”, IEEE CCECE, Ottawa, 2006.

[4] C. Kotas, J. Barhen, “Singular value decomposition
utilizing parallel algorithm on graphical processors”,
IEEE OCEANS, 2011.

[5] J. An, D. Wang, “Efficient One-Sided Jacobi SVD
Computation on AMD GPU using OpenCL”, IEEE
ICSP, Chengdu, 2016.

[6] R. Monhanty, et.al, “Design and Performance Analysis
of Fixed-Point Jacobi SVD Algorithm on
Reconfigurable System”, International Conference on
Applied Computing, Computer Science, and Computer
Engineering (ICACC), 2013.

[7] L. Ledesma-Carrillo, et.al, “Reconfigurable FPGA-
Based unit for Singular Value Decomposition of large m
x n matrices,” Proceedings of International Conference
on Reconfigurable Computing and FPGAs (ReConFig),
2011.

[8] X. Wang, J. Zambreno, “An FPGA Implementation of
the Hestenes-Jacobi Algorithm for Singular Value
Decomposition”, 2014 IEEE 28th International Parallel
& Distributed Processing Symposium Workshop.

[9] P.J. Eberlein, H. Park, “Efficient implementation of
Jacobi alorithms and Jacobi sets on distributed memory
architectures”, Journal of Parallel and Distributed
Computing, Vol 8. April 1990, pp. 358-366.

[10] L. zhao, Q. Guo, “A Variable Relaxation Parameter for
The Parallel Oone-Sided JRS SVD Algortihm”, 7th
International Conference on Computer Science &
Education (ICCSE), 2012, Melbourne.

[11] Xilinx LogiCORE IP Floating-Point Operator v7.1
Product guide (PG060),
https://www.xilinx.com/support/documentation/ip_doc
umentation/floating_point/v7_0/pg060-floating-
point.pdf

[12] Xilinx AXI DMA IP Product Guide (PG021),
https://www.xilinx.com/support/documentation/ip_doc
umentation/axi_dma/v7_1/pg021_axi_dma.pdf

[13] A. Ahmedsaid, A. Amira, A. Bouridane, “Improved
SVD systolic array and implementation on FPGA”,
IEEE International Conference on Field-Programmable
Technology (FPT), 2003 Tokyo.

[14] Md Sahidullah, Tomi Kinnunen, “Local spectral
variability features for speaker verification,” Digital
Signal Processing, volume 50, March 2016, Page 1-11

[15] M. V. Athi, S. R. Zekavat, “Real-Time Signal
Processing of Massive Sensor Arrays via a Parallel Fast
Converging SVD Algorithm: Latency, Throughput, and
Resource Analysis”, IEEE Sensor Journal, VOL. 16,
NO. 8, APRIL15, 2016.

0.0

5.0

10.0

15.0

20.0

100x100 200x200 500x500 1kx1k 2kx2k 4kx4k

N
o
rm

a
liz
e
d
 E
xe
cu

ti
o
n
 T
im

e

Matrix Size

Round‐robin Ring MDS

