
 

A Scalable FPGA Engine for Parallel Acceleration of Singular Value Decomposition  
 

Abstract 
Singular value decomposition (SVD) is a fundamental 

computational kernel and tool wildly used in data analytics 
such as least squares regression, principle components 
analysis (PCA), and pattern recognition. While a number of 
dedicated hardware processors have been proposed to 
accelerate the computationally intensive SVD computation, 
these designs suffer from poor flexibly and scalability, and/or 
lack full consideration of compute and data movement 
challenges associated with SVD. This paper presents a 
scalable parallel SVD FPGA engine based on the Hestenes-
Jacobi method. We propose Maximum Data Sharing ordering 
(MDS ordering), which maximizes on-chip data reuse, and 
significantly reduce the expensive off-chip data movements 
and bandwidth requirement. Our SVD engine can flexibly 
decompose rectangular matrices with variable sizes, speed up 
SVD computation by 80x to 300x when compared with 
software SVD solvers such as the Eigen package running on 
high-performance CPUs, and process much larger matrices 
than the previously reported FPGA designs.   
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1. Introduction 
As a fundamental computational kernel and tool, Singular 

Value Decomposition (SVD) has been widely adopted in data 
analysis such as pattern recognition [14]. However, SVD is 
computationally intensive and most SVD algorithms have a 
complexity cubic in problem size, rendering SVD is a key 
bottleneck, particularly for real-time data processing [15]. 

Among all SVD algorithms, the family of Jacobi methods is 
most accurate and numerically stable. While the Jacobi 
methods have a low theoretical convergence rate, they are 
amenable to parallel processing and have been targeted 
extensively for hardware acceleration.  Two kinds of Jacobi 
methods have been implemented for dedicated hardware SVD 
processors. A systolic array approach based on the classic two-
sided Jacobi algorithm was proposed in [2]. Modified systolic 
SVD architectures have been implemented on recent FPGAs 
[3][13]. However, the two-sided Jacobi algorithm strictly 
requires the input matrix to be square. Moreover, systolic 
arrays suffer from poor scalability.   

In comparison, the one-sided Hestenes-Jacobi method [1] is 
more appealing for hardware acceleration, e.g. on GPU [4][5], 
as it overcomes the key limitations of the two-sided Jacobi 
algorithm, e.g. being applicable to general rectangular 
matrices. Nevertheless, these designs fail to provide large 
speedups over SVD solvers on general-purpose CPUs, which 
may be attributed to frequent thread synchronizations as 
discussed in [4]. On FPGA, a fixed-point design is 
demonstrated in [7]. Its many limitations include low dynamic 
range, limited on-chip, and small problem scale with the 
maximum demonstrated matrix size of  32 ൈ 128. [8] presents 
an FPGA architecture that only computes the singular values 
without singular vectors for relatively large matrices from 

100 ൈ 100 to 2𝑘 ൈ 2𝑘.  The key issue here is that it does not 
explore on-chip data reuse, leading to severe performance 
degradations once the on-chip cache is used up. While 
bandwidth and data reuse have been studied under a different 
context of distributed systems [9], these issues have been 
rarely focused on in recent SVD FPGA processors. 

We present a scalable parallel SVD FPGA engine based on 
the Hestenes-Jacobi method. Unlike the existing FPGA SVD 
processors, we present an in-depth analysis of data reuse 
opportunities and propose a new data ordering scheme 
maximizing on-chip data reuse, and significantly reducing the 
expensive off-chip data movements and bandwidth 
requirement by 2𝑘 , where 𝑘  is the number of parallel 
processing components. Furthermore, we explore not only the 
common column-based parallel processing but also the 
additional opportunity from row-based parallel processing, 
further improving throughout and relaxing the need for on-
chip caching. Our FPGA architecture and SVD engine can 
flexibly decompose rectangular matrices with variable sizes, 
speed up SVD computation by up to two orders of magnitude 
compared with software SVD solvers such as the Eigen 
package running on high-performance CPUs, and process 
much larger matrices than previously reported FPGA designs.   

2. Background 

2.1 Singular Value Decomposition (SVD) 
SVD factorizes a given 𝑚 ൈ 𝑛 𝑨௠ൈ௡ matrix into: 
                          𝑨௠ൈ௡ ൌ 𝑼௠ൈ௡𝚺௡ൈ௡𝑽௡ൈ௡

𝑻                       (1) 
where both 𝑼 and 𝑽 are unitary matrices and 𝚺 is a diagonal 

matrix. The diagonal elements of 𝚺 (𝜎ଵ, 𝜎ଶ ⋯ 𝜎௡) are called the 
singular values of 𝑨.  

2.2 Hestenes-Jacobi Algorithm 
The Hestenes-Jacobi method rewrites SVD as:  
                               𝑩 ൌ 𝑨𝑽 ൌ 𝑼𝚺                                  (2) 
Thus, the decomposition of 𝑨 is equivalent to applying a 

right-hand side unitary transformation and orthogonalizing the 
matrix. Since B is orthogonal, the right-hand side 
transformation 𝑽  can be split into a series of iterative 
orthogonal transformation as: 

                                𝑽 ൌ 𝑱ଵ𝑱ଶ𝑱ଷ𝑱ସ ⋯                                
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In each 𝑱  matrix, by choosing the correct rotation 

parameters, two columns in 𝑨 can be orthogonalized: 
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Rotation parameters can be calculated with eq. (5) in [10]: 
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The process of orthogonalizing all possible column 
combinations is called a sweep. When convergence is reached 
after certain sweeps, i.e. all columns are closely orthogonal to 
each other,  𝚺 and 𝑼 matrix can be extracted by: 

                          𝚺 ൌ √𝑩𝑻𝑩, 𝑼 ൌ 𝑩/𝚺                            (6) 
Without losing generality, we assume all matrices have a 

size of 𝑚 ൈ 𝑛, 𝑚 ൐ 𝑛. The original Hestenes-Jacobi algorithm 
without data ordering optimization is shown in algorithm 1:   

 

3. Data Ordering  

3.1 Data Reuse in Hestenes-Jacobi Architecture 
At each sweep in the Hestenes-Jacobi algorithm, different 

column pairs can be processed simultaneously with multiple 
processing units (PU). In existing architectures, the PU is fully 
pipelined to maximize throughput [8] while the number of 
PUs implementable is severely limited by the available 
bandwidth as shown in Fig. 1. Data caching and reuse shall be 
exploited to minimize the frequent data movements between 
the on-chip processing units and off-chip memory. To exploit 
the parallel computation and data reuse, data ordering is 
introduced to determine which two columns of the matrix shall 
be processed by each PU at a given processing step to allow 
column-based parallel processing.  

 
Fig. 1: General Hestenes-Jacobi architecture. 

 

3.2 Existing Round-Robin and Ring Ordering 
Round-robin ordering and ring ordering are two popular 

orderings adopted in many Hestenes-Jacobi applications [9]. 
In this paper, we adopt these two data ordering as the basis for 
comparison. With the input matrix with 8 columns and 2 PUs, 
an example of round-robin ordering and ring ordering is 
shown in Fig. 2 and Fig. 3, respectively.  

 

 
Fig. 2: Round-robin ordering: “a,b” present the indexes of 

the two columns processed by a PU at a given step. 
 
Round-robin ordering is easy to generate but there is no 

sharing of column data between different PUs or steps. Ring 
ordering can reuse data within the same PU by caching the 
column orthogonalized in the previous step. But the data reuse 
between different PUs requires complex interconnection 
network on-chip. 

 
Fig. 3: Ring ordering: columns in red are cached and reused 

in the same PU at the next step.  
 

4. Proposed Data Ordering and SVD Architecture 

4.1 Proposed Maximum Data Sharing Ordering 
We make two key observations on the possible data reuse in 

Jacobi like algorithms by caching processed columns in local 
PU memory: 

a. Column processed in the previous step may be reused 
by the same PU in the next step. 

b. Column processed in the precious step can be reused 
by another PU in the next step.  

Unlike the existing orderings, we propose a new Maximum 
Data Sharing (MDS) ordering simultaneously exploring the 
above two opportunities, as shown in Algorithm 2. 
Furthermore, the MDS ordering not only maximizes the data 
reuse between on-chip PUs, but also simplifies the required 
architecture, i.e. the communication network between PUs. 
We show an example of this ordering for a matrix with 8 
columns and 4 PUs in Fig. 4. 

4.2 Proposed Linearly-Connected (LC) PU Array 
Important to note that the data sharing between different 

PUs in the proposed ordering has a fixed pattern with no 
requirement for a complex interconnection network. To take 
advantage of this property, a linearly-connected (LC) PU array 
architecture is designed as shown in Fig. 5.  

 



 

 
Fig. 4: Proposed data ordering. Columns with a red index 

are reused by the same PU while ones with a blue index are 
reused by another PU in the following step.  

 

 
 

 
Fig. 5: Proposed linearly-connected (LC) PU array.  

 

In each PU, two local memories cache the two columns to 
be orthogonalized and are configured as either private or 
shared during the process. The memory in which any column 
to be reused by the same PU in the next step resides is 

configured as private. Otherwise, the memory is configured as 
shared. By the end of each step when the columns in each PU 
have been updated, the column from the private memory (ones 
with red indices in Fig. 4) will be written back to the same 
memory while the column from the shared memory (ones with 
blue indices in Fig. 4) will be sent to the shared memory of the 
“next” PU. In the next step, the memories of each PU will be 
configured again and the same process continues. 

As an example, data sharing in MDS ordering for a matrix 
with 8 columns in an array of two PUs, e.g. the first two steps 
of PU1 and PU2 in Fig. 4, is shown in Fig. 6. 

 
Fig. 6: Data sharing in the proposed LC PU array.  

 

In general, assume that matrix has n columns and the PU 
array has a size of k. In our MDS ordering, during a sweep, 
there will be 

௡

ଶ௞
 steps where the columns processed in current 

step cannot be reused in the next step. In this case, all PUs 
have to flush the cached data and refill new data. The new data 
loading will be resolved sequentially as shown in Fig. 7.  In 
all other steps, only two PUs (as shown in Fig. 5) need to 
communicate with the memory and the required bandwidth is 
reduced by a factor of 2k.  
 

 
Fig. 7: Data flow for PU array when data sharing is not 
available.  

4.3 Row-based Parallelism and Vector PU  
The design of a Hestenes-Jacobi SVD accelerator requires a 

careful balancing in use of two types of resources: 
a. Logic/compute resources, limiting the number of PUs 

that can be realized; 
b. On-chip memory (BRAM) resources, limiting the 

maximum column size and number of columns can be 
cached.  

For matrices with a large height, the local memory of each 
PU shall be sufficiently large to cache one or multiple 
columns. Due to the high requirement of local memory per 
PU, the number of PUs that can be supported by the available 
on-chip memory resources would be fairly small, even though 
the logic/compute resources may be under-utilized.  



 

We propose to introduce row-based 
parallelism to add additional degree 
design freedom, and to fully utilize the 
available logic/compute resources and 
achieve the maximum speedup possible.  
In this case, vector norm computation and 
column update are split into multiple 
column segments, which are processed in 
parallel in addition to the adopted column-
based parallelism discussed before.  

In this case, the PU we presented earlier 
is extended to a vector PU as shown in Fig. 
8. Within the vector PU, each PU block is 
responsible for caching and updating one 
segment of a column pair.  

4.4 Proposed SVD Architecture 
with Row & Column-based 
Parallelism   

The overview of our proposed 
Hestenes-Jacobi SVD architecture is 
shown in Fig. 9. Our system consists of mainly three parts: a 
vector PU array, a data ordering generator, and a rotation 
parameter calculator. The data ordering generator is 
responsible for generating desired column indices based on the 
MDS ordering for all PUs. The vector PU array has multiple 
vector PUs. At a given step, each vector PU caches a column 
pair, calculates the corresponding norms, and updates the two 
columns. An input FIFO and an output FIFO are used to 
synchronize data between the PU array and off-chip memory. 

 
Fig. 8: An example of a vector PU. 

 

5. Implementation Details 

5.1 Data Ordering Generator 
The generation of data ordering is done by the data ordering 

generator. Algorithm 2 is utilized to generate the MDS 
ordering for arbitrary matrix sizes with simple sequential 
logic. The data ordering generator can also be reconfigured to 
generate the round-robin ordering and ring ordering, allowing 
us to make comparison between different data orderings.  

5.2 Processing Unit 
Covariance calculation and column updating in Algorithm 

1 are done in each PU which consists three modules: 
covariance calculator, update kernel, and local memory.  
Fig.10 shows a single PU (w/o row-based parallelism). 

 

 

 

Fig. 9: The proposed SVD architecture with the MDS 
ordering and both column and row-based parallelisms. 

 

A vector PU (Fig. 8) has multiple single PUs (i.e. PU1, …). 
 

Fig.10: A single processing unit (PU). 
 

The covariance calculator consists three floating point 
multiplier and three floating point accumulators (Fig. 11 
(left)). The accumulated results will be used to calculate 
rotation parameters. The update kernel with four floating point 
multipliers and two floating point adders performs Jacobi 
rotation with eq. (4), and is shown in Fig.11 (right).  

 
Fig. 11: Covariance calculator (left) and update kernel 

(right). 

5.3 Rotation Parameter Calculator 
The calculation of rotation parameters is performed in 

rotation parameter calculator with eq. (5), which has a 
comparator, five adders/subtractors, three multipliers, three 
square root operators and a divider. Two shift registers are 
utilized to hold the inner value P and Q (Fig. 12).  

 



 

 

 

 

 

 
Fig. 12: Design of rotation parameter calculation.  
 

6. Performance Evaluation 

6.1 Implementation and Experimental Setup 
Our proposed Hestenes-Jacobi accelerators are 

implemented on a Xilinx ZC706 evaluation board. All data in 
the architecture is represented in the IEEE754 single precision 
floating point format and compute components utilize the 
Xilinx Floating point generator [11]. The on-chip logic is 
functioning at a frequency of 150MHz. The input matrix and 
SVD results are stored in the DRAM at the Cortex-A9 ARM 
core side. The data communication is based on the Xilinx 
direct memory access (DMA) IP [12].  

To demonstrate the proposed architecture, we implement 
three designs. The first design has an array size of 20 with no 
row-based parallelism. Each single PU has 0.5Mb local 
memory and is able to cache columns of a size up to 4,096. 
The second design is a 10 single PU array system with no row-
based parallelism, the local memory size of each PU is also 
0.5 Mb. The third design is a vector array containing 10 vector 
PUs with each vector PU consisting of two single PUs.  

6.2 Resource Utilization and Power Dissipation 
Resource utilizations (in percentages of total amount 

available on the FPGA) and power dissipations of the three 
design are summarized in Table 1, which are approximately 
proportional to the total number of single PUs in each design. 

Table.1: Resource utilizations and power dissipations. 
Utilization: 

% 
20 Single 
PU Array 

10 Single 
PU Array 

10 Vector 
PU Array 

LUTs 41.8 21.8 42.2 
FFs 33.6 17.4 33.81 
DSP48 79.1 40.4 79.3 
BRAMs 52.1 26 26 
Power(W) 3.886 1.964 3.91 

 

6.3 Performance Analysis 
Comparison of execution time is made between our FPGA 

designs and two software SVD routines in the Eigen library. 

The Jacobi algorithm and Bidiagonal-Divide-and-Conquer 
(BDC) algorithm for SVD in the Eigen package are evaluated 
on a Xeon E5-2680 CPU clocked at 2.8GHz. The execution 
times of different implementations are reported in Table 2. 
Normalized execution times with respect to those of the 20 
single PU array clocked at 150MHz are shown in Fig. 13. 
Compared with the methods in the Eigen library, our 
accelerator significantly speeds up the runtime by up to 300X.   

 
Fig. 13: Normalized execution times of Eigen Jacobi & 

Eigen BDC @2.8GHz and 20 Single PU Array @150MHz.  
 

Comparison between the three FPGA designs are shown in 
Fig. 14. The 10 Vector PU Array and 10 Single PU Array both 
run at 150MHz and have the same total utilized BRAM 
resources while the introduction of the proposed row-based 
parallelism in the former speeds up the runtime by about 2X. 
More generally, when on-chip memory is the dominant 
limiting factor, use of row-based parallelism allows one to 
explore available logic resources for additional speedups 
without requiring more on-chip memory.  

 

 
Fig. 14: Normalized execution times of the 20 Single PU 

Array, 10 Vector PU Array and 10 Single PU Array all 
running at 150MHz on the FPGA.  
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Matirx Size

20 Single PU Array 10 Vector PU Array 10 Single PU Array

Matrix Eigen-Jacobi Eigen-BDC 10 PU Array 20 PU Array 10 Vector PU Array 
100 ൈ 100 0.3067 0.2367 0.0067 0.0038 0.0040 
200 ൈ 200 2.1533 1.0000 0.0349 0.0191 0.0201 
500 ൈ 500 32.7433 7.5500 0.3684 0.1943 0.2005 

1𝑘 ൈ 1𝑘 271.2830 41.7800 2.4738 1.2770 1.3020 
2𝑘 ൈ 2𝑘 2220.7900 260.0030 17.8956 9.1080 9.2080 
4𝑘 ൈ 4𝑘 20933.3197 1784.7700 135.5832 68.4320 68.8319 

Table 2: Execution times (seconds) of the Eigen-Jacobi routine, Eigen-BDC routine, and our FPGA designs. 



 

To analyze our proposed MDS ordering, matrices with 
various dimensions are tested with the round-robin ordering, 
ring ordering, and the proposed MDS ordering with the same 
available bandwidth based on the 20 single PU array design. 
The execution times of three different data ordering are shown 
in Table 3. The normalized execution time is shown as Fig.15. 
When the bandwidth is the limiting factor, the MDS ordering 
is able to achieve significant performance boosts as the data 
reuse on-chip is well utilized. While in the round-robin and 
ring ordering, PUs have to poll for the ownership of the bus to 
communicate with the off-chip memory and cannot function 
at maximum throughput. With the MDS ordering, we are able 
to implement more PUs and achieve higher level of 
parallelism under the same limiting bandwidth, and can 
achieve close to 20x speedups over the round robin ordering. 

   
Table.3: Execution time(s) of three data ordering.  

Matrix Round-
robing 

Ring MDS 

100 ൈ 100 0.021 0.013 0.004 
200 ൈ 200 0.165 0.093 0.019 
500 ൈ 500 2.533 1.330 0.194 

1𝑘 ൈ 1𝑘 20.133 10.319 1.277 
2𝑘 ൈ 2𝑘 160.529 81.276 9.108 
4𝑘 ൈ 4𝑘 1282.115 645.104 68.432 

 

 
Fig. 15: Normalized execution time of three orderings. 
 

7. Conclusion 
In this paper, we propose a new MDS data ordering and 

SVD accelerator architecture on FPGA. Our design is able to 
achieve up to 300X speedup compared with the Eigen library. 
Our experiments also show that the proposed ordering is able 
to allow for higher degrees of parallelism for the Jacobi like 
algorithm and can reach better performance when the 
bandwidth is limited. Compared with some existing 
architectures for SVD acceleration, our approach improves at 
the following aspects: first, the design provides a full solution 
for matrices of arbitrary dimension; second, the MDS ordering 
maximizes the data reuse and allows for higher parallelism of 
the system; third, the proposed vector PU architecture 
explores additional row-based parallelism by exploring 
available logic resources without demanding more on-chip 
memory. 
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