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M A T E R I A L S  S C I E N C E

Designing exceptional gas-separation polymer 
membranes using machine learning
J. Wesley Barnett1*, Connor R. Bilchak1*, Yiwen Wang1†, Brian C. Benicewicz2,  
Laura A. Murdock2, Tristan Bereau3, Sanat K. Kumar1‡

The field of polymer membrane design is primarily based on empirical observation, which limits discovery of 
new materials optimized for separating a given gas pair. Instead of relying on exhaustive experimental in-
vestigations, we trained a machine learning (ML) algorithm, using a topological, path-based hash of the 
polymer repeating unit. We used a limited set of experimental gas permeability data for six different gases in 
~700 polymeric constructs that have been measured to date to predict the gas-separation behavior of over 11,000 
homopolymers not previously tested for these properties. To test the algorithm’s accuracy, we synthesized two of 
the most promising polymer membranes predicted by this approach and found that they exceeded the upper 
bound for CO2/CH4 separation performance. This ML technique, which is trained using a relatively small body of 
experimental data (and no simulation data), evidently represents an innovative means of exploring the vast 
phase space available for polymer membrane design.

INTRODUCTION
Polymer membranes are used to effect a variety of gas separations 
(1–6) such as the removal of carbon dioxide from natural gas, 
oxygen from air, hydrogen recovery, and more recently in carbon 
capture. Separation performance is typically characterized by the 
membrane’s permeability (Pi), i.e., the throughput of gas type i, and 
selectivity (), the purity of the output stream. Pi is defined from 
Fick’s law of diffusion, ​∣​J​ i​​∣= ​P​ i​​ ​

p _ ℓ ​​, where Ji is the flux of gas i and ∆p 
is the pressure drop across a membrane of thickness ℓ. Pi is further 
decomposed into the product of a thermodynamic solubility 
constant and a diffusion constant, Pi = Di × Si. The ideal select­
ivity ,  , between two gases is the ratio of their permeabilities: ​​
​ A/B​​ = ​​P​ A​​ _ ​P​ B​​ ​ = ​​D​ A​​ _ ​D​ B​​ ​ × ​​S​ A​​ _ ​S​ B​​ ​​, where​ ​​D​ A​​ _ ​D​ B​​ ​​ and ​​​S​ A​​ _ ​S​ B​​ ​​ are the diffusivity and solubility 
selectivities, respectively. While there has been an increased em­
phasis on the use of permeabilities and selectivities when gas 
mixtures (rather than pure gases) are used, the data on these sys­
tems are sparse, and hence, for the purposes of this work, we discuss 
pure gases.

While an optimal polymer membrane for a given gas pair should 
have both high permeability and high selectivity, these quantities 
are typically observed to be negatively correlated. This concept is 
demonstrated in a “Robeson plot” for a variety of polymers and gas 
pairs. The Robeson plot for CO2/CH4 separations is shown in Fig. 1; 
a multitude of other Robeson plots exist for different gas separa­
tions. These plots illustrate the empirically determined current best 
performance for a given separation as defined by the upper bound 
correlation (lines in Fig. 1) (7–10) Note that the upper bound evolves 
with time as scientists invent new materials so that while the slope 
of this line is apparently unchanged, the intercept increases with 
time. Thus, we use designations such as the 1991 upper bound (10) 
or the 2008 upper bound (9) to designate the temporal evolution of 

this observed trade-off relation. The challenge, therefore, in synthe­
sizing next-generation polymer membranes is in designing materials 
that cross the current upper bound. These ideas have motivated the 
discovery of new classes of polymeric materials, e.g., thermally re­
arranged (TR) polymers (11, 12) and polymers of intrinsic micro­
porosity (3, 13) with improved performance over conventional polymers.

Synthesizing and testing the vast number of possible polymer 
constructs and their potential chemical modifications with our 
currently available chemistry toolbox is an expensive and time-
consuming proposition. Instead, several theoretical methods and 
models have been developed as a means to understand diffusion 
and solubility in polymeric materials, with the goal of permitting a 
more rational design of next-generation materials.

On the most basic level, gas permeability can be empirically pre­
dicted using group contribution methods, where polymer repeat 
units are decomposed into subunits and the estimated gas perme­
ability contribution of each of these moieties is added together (14). 
This approach is only sensitive to the presence of various atoms/
functional groups in a polymer backbone but does not necessarily 
take their connectivity into account. Further, these methods do not 
systematically evolve as newer classes of polymers are synthesized 
and measurement tools improve. Group contribution methods 
therefore represent a first step for predicting the gas transport prop­
erties of these polymeric materials. A more theoretically underpinned 
concept is that permeability, in the framework of the solution-diffusion 
model, can be predicted with knowledge of polymer free volume. 
This follows by relating the diffusion of a gas molecule of a known 
size with the amount of volume in the polymer that facilitates its 
motion. This idea has been developed to relate the “slope” of the 
upper bound line to the relative sizes of the gas molecules involved in 
a given separation (i.e., for a given Robeson plot) (6). However, this 
correlation is imperfect, and there is an incomplete understanding 
of the underpinning free volume concept (15, 16). These free vol­
ume models have also been developed for estimating gas solubility 
in polymers. This concept is important for glassy polymers, which 
are known to swell and plasticize in the presence of CO2, thereby 
markedly altering their gas solubility (2, 3, 13). While gas solubility 
in polymers can be elegantly derived from well-understood models 
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such as Sanchez-Lacombe theory extended to the nonequilibrium 
polymer glass state (such as the non-equilibrium lattice fluid model), 
these results often contain a number of unknown parameters to 
describe polymer-gas interactions and the extent of glassiness. This 
complicates a full, predictive understanding of the underlying 
phenomena. Other models, such as the dual-mode sorption, have also 
been found to qualitatively explain trends observed for gas solubility 
in glassy materials, but they are often limited to specific families of 
polymers. It is safe to say therefore that while there is good qualitative 
understanding of gas transport in glassy polymers, there is hardly 
any scientifically grounded, predictive models in this context. This 
concept is underpinned experimentally by the enormous scatter 
in the data shown on a Robeson plot, which represents not only 
our empirical understanding of gas transport but also the lack of 
design cues that can guide the synthesis of new materials. A means 
of rationally designing advanced membrane materials, without 
resorting to empirical experimentation, thus remains an open 
challenge.

Here we propose a different approach, which could eventually 
lead to the understanding of the underlying molecular processes, 
i.e., machine learning (ML) (17, 18). In its current form, ML rep­
resents a class of statistical models that make predictions on prop­
erties based on a set of data, but without a detailed understanding of 
the underlying physics in these situations. These models are greatly 
dependent on the availability and accuracy of large sets of applicable 
data. Thus, when ML has been used for polymer property predic­
tion, researchers have primarily focused on large sets of theoretically 
generated data (“Materials Project”) (19–21). Other ML methods in 
the past have typically been applied to experimental datasets with 
less than 100 data points for any given property (22), which tends to 
limit the accuracy of the predictions of this exercise.

Our approach uses all the gas permeation data that we could find 
in the literature, i.e., typically 500 to 1000 polymers for each gas, to 
develop an ML model as outlined schematically in Fig. 2. While we 
have not chosen to curate these datasets to prevent user bias, this 
larger dataset appears to allow us to develop more reliable models. 
We train the ML algorithm using a training dataset (which is part of 
the available dataset) and test its predictions on the remaining poly­
mers for which gas permeation data exist. This validated model can 
then predict the gas permeation behavior of a large body of poly­
mers that have been synthesized to date (~11,000), but which have 
not been experimentally characterized in this context. Our ideas 
have some parallels to the group contribution methods discussed 
above, but with the advantage that we do not define the chemical 
building blocks ahead of time. Instead, we explore the polymers 
whose permeabilities have been measured by using a topological, 
path-based, fingerprinting method to describe the polymer back­
bone structure so that materials with previously unexplored chem­
istries can be easily added to the dataset as synthetic advances are 
made (23). Once the predictions on the 11,000 polymers have been 
made, we focus specifically on the polymers that are predicted to 
lie well above the upper bound, i.e., polymers particularly well suited 
for that separation but ones that have not been tested to date. We 
then experimentally validate the predicted values of PCO2 and PCO2/
PCH4 for these previously unexplored polymers. Thus, ML appears 
to be a powerful method to predict (and hence design) materials that 
are optimal for a given application, particularly with limited sets 
of experimental data.

RESULTS
We compiled a literature-based database of the diffusivities, solubili­
ties, and permeabilities for six gases—methane (CH4), carbon diox­
ide (CO2), helium (He), hydrogen (H2), nitrogen (N2), and oxygen 
(O2)—in a variety of polymers. The number of data points for each 
gas varied somewhat due to what was available in the literature, 
with a majority of the datasets having at least 500 polymers for each 
gas, as shown in Table 1; this represents a sizable portion of the 
polymers that are typically included in the most up-to-date Robeson 
plots. We then randomly split this dataset into one of two categories 
for each gas; one is used for training the ML model, while the other 
is initially withheld during training. The training datasets were 
≈75% of our total database for each gas, which represented at least 
250 polymers for each gas. We then apply the trained model to the 
remaining 25% of the polymers (test set) and use these data as veri­
fication of the model’s accuracy. We found that the prediction of 
the ML model on these test datasets typically had an R2 value of 
0.8 or larger, although this correlation improves as the training 
dataset is made larger (see Table 1).

One challenge when creating ML models for evaluating physical 
properties is choosing appropriate descriptors to describe the mate­
rials being studied. Our first approach only included the number of 
each atom type in a repeat unit. However, this was found to be an 
ineffective means to properly model the experimental permeation 
data. Instead, we choose to use a fingerprinting method where the 
chemical connectivity in a polymer’s repeating unit is represented 
numerically. Fingerprinting has a distinct advantage over traditional 
group contribution methods, where all of the possible building 
blocks must be defined a priori and remain static; fingerprinting 
methods are an inherently more dynamic representation because 

Fig. 1. Robeson plot of selectivity versus permeability for CO2/CH4 separations. 
The 1991 and 2008 Robeson upper bounds are shown as solid black lines. Each 
data points represents a single polymer; Robeson plots typically contain experimental 
data for >500 unique polymers. P is in units of Barrer (1 Barrer = 1 ×10−10 cm3[STP] 
cm2/cm3 s cmHg). Reprinted from (9) with permission.
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they can evolve to include materials as they are synthesized. Fur­
ther, they take into account the chemical connectivity between 
the different units. We transformed each polymer into a binary 
“fingerprint” using the Daylight-like fingerprinting algorithm as 
implemented in RDKit. This topological-based approach analyzes 
the various fragments of a molecule containing a certain number of 
bonds and then hashes each fragment to produce a binary finger­
print that computationally represents the molecule; this is shown 
schematically in Fig. 2. After a polymer’s repeat unit was read into 
memory via a molfile, it was broken down into fragments contain­
ing between 1 and 7 units (represented for n = 1 to n = 4 in Fig. 2), 
and the structure was hashed into a fingerprint with 2048 bits of 
information to encode all of the possible connectivity pathways of 
the monomer. This process is repeated for each group in the mole­
cule to generate the full fingerprint. Each bit was treated as a single 
feature in our model, which allows us to study the effects of various 
functional groups and their linkages on gas transport. Each mono­

mer was connected to at least nine other identical repeat units to 
properly account for longer paths along the polymer backbone. 
This fingerprinting technique is the simplest representation of the 
polymer chemistry and structure that is sufficient to capture trends 
observed in the experimental data.

After training our model [which uses the Gaussian process re­
gression (GPR) method] on each gas’s permeability dataset (see 
Materials and Methods), we used both cross-validation in the train­
ing set and a hold-out test set to evaluate model performance. While 
Table 1 includes data from relatively large train set sizes, we have 
systematically varied the size of this initial training set—we find that 
the mean squared errors only begin to decrease for train sizes larger 
than ~400 and that the mean square error of the model (see Supple­
mentary Materials) decreased monotonically as this size is in­
creased. This explains why previous efforts, which typically used 
100 polymers in their ML studies, were less insightful. Our choice 
of large train sizes thus reflects our goal to have a more generally 
applicable ML-derived model. Despite the varying amount of test 
data for each gas, each model performed similarly well with mean 
squared errors on the order of 2 to 4 Barrer (1 Barrer = 1 × 10−10 cm3[STP] 
cm2/cm3 s cmHg; correlation curves for each gas are provided in the 
Supplementary Materials). Overall, we were satisfied with the test 
set performance and retrained the models on the full dataset to 
be used in predictions on new polymers never before tested. We then 
downloaded 11,325 molfiles from the National Institute for Ma­
terials Science (NIMS) Materials database (which represents a large 
repository of previously synthesized polymers) and apply the 
ML model to these polymers to predict their gas transport per­
formance (24). Only a few structures (≈1.5%) in this prediction 
dataset were also in our full training set, meaning that the vast 
majority of polymers in the NIMS database that we predict repre­
sent new gas transport data, with no known experimental data.

Fig. 2. Assisted design of high-performance polymer membranes. The large synthetic toolbox available for creating new polymers is simulated by translating the 
polymer into a binary “fingerprint,” which is input to the ML algorithm. The model is trained with a random subgroup of polymers from our literature database and then 
tested against the remaining polymers. The model is then applied to a large set of literature data to discover high-performance polymers, thus facilitating machine-assisted 
design.

Table 1. Evaluation of model performance on hold-out test set. R2 is 
the coefficient of determination. Sizes are the number of samples in the 
training set or test set for each gas. The ML package used was Scikit-learn. 

Gas Training size Training R2 Test size Test R2

N2 514 0.986 172 0.847

O2 523 0.985 175 0.903

H2 324 0.985 109 0.827

He 282 0.980 94 0.799

CH4 420 0.990 141 0.904

CO2 471 0.986 158 0.875
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One of the challenges in using ML modeling for property predic­
tion is associating these predictions with physically meaningful 
quantities. This is the focus of much current research. Our model, 
which uses a fingerprinting method, makes it difficult to point to a 
specific set of physical quantities that are important in the predic­
tion of gas permeabilities, such as free volume descriptors of the 
polymer chain. However, by examining the higher-performing 
materials—those which are above the upper bound—and their 
common characteristics, we are able to gain insight into what phys­
ical quantities are important for enhancing gas permeability and 
selectivity. We can also analyze the chemical structure of these 
high-performance materials to discern design motifs that are ex­
pected to give the best performance. Figure 3 (A and B) shows the 
learned gas transport data of the polymers in the NIMS database for 
O2/H2 and CO2/CH4, plotted in the Robeson plot format. Represent­
ative data used for model training are also shown.

Almost all predicted selectivities/permeabilities remain just be­
low the Robeson 2008 upper bound line for the O2/N2 and CO2/CH4 
gas pairs. However, more than 100 polymers are significantly above 
the 2008 upper bound for the CO2/CH4 gas pair. The polymers that 
are above this bound have several common characteristics. Of the 
11,325 polymers in the dataset, polysulfides accounted for only 
7.00%; however, they made up most (53.00%) of the polymers that 
crossed the CO2/CH4 2008 upper bound. In addition, the percent­
age of polysulfones (5.30% total, 18.00% above the upper bound) 
and polyimides (17.65% total, 35.00% above the upper bound) have 
a larger share in the upper bound–breaking group. Aromatic poly­
ethers consisted of 30.78% of the total prediction dataset, but only 
21.00% of the upper bound–breaking group; similarly, polyvinyls 
consisted of 13.7% of the total dataset but only 1% were above the 
upper bound. This implies that these functional groups are typically 
linked to suboptimal membrane performance (additional statistical 
analysis of the polymer classes in the CO2/CH4 Robeson plot is 
shown in the Supplementary Materials). The upper bound–breaking 
polymers were further analyzed by creating a two-dimensional his­
togram for group pairs. It was found that 18.00% belonged to both 
the polysulfone and polyimide classes, and 17.00% belonged to both 
the polysulfone and polyether classes. Thus, it was observed that 
materials containing a sulfur group, an oxygen along the backbone, 
and/or nitrogen rings performed the best in this context (25). Thus, 
our models for this gas pair seem to point to physically meaningful 

chemistries that can be used to enhance gas separations and may be 
further used in the future to identify strategies that have not been 
experimentally studied.

We focused our attention on two polymers predicted to lie well 
above the upper bound for CO2/CH4 separations (SDs are from the 
GPR). These two polymers are identified in the NIMS database (24) 
as poly[(1,3-dioxoisoindoline-2,5-diyl)sulfonyl(1,3-dioxoisoindoline-
5,2-diyl)-1,4-phenyleneoxy-1,4-phenylene] (ID: P432092) and 
poly[(1,3-dioxoisoindoline-2,5-diyl)sulfonyl(1,3-dioxoisoindoline-
5,2-diyl)-1,4-phenylenemethylene-1,4-phenylene] (ID: P432095). 
Their locations on the CO2/CH4 Robeson plot, as well as the struc­
ture of their repeat units, are shown in Fig. 4. Both of these polymers 
are polyimides containing sulfone groups; in addition, P432092 
contains an aromatic ether linkage; each of these groups is high­
lighted during our analysis of the ML data as being related to high 
CO2/CH4 selectivities.

Although similar sulfur-containing polyimides have been tested 
for gas separations in general (26–28), CO2/CH4 selectivity has 
not been tested with these specific polymers. We synthesized both 
polymers and tested their CO2/CH4 transport performance to exper­
imentally verify the ML data. The synthesized polymers were cast 
from solution into thin (≈30 m) films via doctor-blading and tested 
using the well-known constant volume/variable pressure exper­
imental technique with an upstream experimental pressure of ≈2 atm. 
The experimental results are plotted in relation to their predicted 
values in Fig. 4; the polymers exceed the 2008 Robeson upper bound 
for this gas pair as predicted by the ML model, and both P432092 
and P432095 exhibit selectivities ~7 and 5.5 times, respectively, that 
of the upper bound at the same permeability value. Further, we 
find that the experimental and predicted data points are in relatively 
good agreement with each other (within the error of the prediction), 
indicating that the ML model may be used as a predictive tool in 
identifying previously unexplored polymers for gas separations.

DISCUSSION
The ML algorithm–based approach derives permeability predictions 
by using a detailed knowledge of the monomer structure and chem­
istry. We began with an approach that looked at only atoms, but 
found it to be insufficient; a description that includes connectivity 
within a monomer is found to be sufficient in terms of predicting 

Fig. 3. Identification of polymer structures from machine-learning assisted design. Results of ML predictions on polymers in the NIMS database for (A) CO2/CH4 and 
(B) O2/N2 separations. A representative set of the training data is shown in blue for each polymer—note the relative sizes of the data used for training the models com-
pared to that predicted using the ML algorithm. The 1991 and 2008 Robeson upper bounds are shown as dashed and solid lines, respectively.
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permeability. This approach ignores all higher-order polymer de­
scriptors such as stereoregularity, polarity, and chain length. While 
we find that these variables are not required to gain reasonably 
accurate predictions of polymer properties, more sophisticated 
means of representing the polymer chain that can include these 
nuances may further increase the accuracy of the ML model and 
allow us to properly hone in on these more complex design cues. 
However, with current fingerprinting methods, there is no logical 
means by which appropriate descriptors can be defined for predict­
ing an arbitrary property. How this choice should be made remains 
a topic of research. We also observe that other fingerprinting tools 
with similar complexity may have similar accuracy as the Daylight-like 
fingerprinting method we used here. An open question in the ML 
field is choosing the proper descriptor for a set application.

Our ML approach is designed with the specific goal of quickly 
characterizing gas permeabilities for an extremely large set of poly­
mers and then a posteriori correlating high-performance materials 
with common functional groups and bond linkages; this allows us 
to determine which chemistries and structures are worth experi­
mental observation. We emphasize that we do not relate these 
results to a molecular understanding of a polymer property as viewed 
through one of the many theoretical models available, e.g., for gas 
transport. In a similar vein, a number of past experimental work 
have focused on the effect of various polymer backbone properties 
on either solubility or diffusion, e.g., the effect of sulfur groups on 
CO2 solubility and more polymer backbone stiffness on gas diffusion 
constants (29–31). Our approach focused specifically on predicting 
polymer permeabilities, as the available literature data that decom­
poses permeabilities into solubility and diffusion are less plentiful. 
The specific dependence of solubility and diffusivity on polymer 
structure can be potentially probed using this approach in the future 
provided a more complete database is available—this might allow 
us to probe the factors affecting solubility and diffusivity separately.

Our ML algorithm, as currently used, only tests against already 
synthesized polymers. A superior approach would be to include 
out-of-the-box polymer architectures in the algorithm and then im­
posing a “synthesizability” constraint as a means of selecting poly­
mers for further study. However, practical implementation of this 
approach has not been determined, and it remains a topic of debate.

The approach presented above is easily amenable to an inverse 
design approach. Namely, we can design polymers with a desired 
combination of permeability and selectivity for a gas pair by using, 
e.g., a genetic algorithm to construct the optimal fingerprint vectors. 
This is ongoing work in our laboratory.

MATERIALS AND METHODS
Scikit-learn (32) was used to perform additional preprocessing 
and regression on the data. For each gas, the target value was the 
base-10 logarithm of the permeability in units of Barrer (1 Barrer = 
1 × 10−10 cm3[STP] cm/cm2 s cmHg). The data for each gas were split 
into training and test sets, with 75% of the polymers and their per­
meabilities randomly placed in the training set and 25% placed in 
the test set (see Table 1 for exact numbers). After each feature was 
scaled by removing the mean and scaling to unit variance, GPR (33) 
was used to fit the training data. We used a kernel consisting of the 
sum of a radial basis function and a white noise term

	​​ k(​x​ i​​, ​x​ j​​ ) = ​​σ​ f​​​​ 2​ exp​(​​− ​ 1 ─ 2 ​ ​​|​​​|​​ ​ ​x​ i​​ − ​x​ j​​ ─ l  ​​|​​​|​​​
2
​ 
2
​​)​​ + ​σ​n​ 2 ​ δ(​x​ i​​ − ​x​ j​​)​​​​ ​​	 (1)

where f, n, and l are optimized hyperparameters, with f
2 the sig­

nal variance, n
2 the noise variance, and l the length scale of the 

basis function.  is the dirac delta function, and xi and xj correspond 
with samples i and j. Ten restarts with random initial hyperparam­
eters were used for the optimization to avoid local maxima. Learning 
curves were created using 10-fold cross-validation on the training 
set. After fitting the training sets, the models were evaluated using 
the hold-out test sets. Last, we used the entire dataset to fit six models 
using GPR like we did with the training sets. We also performed an 
additional 10-fold cross-validation on the entire dataset, also pro­
ducing learning curves. Results of the optimization for both the 
training set and the full dataset are shown in the Supplementary 
Materials.

The polymer P4320902 was synthesized using 2.3028 g of 
4,4′-oxydianiline (11.5 mmol) and 4.1202 g of 5,5′-sulfonylbis 
(isobenzofuran-1,3-dione) (11.5 mmol). About 15 ml of dry dimethyl 
acetamide (DMAc) was added to each round bottom flask. Once 
monomers were dissolved, they were mixed together without 

Fig. 4. Polymer candidates for advanced CO2/CH4 gas transport performance identified through ML and their experimental performance. CO2/CH4 Robeson plot 
showing learned permeability/selectivity data. The predicted locations for two potential high-performance polymers are marked with colored crosses—the measured 
experimental values are denoted with colored dots. The repeat units of both polymers contain functional groups identified through ML as being related to high-performance 
materials.
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exposure to air and stirred at room temperature for 13.5 hours. The 
viscous solution was subsequently casted onto glass plates using a 
10 mils doctor blade. The films were left untouched for 3 days to let 
the remaining DMAc evaporate, and a clear film was produced with 
a thickness of 30 ± 3 m. The resulting poly(amic acid) was ther­
mally converted to the polyimide structure by slowly heating the 
films to 250°C in an oven under a nitrogen atmosphere.

The polymer P4320902 was synthesized using 1.5862 g of 
4,4′-methylenedianiline (8 mmol) and 2.8662 g of 5,5′-sulfonylbis 
(isobenzofuran-1,3-dione) (8 mmol). About 20 ml of dry DMAc 
was added to each round bottom flask. Once monomers were 
dissolved, they were mixed together without exposure to air and 
stirred at room temperature for 28 hours. The viscous solution was 
subsequently casted onto glass plates using a 5 mils doctor blade. 
The films were left untouched for 3 days to let the remaining DMAc 
evaporate, and a clear film was produced with a thickness of 30 ± 3 m. 
The resulting poly(amic acid) was thermally converted to the poly­
imide structure by slowly heating the films to 250°C in an oven 
under a nitrogen atmosphere.

CO2 and CH4 permeabilities were measured using the constant 
volume/variable pressure technique. Sample films are mounted 
onto 47-mm brass discs with known inner diameter with epoxy to 
properly adhere the film to the brass. The brass functions as an 
impermeable mask to reduce the amount of film area necessary for 
the experiment. The films were supported by filter paper to avoid 
damage during the experiment. Films are loaded into the gas 
permeation cells’ closed volume apparatus, where the pressure on 
either side of the film is monitored with electronic transducers. The 
sample and apparatus were then degassed under vacuum for a mini­
mum of 12 hours, until the apparatus reached its maximum obtain­
able vacuum (≈15 mtorr). During this time, the apparatus is 
submerged in a water bath with a heater to regulate the cell tem­
perature. The test apparatus downstream was then isolated from the 
vacuum, and the rate of pressure increase in the downstream 
chamber of known volume is measured to determine the “leak rate” 
of the sample. After the leak rate is measured for about 1 hour, the 
system is returned to ultimate vacuum to begin the experiment. 
Once ultimate vacuum is re-obtained, the downstream is again 
isolated from the vacuum and the upstream is charged with the 
desired penetrant gas. The upstream section was purged with the 
penetrant at least three times before starting the experiment to 
ensure that there is no competitive permeation between gases. The 
downstream pressure was monitored as a function of time as gas 
diffused through the film. The permeability of the gas, Pi, was 
calculated from the steady-state rate of pressure increase in the 
downstream

	​​ P  = ​   ​V​ d​​ ℓ  ─ ​p​ u​​ ART ​​[​​ ​​(​​ ​ 
​dp​ d​​

 ─ dt ​​ )​​​ 
ss

​​ − ​​(​​ ​ 
​dp​ d​​

 ─ dt ​​ )​​​ 
leak

​​​]​​​​	

Vd is the downstream volume (calibrated using Burnett gas expansion 
with helium to within 0.001 cm3), ℓ is the film thickness, pu is the 
upstream pressure, A is the film area available for gas transport (de­
fined by the brass disc inner diameter), R is the gas constant, and 
T is the experimental temperature (35°C).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/20/eaaz4301/DC1
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