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Prediction of RNA base pairings yields insight into molecular structure, and therefore function. The most
common methods predict an optimal structure under the standard thermodynamic model. One component of
this model is the equation which governs the cost of branching, where three or more helical “arms” radiate out
from a multiloop (also known as a junction). The multiloop initiation equation has three parameters; changing
those values can significantly alter the predicted structure. We give a complete analysis of the prediction ac-

curacy, stability, and robustness for all possible parameter combinations for a diverse set of tRNA sequences, and
also for 55 rRNA. We find that the accuracy can often be substantially improved on a per sequence basis.
However, simultaneous improvement within families, and most especially between families, remains a chal-

lenge.

1. Introduction

Knowing the intra-sequence base pairings of an RNA molecule is
typically a crucial step in understanding its function (Tinoco and
Bustamante, 2000; Doudna, 2000). Towards this end, thermodynamic
optimization prediction methods remain essential tools for RNA struc-
tural biology (Mathews and Tumer, 2006), even as the ribonomics field
moves forward (Schuster et al., 1997; Major and Griffey, 2001; Gardner
and Giegerich, 2004; Ding, 2006; Leontis et al., 2006; Mathews, 2006;
Shapiro et al., 2007; Flamm and Hofacker, 2008; Eddy, 2014).

A set of pseudoknot-free, canonical base pairs for a single-stranded
RNA sequence is called a secondary structure. Each base pair defines a
substructure, such as a hairpin loop or a base pair stack. Our interest
here are the substructures known as multiloops (or junctions), which
have three or more helical “arms” branching off. The canonical example
for such a multiloop is the central single-stranded region in a 4-armed
tRNA secondary structure. Multiloops determine the molecular shape
(Giegerich et al., 2004) yet are some of the most difficult substructures
to predict correctly (Doshi et al., 2004).

The most common prediction methods use dynamic programing to
efficiently generate a minimum free energy (MFE) structure as output
(Zuker, 2003; Markham and Zuker, 2008; Gruber et al., 2008; Reuter
and Mathews, 2010). The free energy change from the unpaired RNA
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sequence is approximated under the nearest neighbor thermodynamic
model (NNTM). The model, and associated parameters, are available
online through the Nearest Neighbor Database (NNDB) (Turner and
Mathews, 2010). The AG of a secondary structure is the sum of its
substructure NNTM values. Here we analyze the initiation score, in-
tended to approximate the entropic penalty, given to a multiloop.

Multiloop stability under the NNTM is the sum of two types of free
energy changes. There is an initiation term (generally unfavorable) and
then the various (favorable) values for the “stacking” of adjacent single-
stranded nucleotides on base pairs in the loop. The stacking energies are
based on experimental measurements (Jaeger et al., 1989; Mathews
et al., 1999), but the initation is a linear function, originally chosen
(Jaeger et al., 1989) for computational expediency, in three (learned)
parameters;

AGipt = a + b-[number of unpaired nucleotides]
+ c-[number of branching helices]. (6]

Previously, this simple entropy approximation was viewed with some
concern (Diamond et al., 2001; Mathews and Turner, 2002; Lu et al.,
2006), but recent results (Ward et al., 2017) demonstrate that it out-
performs more complicated models in MFE prediction accuracy.

To achieve the full potential of this linear model for multiloop in-
itiation, we should understand how MFE predictions depend on the
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(a, b, c) parameters. This is possible by applying mathematical theory
to compute and analyze “RNA branching polytopes.” In this way, we
can characterize the optimal branching of a given RNA sequence for
every possible combination of (a, b, ¢). This approach, called a para-
metric analysis, permits us to quantify how much the accuracy can be
improved, as well as other important characteristics like its stability and
robustness.

We find that, on a per sequence basis, the accuracy can often be
improved by a substantial amount, especially when it was originally
low. However, the best predictions may require significantly different
combinations of parameters. Hence, improving the average accuracy
over a diverse set of sequences for a given RNA family, like tRNA or 55
rRNA, is much more challenging—but still possible.

However, our current approach cannot simultaneouly achieve this
improvement for both the tRNA and 55 rRNA families tested. This result
highlights that, while the linear model for multiloop initiation in Eq. (1)
can achieve very good accuracy, there may be a fundamental limit to
possible improvements for MFE branching predictions.

2. Materials and methods

We investigate how MFE prediction under the NNTM depends on
multiloop initiation parameters. In our analysis, we vary the parameters
(a, b, c) to characterize how the optimal branching changes, and its
effect on important prediction characteristics.

As listed in Table 1, each major revision of the NNTM has changed
the multiloop initiation parameters. The original “Tumer89” para-
meters (Jaeger et al., 1989) are now no longer commonly used, but
included here for completeness. The Turner99 ones (Mathews et al.,
1999) are still widely-used, as indicated by their listing in the NNDB
(Turmner and Mathews, 2010). The Tumer(04 multiloop model in the
NNDB has a different form, but the recent study (Ward et al., 2017)
showing the superior performance of Eq. (1) reported using the values
below.

Given an RNA sequence R as input, the MFE prediction algorithm
has two parts. First, the minimum value, which is necessarily unique if
(a, b, c) are fixed, is calculated. Next, at least one secondary structure S
is computed whose free energy change AGs is the MFE value. Often,
only a single optimal structure is output, although it is possible to have
two or more. The set of all MFE secondary structures can be computed
by setting the free energy increment to 0 in the standard suboptimal
structure algorithm (Wuchty et al., 1999).

2.1. Test sequences

Two families were tested: tRNA and 5S rRNA. Their native struc-
tures are well-characterized, and there are enough sequences available
to generate a diverse test set. Computational limitations, discussed in
Section 2.3.3, precluded a statistical analysis of longer sequences, like
RNase P, at this point.

For each family, 50 sequences and their native base pairings were
collected from the Comparative RNA Web (CRW) Site (Cannone et al.,
2002). The pseudoknot-free secondary structures were used and only
canonical base pairings are considered in accuracy calculations. The 50
sequences were arbitrary chosen so that their MFE prediction ac-
curacies and cc content were distributed fairly evenly over the interval
[0, 1]. Sequences, including accession numbers, length, MFE accuracy,

Table 1
Multiloop initiation parameters over time.
a b c
Turner89 4.6 04 01
Turner99 3.4 0 04
Turner04 9.3 0 -0.6
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Table 2
Improved parameters from branching polytopes.
Exact Approximate
a b c a b c
Best tRNA  2729/250 —53/375 —261/100 109 =01 -26
Best 58 —52361/6160 789/3080 6873/1540 -85 03 4.5
Best both 489/40 51/320 —231/80 122 0.2 -29

and cc content, are listed in Supplementary Tables.

To assess the biological significance of their geometric character-
istics, each set of biological branching polytopes was compared against
two background distributions First, each test sequence was “shuffled”
by the ushuffle program (Jiang et al., 2008). The new sequence has
the same dinucleotide frequency (Workman and Krogh, 1999; Clote
et al., 2005) as the original, but is otherwise randomized. Additionally,
a set of uniformly random sequences, with the same length distribution
as the original test set, was generated with a random number generator
(Fog, 2017). Each nucleotide has a 25% probability of being used in any
given position.

2.2, Prediction characteristics

We evaluate the accuracy, stability, and robustness of the MFE
predictions for different multiloop initiation parameter triples. We
consider the three NNTM triples listed in Table 1 above, as well as three
new triples, listed in Table 2 on page 6 which most improve predicction
accuracy for the tRNA test sequences, for 5S, and for both families,
respectively.

2.2.1. Accuracy

Given the pseudoknot-free, canonical base pairings for a native
secondary structure S and a corresponding MFE prediction S’ for that
RNA sequence R, we score the accuracy as the Fj-measure:

, 1SN S
F|S§8, 58 |=2—m,
1[ ] IS + 1S @

where |S] and |S’| are the number of base pairs in § and §’, respectively,
and |S N §'| is the number of true positive base pairs common to both
structures. The minimum value 0 means no accurately predicted base
pairs, while 1 means perfect prediction.

The accuracy of a multiloop initiation parameter triple for R is the
average over all possible MFE secondary structures for that fixed
(a, b, c). We report the average accuracy, with standard deviations, for
each of the two RNA families tested.

2.2.2. Stability

The stability of a multiloop initiation triple is the amount those
numbers can vary without changing the MFE prediction. Summary
statistics are reported for each test family.

We first compute the amount each parameter can vary if the other
two are fixed. This indicates the relative sensitivity of the MFE pre-
diction to that parameter alone.

Next we consider how much the parameters can vary simulta-
neously. In particular, we investigate the rounding error effects, since
the Turner parameters are calculated to 1 decimal precision. Hence, we
consider a cube centered at a parameter triple, with edge lengths of.2,
and compute the percentage of predictions which are stable within that
cube. We repeat this for the (a, c) square with fixed b since we wish to
understand the differences in sensitivity.

2.2.3. Robustness
Since we find that predictions typically have low stability, we also
consider their robustness. The robustness of (a, b, ¢) will measure the
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similarity between predictions for other “nearby” parameter triples.

To compare two sets of MFE predictions, we calculate the worst best
match between optimal structures for each parameter triple. More
precisely, we compute the discrepancy as

disc[t, t’] = mi_nmaxFl[S, S’],

s s 3)
where S varies over all MFE secondary structures for t = (a, b, c), resp.
§" and t’' = (a', b’, ¢’). Since the F-measure is symmetric, it is used to
score structural similarity here. Here 1 is two identical MFE secondary

structures, and 0 is no common base pair.
The robustness of t over a distance r is then

robust| t, r| = min disc|t, t’
d(t,t)<r 4)

where the maximum metric
d(t, t') = max{la — @', [b — b, |e — |} (5)

covers a cube with side lengths 2r centered at the parameter triple
t=(a, b, c). We consider a progression of distances, starting with
r = 0.1 and doubling every step until r = 3.2.

2.3. Parametric analysis

A description of the specific software used, as well as some back-
ground on the mathematical theory, have been published (Drellich
et al., 2017). Here we focus only on the details relevant to this biolo-
gical application.

2.3.1. RNA branching signatures

The theory requires the thermodynamic optimization to be for-
mulated as particular type of function, known as a linear program, in the
parameters a, b, and c. Given the additive structure of the NNTM, this is
easily done if we introduce a fourth “dummy” parameter d. Thus, the
free energy change of a secondary structure S as a linear program in
parameters (a, b, ¢, d) closely paralles Eq. (1);

AGs = ax + by + cz + dw, (6)

where

(i) x is the number of multiloops in §,

(ii) y is the total number of unpaired nucleotides in those multi-
loops,

(iii) z is the total number of branching helices around those multi-
loops, and

(iv) w is a remainder term which includes all other components of
the AG calculation for S under the NNTM except those involving
a, b, and c.

There is a crucial technicality, however. The set of base pairs §
unambiguously determines AGs—except for multiloop stabilities. Recall
the second part of that calculation, often called the “dangling” energies,
depends on the single-base stacking.

Since this information is essential to our parametric analysis, we
work with refined secondary structures which, in addition to the usual
base pairs, include the single-base stacking (Drellich et al., 2017). A
refined secondary structure will be denoted 5.

For each S, there is a single quadruple (x, y, z, w) which is its
branching signature. However, there may be multiple refined secondary
structures with the same signature. This is because, under the NNTM, it
is possible to have different assignments of single-base stacking which
leave w unchanged, or even different arrangments of base pairs which
still yield the same (x, y, z) as well as w.
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2.3.2. RNA branching polytopes

Having formulated the thermodynamic optimization as a linear
program, we can now—through the power of the mathematical theo-
ry—analyze the optimal branching signature for all of the (infinitely
many) possible combinations of (a, b, ¢). To do this, we compute a
geometric structure, know as the branching polytope for the given RNA
sequence R.

For this R, there are only finitely many branching signatures pos-
sible, since there are only a finite number of possible refined secondary
structures. The branching polytope is simply the smallest convex “en-
velope” enclosing these branching signatures.

A (filled) square is a 2-dimensional polytope, and a (solid) cube is
one in 3d. In general, the “comers” of a polytope are called vertices and
the flat sides are called faces; a cube has 8 vertices and 6 faces.
Although an RNA branching polytope is significaly more complicated
structurally than a cube, it is fundamentally the same type of mathe-
matical object.

The mathematical theory says that if a linear program is optimized
over a polytope, then the maximum and minimum are achieved on the
boundary. (Intuitively, visualize sweeping a ruler across a square at a
fixed angle to the horizontal) Moreover, some combinations of para-
meters (that is, different angles of the ruler) give the same optimum
while others give different ones.

The theory tells us that two different combinations of multiloop
initiation parameters yield the same optimum branching signature if
and only if they both lie in the same connected, convex region of the
(a, b, c, d) parameter space. Hence, to understand the infinite para-
meter space, we “only” need to compute the finite number of optimal
branching signatures on the boundary of the RNA branching polytope.

2.3.3. Computional challenges

Although the number of branching signatures is finite for a given
RNA sequence, it is far too large to compute the branching polytope
directly from this set. Instead, we use the pmfe software (Drellich et al.,
2017) developed for this specialized purpose.

Critically, the software running time depends on the number of
vertices plus the number of faces of the polytope being computed. RNA
branching polytopes are structurally rather complex, and that com-
plexity increases with sequence length. Hence, a tRNA computation
takes about 2 h, while 55 rRNA takes about a day; see Table 8 on page 9
for details.

Increasing the sequence length by another 50 nucleotides (nt) to
175 increases the time to a week. The longest computation attempted
thus far, for an RNase P sequence of length 354 nt, took more than
2 months. Hence, extending this analysis to more, longer sequences will
require new algorithmic approaches to computing RNA branching
polytopes.

2.3.4. Data analysis

To generate the data reported, the RNA branching polytopes pro-
duced by pmfe were analyzed using the mathematical software sage
(The Sage Developers, 2017). Since multiple comparisons among
summary statistics (averages and standard deviations) were often made,
unless otherwise indicated, statistical significance of differences was
assessed using a standard one-way analysis of variation (ANOVA) fol-
lowed by Tukey Honestly Significant Difference (HSD) post hoc tests at
the 95% confidence level.

2.3.5. Computing best accuracies

For each vertex of a branching polytope/region of the parameter
space, we computed the prediction accuracy as the average over all
refined secondary structures which attain the common MFE value. This
identifies the most accurate parameters for that sequence.

However, to find the best prediction for a set of sequences involves
considering the intersection of parameter regions for difference poly-
topes. It is computationally infeasible to consider all possibilities for our
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test families, so we restricted to searching for large subsets which
achieve their best accuracy simultaneously. This is possible using an
graph algorithm, implemented in sage, that searches for large “cli-
ques.”.

For this purpose, we built a graph for tRNA and one for 55 rRNA.
Each graph vertex represents one of the 50 test sequences, and two
vertices are conntected by an edge if their maximum accuracy can be
achieved simultaneously. A clique is a subset of vertices where all
possible edges occur in the graph. In this case, a large clique is a useful
set of test sequences whose best parameters have nonempty intersec-
tion.

3. Results and discussion

We address first the biological implications of our analysis, and
defer the geometric details until later.

3.1. Biological implications

The explicit construction of 3d parameter decomposition for each
RNA sequence enables us to determine how well the NNTM approx-
imates the native secondary structure.

3.1.1. Improving accuracy
We found that 89% of tRNA and 90% of 5S rRNA predictions can be

improved. Fig. 1 shows maximum accuracy per sequence over the
Turner99 baseline, as well as average maximum over average baseline.
However, it is not possible to achieve this maximum average for either
test set because the common intersection for the best regions is empty.

To find a better maximum average, we used the method in Section
2.3.5 which finds large subsets of sequences whose best accuracy is
simultaneously achievable. We found 7 such subsets for tRNA and 4 for
58 rRNA. For each subset, we computed the common intersection of
their best possible regions, and found its center. The prediction ac-
curacies for the test sequences were then computed using this center as
the multiloop initiation parameters.

The best (a, b, c) triples found for tRNA, for 5S rRNA, and for both
are reported in Table 2. The first values listed are fractions because the
software used computes over the rationals. To facilitate comparison
with the current NNTM values, listed in Table 1 on page 2, the exact
fractions were rounded to 1 decimal place, and are also reported in
Table 2.

Table 3 lists average MFE prediction accuracy under these different
parameter triples. Using the approximate values, rather than the exact
fractions, can change the prediction; see Section 3.1.2 for further de-
tails. However, no significant differences between the exact and ap-
proximate prediction accuracies were identified.

tRNA

0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2
0.1

1 3 5 7 911131517 1921232527 2931 333537 394143454749

s Turners9 Average Turner39 Maximum Average Maximum
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Table 3

MFE prediction accuracy comparison.
Parameters tRNA 58 rRNA

Avg Std Avg Std

Turner89 0.41 0.25 0.69 0.24
Turner99 0.52 0.30 0.63 0.24
Turner04 0.45 0.28 0.64 0.24
Best tRNA 0.75 0.24 0.50 0.21
Best 58 0.36 0.19 0.74 0.19
Best both 0.73 0.26 0.61 0.22
Best tRNA (approx) 0.74 0.24 0.52 0.21
Best 58 (approx) 0.36 0.18 0.71 0.22
Best both (approx) 0.71 0.27 062 0.21

Interestingly, the differences among the prediction accuracies
within each family for the three Tumer triples are not statistically
significant either.

For tRNA, the differences between “best tRNA” and “best both”
parameters were not statistically significant. However, the differences
between these and the Tumer parameters were, as well as the differ-
ences with the “best 55.”.

For 55 rRNA, only two types of significant differences were found:
between “best tRNA” and the three Tumer parameters as well as the
“best 55” ones.

We conclude that the “best” parameters for one family substantially
lower the prediction accuracy for the other. However, the “best both”
parameters raise the tRNA prediction accuracy considerably without
negatively affecting the 55 rRNA predictions relative to the Tumer
parameters.

Our analysis here supports recent NNTM developments; the
Tumer(4 parameters have a much larger a penalty than previously, but
the ¢ value is actually negative (so weakly favorable). The “best both”
parameters have an even larger a penalty (12.2 versus 9.3) and a much
more strongly favorable ¢ value (-2.9 versus —0.6). Additionally, there
is a small loop size penalty of b = 0.2.

3.1.2. Stability

Table 4 reports distance to the closet region boundary in each di-
mension if the other two are fixed. Every (a, b, c) triple tested is most
sensitive to changes in b, which weights the number of single-stranded
nucleotides in a multiloop. This is because the regions overall are much
thinner in this direction; see Table 10 and discussion of the general
geometry of the parameter space decomposition in Section 3.2.2.

Furthermore, each triple is least sensitive to a, whose stability is
always at least 3 times c. Beyond this, no clear correlations were found.

55 rRNA
1
0.9 S
0.8 ‘_________,..-"'
0.7 e
0.6
0.5
0.4
0.3
0.2
0.1
0
1357 9111315171921 23 2527 2931333537 394143454749
s Turnerss Average Turner39 Maximum Average Maximum

Fig. 1. Per sequence improvements for tRNA and 55 rRNA test sets. Initial (Turner99) average accuracies are 0.52 (0.30) and 0.63 (0.24), resp. Most can be
improved, by 0.39 (0.27) and 0.18 (0.21) on average, yielding maximum possible averages of 0.91 (0.10) for tRNA and 0.81 (0.09) for 55 rRNA. Differences within
families have high statistical significance (p < 0.0002). Between family differences in initial accuracies are weakly significant (p = 0.0372) but maximum ones are not

(p = 0.0701).
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55 rRNA

Avg

Std

(3.81, 0.28, 1.19)
(213, 0.07, 0.71)
(3.92, 0.09, 1.12)
(1.11, 0.04, 0.35)
(3.43, 0.22, 1.14)
(2.38, 0.11, 0.53)

(2.46, 0.16, 0.77)
(1.65, 0.07, 0.55)
(2.15, 0.09, 0.71)
(0.94, 0.03, 0.25)
(2.39, 0.13, 0.80)
(1.58, 0.10, 0.39)

Table 4
(a, b, c) stability for tRNA and 55 rRNA.
Parameters tRNA
Avg Std
Turner89 (2.00, 0.30, 0.57) (1.45, 0.19, 0.42)
Turner99 (1.82, 0.11, 0.53) (1.42, 0.10, 0.45)
Turner04 (2.10, 0.18, 0.56) (1.46, 0.12, 0.39)
Best tRNA (4.16, 0.13, 1.40) (1.61, 0.11, 0.67)
Best 558 (1.93, 0.25, 0.64) (1.25, 0.15, 0.42)
Best both (3.44, 0.19, 0.93) (2.07, 0.15, 0.64)
Table 5
Stability percentage for (a, c) under.1 rounding error.
tRNA 55 rRNA
fixed b Ab <01 fixed b Ab <01
Turner89 B84 68 88 8
Turner99 76 3z 82 16
Turner04 86 62 88 28
Best tRNA 98 58 78 6
Best 558 86 70 88 76
Best both 88 62 82 40

We also consider perturbing the parameters simultaneously, within
the 1 decimal rounding error. Table 5 gives the percentage of predic-
tions which are stable when Aa, b, ¢ £ 0.1 and also when b is fixed but
Aa, c £ 0.1,

Turner99 is least stable for tRNA, while most stable is split between
“best tRNA” and “best 58.” In contrast, 58 rRNA is least stable for “best
tRNA,” but most stable for “best 55.” The “best both” are a good
compromise, and certainly comparable to all Turner stabilities.

3.1.3. Robustness

Stability analysis shows that small changes in multiloop initiation
parameters, especially in b, may alter MFE predictions. We now in-
vestigate how different those predictions are.

Robustness ¢ within error r means that even if the parameters are
independently varied by + r, the similarity of any new prediction to an
original one is at least c. Robustness of all 6 parameters for both families
is given in Tables 6 and 7 for r values that double starting with initial
value .1.

Although MFE predictions are not necessarily stable within .1 error,
the similarity remains high even as the parameters change. For both test
families, the “best both” robustness is still greater than 0.5 at distance
0.4. For tRNA, this improves over Turner99 but is comparable to the
other parameters. For 5§ rRNA, this is no worse than “best 55” or
Turner89, and better than the other parameters.

3.2. Geometric details

RNA branching polytopes have certain distinctive characteristics. To

determine if these are biologically meaningful, we compare the 50 real
RNA sequences against two background distributions, the 50 shuffles
and the 50 uniformly random ones, for each of the two test families.

Overall, there are some significant differences between the tRNA
and 58 rRNA length scales. However, statistically significant differences
within families did not occur with any consistent correlations that lead
to biological insight.

3.2.1. Polytope complexity

Computation time depends on polytope complexity, measured in
terms of the number of vertices and of faces. Polytope complexity in
turn depends on sequence length, as clearly seen in Table 8. For sim-
plicity, computation time is reported in hours although it was measured
in seconds.

An increase of less than 50 nt in average sequence length increases
both the number of vertices and of faces by a factor of 3.6. This then
increases the computation time from 2 h to a full day. Beyond this, we
can drawn no meaningful conclusion from the differences within the
two families between the biological branching polytopes and those for
the random sequences in terms of their complexity.

3.2.2. Parameter space decomposition

Although an RNA branching polytope live in the 4d (x, y, z, w) co-
ordinate space, we are only interested in the corresponding (a, b, c, d)
parameters when d = 1. In this case, there is no scaling applied to the
other NNTM values in the AG calculation. We also analyze the special
case when b = 0, as the Turner99 and Turner04 parameters both use
this value.

Each polytope still yields a subdivision of the 3d (a, b, c, 1) para-
meter space into connected, convex regions with flat sides. Now,
though, the regions may be bounded as well as unbounded. The ar-
rangement of unbounded regions in the (a, 0, ¢, 1) plane has a char-
acteristic pattern, first illustrated in Drellich et al. (2017) and now fully
described (Barrera-Cruz et al., 2018) for all fixed b.

Here we are concerned with the bounded regions since this includes
the biologically realistic parameter ranges. The number of d = 1 regions
under different constraints, bounded (bnd) and/or b = 0, is listed in
Table 9. As with polytope complexity, ANOVA calculations did not
identify any consistent, significant differences within the two families.

However, differences between families are again significant. For

Table 6

Robustness of tRNA prediction within error r.
Parameters r=01 r=02 r=04 r=08 r=16 r=32

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

Turner89 0.84 0.30 071 0.34 0.47 0.27 0.33 0.19 0.11 013 0.03 0.04
Turner99 0.71 0.31 0.55 0.29 0.41 0.21 0.26 0.18 0.07 0.09 0.03 0.04
Turner04 0.77 0.31 0.58 0.31 0.38 0.20 0.24 0.19 0.06 0.08 0.03 0.04
Best tRNA 0.91 0.16 079 0.23 0.61 0.24 0.25 0.20 0.06 0.07 0.03 0.04
Best 55 0.85 0.27 0.67 0.33 0.39 0.26 0.30 0.19 0.08 0.11 0.02 0.04
Best both 0.87 0.23 075 0.28 0.52 0.28 0.40 0.18 0.09 0.10 0.03 0.04
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Table 7
Robustness of 55 rRNA prediction within error r.
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Parameters r=01 r=02 r=04 r=08 r=16 r=32
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std
Turner89 0.91 0.24 0.86 0.28 0.65 0.34 0.36 0.22 0.11 0.08 0.03 0.03
Turner99 0.78 0.27 061 0.28 0.45 0.22 029 0.17 0.08 0.06 0.04 0.03
Turner04 0.82 0.29 074 0.30 0.44 0.24 0.30 0.17 0.08 0.06 0.04 0.03
Best tRNA 0.76 0.21 0.60 0.20 0.49 0.19 027 0.13 0.08 0.06 0.05 0.03
Best 55 0.87 0.30 077 0.34 0.57 0.33 0.33 0.20 0.10 0.08 0.03 0.02
Best both 0.82 0.24 0.69 0.24 0.54 0.23 0.37 0.17 0.11 0.07 0.04 0.02
Table 8 families is not. A similar phenomenon happens in the ¢ dimension, and

Polytope computation time and structural complexity for tRNA and 55 RNA.

Family # Seq Length (nt) Time (h) # Vertices # Faces
Avg Std Avg Std Avg Std Avg s
tRNA 50 74.38 1.89 1.86 026 703 56 2075 19
shuffled 50 74.38 1.89 205 035 718 73 2093 220
uniform 50 74.38 1.89 196 032 708 63 2072 213
58 50 121.38 362 2315 333 2639 183 7649 524
shuffled 50 121.38 362 2362 474 2606 251 7436 745
uniform 50 121.38 362 2284 4.03 2523 228 7262 681

Table 9
Number of regions in (a, b, ¢, d) parameter space under constraints.

Family d=1 bndd=1 (b, d) =(0,1) bnd (b, d) = (0, 1)
Avg Std  Avg Std  Avg Std Avg Std
tRNA 517 42 320 36 46 6 29 5
shuffled 536 60 335 46 48 6 3 5
uniform 529 53 329 46 50 8 33 7
58 2109 164 1607 138 125 16 97 14
shuffled 2072 235 1564 201 127 21 98 19
uniform 2007 191 1515 165 128 20 100 18

example, a greater percentage of 55 rRNA regions, 80 (2) versus 74 (3)
for tRNA, intersect the d = 1 hyperplane. Of those, more 55 rRNA are
bounded: 76% (1) versus 62% (3). The increase in sequence length
increases the number of possible multiloops, which likely affects this
distribution.

The fact that ~50% of the polytope vertices may be of biological
interest illustrates the challenge in improving prediction accuracy cal-
culations. The numbers do drop substantially when b = 0, however all
of the 3 “best” parameters identified here used b > 0.

The sensitivity of predictions to changes in b is explained by
Table 10, which demonstrates that all regions are thin in b. The most
significant differences are between families, although the lowest and
highest values within families are different, but the overlap between

Table 10
Average d = 1 bounded region dimensions in (a, b, c).

also a when x > 1. It may be that these differences have biological
implications, so we plan to investigate further in the future.

The high average a dimension is due to regions whose associated
branching signatures have x = 1. When these regions are excluded, the
average a length drops to roughly twice the ¢ dimension. We do not
understand the phenomenon yet, and plan to address it in a future
study. Likewise, we will investigate the significant difference in the a
value for the 55 rRNA sequences from all other test sets.

4. Conclusion

In this work we analyzed the effects of changing the three para-
meters (a, b, ¢) used in the initiation score, which approximates the
entropic penalty, given to a multiloop in the NNTM. For this purpose we
leveraged tools from geometry that allow us to build so-called
branching polytopes for a diverse set of tRNA and 55 rRNA sequences
and analyze all possible MFE structures for each of them. We then used
this comprehensive information to give a complete analysis of the
prediction accuracy, stability, and robustness for these sequences.

We find that on an individual basis, the secondary structure can be
predicted with high accuracy (albeit never 100% accurately for 58
rRNA) for all sequences for some combination of multiloop parameters.
This is a substantial improvement over the Turner99 parameters for a
lot of sequences; however, the average maximum accuracy is not
achievable for either tRNA or 55 rRNA for any choice of parameters.
Using techniques from graph theory, we found combinations of para-
meters that improve the prediction for each family separately as well as
across both families together. The “best both” parameters we found
penalize the initiation of a multiloop more severely than the Tumer99
parameters but then favor formations of branchings. We find that under
these parameters the tRNA accuracy improves significantly whereas the
difference in 58 rRNA accuracy versus the Turner parameters was not
found to be significant.

QOur analysis of the stability shows that the prediction is most sen-
sitive in the change of the b parameter which is used to weight the
unpaired nucleotides in the multiloops and least sensitive in the change
of the parameter a. We explain this phenomenon by showing that the
regions in the (a, b, c) parameter space that correspond to different

Parameters All

x>1

Avg

Std

Avg

Std

(26.80, 0.46, 2.55)

shuffled (26.92, 0.49, 2.71)
uniform (26.01, 0.48, 2.60)
58 (32.10, 0.41, 2.24)
shuffled (27 26, 0.36, 1.92)
uniform (27.06, 0.37, 2.00)

(3.15, 0.06, 0.49)
(3.94, 0.09, 0.56)
(4.39, 0.08, 0.45)

(3.12, 0.04, 0.27)
(3.76, 0.07, 0.37)
(3.62, 0.07, 0.37)

(5.07, 0.48, 2.63)
(5.47, 0.51,2.86)
(5.24, 0.50, 2.73)

(4.23, 0.42, 2.30)
(3.75, 0.37, 1.97)
(3.92, 0.38, 2.07)

(1.04, 0.07, 0.54)
(1.19, 0.09, 0.67)
(0.87, 0.09, 0.50)

(0.51, 0.05, 0.29)
(0.65, 0.67, 0.38)
(0.65, 0.07, 0.39)
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predictions are significantly thinner in the b direction than in the other
two. The robustness analysis shows that even though the prediction is
not necessarily stable even under + .1 error, the similarity of the pre-
dicted structures remains high even as the parameters change.

Finally, in order to determine whether the distinctive characteristics
of the branching polytopes are biologically meaningful, we compared
the complexity of the RNA branching polytopes to the one for two sets
of random sequences: one set which was obtained by permuting the
biological sequences in a way that preserves the dinucleotide frequency
and one set in which the nucleotide frequencies are all equal to 25%.
While some differences between the branching polytopes were ob-
served, they were not significant enough to draw any meaningful
conclusions. However, the complexity of the polytopes and the com-
putational time needed for sequences at this length scale imply that the
same kind of parametric analysis would be unfeasible for sequences of
the order 1000 nt and to perform a similar analysis for such sequencesa
new algorithm would be needed.
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