Day 1: Agency, Affect and Assessment

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

An Analysis of Use-Modify-Create Pedagogical Approach’s
Success in Balancing Structure and Student Agency

Diana Franklin*, Merijke Coenraad’, Jennifer Palmer*, Donna Eatinger®, Anna Zipp®,

Marco Anaya*, Max White*, Hoang Pham*, Ozan Gokdemir*, David WeintropJr
“University of Chicago, Chicago, IL, USA
¥ University of Maryland, College Park, College Park, MD, USA
{dmfranklin,jenpalmer,azipp,manaya,hoangsp,gokdemir}@uchicago.edu;{mcoenraa, weintrop}@umd.edu

ABSTRACT

As computer science instruction gets offered to more young learn-
ers, transitioning from elective to requirement, it is important to
explore the relationship between pedagogical approach and student
behavior. While different pedagogical approaches have particular
motivations and intended goals, little is known about to what degree
they satisfy those goals.

In this paper, we present analysis of 536 students’ (age 9-14,
grades 4-8) work within a Scratch-based, Use-Modify-Create (UMC)
curriculum, Scratch Encore. We investigate to what degree the UMC
progression encourages students to engage with the content of the
lesson while providing the flexibility for creativity and exploration.

Our findings show that this approach does balance structure with
flexibility and creativity, allowing teachers wide variation in the
degree to which they adhere to the structured tasks. Many students
utilized recently-learned blocks in open-ended activities, yet they
also explored blocks not formally taught. In addition, they took
advantage of open-ended projects to change sprites, backgrounds,
and integrate narratives into their projects.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Computational thinking;

KEYWORDS
Computational Thinking; K-12 education; Scratch

ACM Reference Format:

Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna
Zipp, Marco Anaya, Max White, Hoang Pham, Ozan Gékdemir, David Wein-
trop. 2020. An Analysis of Use-Modify-Create Pedagogical Approach’s Suc-
cess in Balancing Structure and Student Agency. In Proceedings of the 2020
International Computing Education Research Conference (ICER’20), August
10-12, 2020, Virtual Event, New Zealand. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3372782.3406256

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICER °20, August 10-12, 2020, Virtual Event, New Zealand

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7092-9/20/08....$15.00
https://doi.org/10.1145/3372782.3406256

14

1 INTRODUCTION

Computer science is well on its way to becoming a subject that
all K-12 students learn. Countries (e.g. Israel and United Kingdom)
and major US school districts (e.g. San Francisco, New York, and
Chicago), have pledged to bring CS experiences to all students in
their schools through large-scale initiatives.

Several different pedagogical approaches for K-12 computer sci-
ence instruction have been proposed, ranging from Construction-
ism (typified by learner-led activities focused on building personally-
meaningful projects) to more structured approaches (puzzle-based
curricula with many small tasks that gradually build skills for a
particular concept). The Use-Modify-Create (UMC) pedagogical
approach [18] represents a middle ground. Students are first in-
troduced to new concepts through example code, exploring and
modifying that code, and then designing and building an open-
ended project. Each approach has is in widespread use and has its
own rationale based on desired learning goals, but little research
has been performed on UMC itself.

This work pursues the guiding research question: “To what de-
gree does Use/Modify/Create provide structure focusing learners on
computer science concepts while retaining enough open-endedness
for student exploration intended to lead to engagement, identity
development, and differentiation?” This question focuses on the ten-
sion between structured activities that ensure content engagement
and the open-ended exploration that allows for learners to draw on
prior knowledge and personalize their work, not on whether the
end goals of engagement and identity development were achieved.
Analyzing student artifacts from Use/Modify and Create activities
in a UMC-structured curriculum from 9 different schools, we ask
these specific questions.

To what extent did UMC focus learners on specific CS content:

e To what degree do students focus on and complete the as-
signed tasks? What influences completion?

e To what degree do students utilize blocks introduced within
that or previous modules?

e To what degree do students focus on assigned tasks prior to
completing extensions?

To what extent did UMC support learner exploration and per-
sonalization:

o To what degree do students complete extensions?

e To what degree do students explore blocks not yet formally
introduced?

e To what degree do students personalize their projects?

https://doi.org/10.1145/3372782.3406256

Day 1: Agency, Affect and Assessment

2 THEORY AND PRIOR WORK

In this section, we present the major theoretical and practical influ-
ences that inform this work. This includes prior work on theories
on learning, pedagogical approaches and tools in elementary CS
education, and work on elementary CS learning trajectories.

2.1 Theoretical Orientation

This work is grounded in constructionist design and learning the-
ory while also being informed by Vygotsky’s notion of the zone
of proximal development (ZPD), the idea that in learning there is
a relationship between the activities, student skills, and student
engagement. There is a beneficial range of difficulty that requires
academic growth, but is still within that learner’s reach [6, 32].
Designing learning experiences to keep students in their ZPD pro-
duces instructional strategies that allow the same learning activity
to fit many learners at various points along a learning trajectory.
This is accomplished through instructional scaffolding for some
students [30, 31, 37] and additional challenges for other students.
Constructionism emphasizes empowering learners to construct
personally-meaningful artifacts through learner-directed explo-
ration [25, 27]. Constructionist learning experiences are often de-
signed to give the learner agency in the activity, encouraging explo-
ration throughout the process of constructing public and shareable
artifacts [16, 26]. The open-endedness can be difficult to adhere to
when used in a context where there are specific learning objectives
or when trying to introduce new conceptual material or practices.
Noss & Hoyles [24] call this the Play Paradox, an inherent tension
between supporting a freedom of exploration while constraining
the activity to ensure specific concepts or practices are encountered.
One way out of this pedagogical paradox that attends to both
sides of this tension is the Use—>Modify—>Create instructional ap-
proach [18]. This approach moves learners from an initial, highly-
scaffolded activity focused on introducing concepts and practices
(the Use activity) towards a more open-ended exploratory space as
learners’ competence and confidence grows (the Create activity).
Between the two is an interstitial step where some of the initial
scaffolds fade and the learner is given increased agency to create
while still have some instructional supports present to help them
along (the Modify activity). For this work, ZPD is used as a theoret-
ical orientation to motivate the design employed and the research
questions being asked, rather than being employed as an analytic
lens. Instead, we look more generally at whether this curricular
approach allows flexibility on both ends - instructional support and
additional tasks, while directing students to specific learning goals.

2.2 Pedagogy In K-12 Computing Education

Much of the curricular and programming environment design ef-
fort for younger students has been inspired by Constructionism
[13, 25]. As discussed above, Constructionist learning foregrounds
learner-led activities that provide the opportunity for learners to
construct artifacts (e.g. Scratch programs). These constructed arti-
facts enable learners to share their ideas with peers and can serve as
resources for teacher-led classroom discussions. Providing a public
forum for students to share their ideas, experiences, and programs
encourages students to become more invested in their own learning
and promotes an inclusive learning environment [26]. This focus

15

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

on student-driven learning, not specific technical content, has coin-
cided with work in informal spaces [15, 22] and placed an emphasis
on self-directed learning and online collaboration [9, 29] and the
practices of computing [3]. The Creative Computing Curriculum is
an iconic example of this approach[4].

There is also a growing library of curricula designed for early
elementary learning that uses specially-designed programming en-
vironments that lead students through a more structured experience.
This includes curricula design by Code.org [1], and the Foundations
for Advancing Computational Thinking (FACT) curriculum [11].

2.3 Programming Environments for K-8
Learners

While traditionally a subject for high school and beyond, there is
growing demand for bringing CS into K-8 classrooms. Early work
by Papert and colleagues found that programming was accessible to
younger students and could serve as a powerful pedagogical strat-
egy [12, 25, 28]. In the last decade, bringing CS to K-8 has grown in
popularity and has been facilitated by programming tools designed
for young students [8, 17]. An increasingly popular approach for
creating engaging and accessible programming environments is
the graphical, block-based programming interface [2, 33]. Visual
block-based languages use a programming-command-as-puzzle-
piece metaphor to visually render syntax rules and allow users
to use a drag-and-drop interaction to construct programs. Block-
based programming tools provide numerous scaffolds that make
programming easier, including limiting syntax errors, providing
visual cues on how commands can be used, and providing an easy
way to browse available commands [36]. Block-based programming
interfaces have been used to create an array of programming envi-
ronments and tools, including museum exhibits [14], libraries for
controlling robots [23, 35], and tools for creating mobile apps [7].

2.4 Prior Work

Prior work has attempted to understand what students learn within
different pedagogical approaches. Constructionist approaches places
more focus on student-driven learning, and less on specific tech-
nical content. It has coincided with work in informal spaces[22]
and placed an emphasis on self-directed learning and collabora-
tion [21, 29], and the practices of computing[3]. However, this
open-ended approach, with its emphasis on empowerment through
building an end product, can leave gaps in student knowledge[5].

While the Use—>Modify—>Create (UMC) approach has been used
widely, only recently the approach been the focus of research. One
study providing choices in modify tasks (“Choose”) found no dif-
ferences in perceived difficulty by students or teachers, despite
being potentially harder to teach [20]. A quasi-experimental study
on UMC found that students in the UMC treatment found Use-
>Modify (UM) tasks easier than control students did. The most
important result, however, was that treatment students felt more
ownership over larger projects [19]. The authors hypothesized that
this was because the scaffolding provided by the UM activity pro-
vided them with the skills to get past the required elements of
their projects more quickly, allowing them more time and skills to
implement their own ideas in their projects.

Day 1: Agency, Affect and Assessment

— -
Introduction
. J 5
© e B v
8 Observe: TIPP 3
o S 3
r S o
Explore: SEE
’é\ —
B Modify Task
= = = =
o Design / Plan 5
8| f
5 S
& Implement ~

Figure 1: Common module design with two activities.

What happened when you played the project? Circle or highlight the action(s) that happened for
each event.

1. When | clicked the green flag:
talked talked 2' talked
ﬁ drove moved “ moved
did nothing did nothing did nothing
2. When | pressed the space bar:
talked talked ;}' talked
@ drove moved “ moved
did nothing did nothing did nothing

Figure 2: TIPP worksheet guides students through mind-
fully playing and observing the provided Scratch project.

3 ENACTING USE->MODIFY->CREATE

In order to illustrate how UMC was enacted, we provide an overview
of Scratch Encore followed by one detailed module.

3.1 Curriculum

Scratch Encore is a 2-3 year intermediate Scratch curriculum de-
signed for students with a year of introductory coding covering
sequencing, loops, and conditional logic [10]. It has 15 UMC learn-
ing modules, each with 3-5 class sessions (Figure 1).

Each module first introduces the concept by tying the content
to examples from students’ everyday lives. Students then receive
example code for a Use->Modify activity, scaffolded in their explo-
ration of the project with a worksheet, shown in Figures 2 and 3.
TIPP orients students to the project and steps them through playing
and recording observation of the project execution. SEE asks them
to navigate the Scratch interface and find the code that performed
the actions they observed. They then step through small, deliberate
modifications to learn how the blocks being introduced behave.
They then do a small modify task. Finally, the Create activity in-
volves a largely open-ended challenge where students are given
design prompts that lead them towards a project that can utilize
the new concept.

3.2 Example Module: Conditional Loops

To more clearly illustrate the principles enacted in Scratch Encore,
we provide details on Module 4: Conditional Loops.

The module begins with an introductory discussion about re-
peated actions and how repeated actions can end after a set number

16

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

SEE Inside:

when M dicked
Click the Car Sprite, find the Event, and Explore! Change, notice what

happens, and fill-in or highlight the answer(s).

touching (Stop <)? 1o lauching (Livby)2

5. Change the
Click the green flag.

Now, the Car stops at (the): © Stop Sign © Libby © purpleline = orange line.
i Libb ? i ?
6. Replace 0uching (Lbby 97 touching color @72
Click the green flag.
Now, the Car stops at (the): © Stop Sign © Libby © purpleLline © orange line.

S

porint in direction (90
9. Adda ng —

block before the repeat loop. Click on the 90 Ipointin direction 90
and choose -90:)
Click the green flag. How did that change the car's movement? Now, the car:
© turns around, moves a farther distance © turns around, moves toward Stop Sign
o turns around, moves away from Stop Sign @ moves a farther distance.

Figure 3: SEE worksheet helps students navigate Scratch and
learn blocks through deliberate exploration (tinkering).

[Choose a transportation sprite
3 Choose a backdrop
[Arrange the sprites on the stage
O Build a script so that When the green flag is clicked:
B Your sprite moves across the stage
3 Your sprite stops when it is touching either another sprite or a color.
3 Feel free to add another sprite from the Sprite Library!
B When your sprite stops, it should say something or make a sound.

Figure 4: Task list for a Create activity to encourage the use
of conditional repeated actions.

of repetitions or based on a condition becoming true. The term
conditional loop is introduced, and students brainstorm repeated
actions and identify the actions and end conditions. We then pro-
vide example code from a project with a recognizable Urban setting
reflecting the Youth Culture strand. The worksheets for this activity
are shown in Figures 2 and 3. The example program includes scripts
for three sprites: a car, a girl, and a boy. A stop sign sprite is also
included in the program, but it has no scripts associated with it.
When the green flag is clicked, the car sprite moves until it touches
the stop sign sprite modeling how a conditional loop works.

In the Modify step, students are encouraged to individualize
the project by choosing different car costumes, stopping the car at
different locations, changing the speed of the car movement, and
adding say blocks. If students have extra time, extension activities
are provided including adding other sprites, having sprites perform
repeated actions until a condition becomes true, and adding sounds.

In lesson 2, students create an open-ended project using con-
ditional loops. Teachers are supplied with a starter project that is
pre-filled with different transportation costumes and backgrounds
representing popular transportation locations from the students’
city. Students are asked to have a sprite move across the stage and
stop when it touches another sprite or a specific color. A planning
document is provided to help with the selection of sprites, actions,
and setting to reinforce what they learned in Lesson 1 (Figure 4).

Day 1: Agency, Affect and Assessment

4 METHODS

In this section, we detail the recruitment of participants in our
IRB-approved study, followed by data collected and data analysis
methods.

4.1 Recruitment and Participants

For this study, teachers were recruited from a large, urban school
district in the United States. Twenty-seven teachers attended pro-
fessional development for the Scratch Encore curriculum, of which
nine were included in this study. Interested teachers were chosen
for inclusion based on the number of students they taught (prefer-
ring teachers with larger numbers) and the grade levels they taught
(5th-7th grade preferred). Classes of less than 10 students were
omitted from the data set. In total, there were 19 5th-8th (ages 10-
14) grade classes included in the study, totally 536 students. Due to
teachers using the curriculum flexibly (as was intended) and classes
completing different numbers of modules with the curriculum, the
number of students who completed a specific project ranges from
265 to 452.

4.2 Data Collection

Several types of data were collected, including worksheets, obser-
vations, transcriptions of teacher interviews and focus groups, and
student-authored Scratch programs. Researchers observed instruc-
tion for each teacher 2-3 times during the school year (same grade
level, typically same classroom). Teachers were interviewed follow-
ing each observation and participated in focus groups with other
teachers at the end of the school year. Scratch projects were publicly
available online, organized by pilot teachers into classrooms and
studios for analysis.

4.3 Data Analysis

Data was analyzed to better understand two aspects of student
work: completion of technical elements and variations from the
structured tasks.

For completion of technical elements, the Scratch programs from
classrooms were analyzed using static analysis to determine if the
work met project requirements and if any module extensions were
attempted. This data was then used to calculate a completion per-
centage for each student. This percentage represents the total num-
ber of module requirements completed by students for each activity
they attempted in modules 1-4. Since some teachers within our data
set taught students in multiple classes, we first analyzed intra-class
correlation (ICC) for a hierarchical model predicting completion
score by teacher and grade. Due to the low ICC (ICC=0.03), it was
determined that a hierarchical model was not necessary and gen-
eral linear regression models were used to analyze correlations
between teacher, grade, and student completion. A multiple regres-
sion model was run to determine the influence of teacher and grade
on completion percentage and two simple linear regressions were
run to separately determine the influence of each variable (teacher
and grade) on completion percentage. Assumptions of normality,
linearity, homoscedasticity and independence with each regression
model were examined through statistical testing and analysis of
graphs. All assumptions were determined to be met. Analysis of
Variance (ANOVA) were used to compare across the three models.

17

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

To understand decisions students made in the Create projects, a
number of analyses were conducted. First, we analyzed the blocks
used and categorized them based on when they were introduced
to students (in a previous module, the current module, or a future
module). Next, Scratch projects from a subset of students were
inspected to understand in what ways students completed tasks
beyond the requirements of the project. Researchers performed
qualitative analysis, recording project characteristics such as the
number of sprites, backdrops, and costumes used and how students
changed their final projects as compared to the starter project that
most students were given for the create tasks. These data were then
analyzed for frequency. Finally, static analysis modules were coded
in JavaScript to analyze the Scratch code in all student projects
in a studio and produce a spreadsheet of results. These looked for
not only the required elements, but also examples of the types of
additional actions that had been identified through hand inspection.

Finally, when differences were identified between teachers, ob-
servation notes were inspected to discover any differences in how
teachers ran their classrooms.

5 RESULTS

This paper investigates two aspects of instructional materials that
utilizes the Use—>Modify—>Create instructional approach: (1) en-
gagement with content and (2) creativity and personalization. As
such, the findings section is broken down into two sections that
align these two aspect of the curriculum. More specifically, we first
explore the trade-offs between requirements and flexibility and the
interplay between conceptual learning goals and activity structure
(e.g. required tasks and intentional flexibility via extensions and
open-ended activities). This includes looking at how UMC allows
for different ways of attaining those goals. Second, we explore to
what degree and in what ways students express the creativity that
Create projects allow.

5.1 Engagement with Technical Content

In this section, we explore to what degree students both engaged
with the intended technical content (the concepts taught in the
module) and also engaged with additional content (through either
suggested extensions or student-led exploration). Our goal is to
place emphasis on the former while building in the flexibility for
students to also do the latter.

5.1.1 Overall Task Completion. We begin by measuring the level
of requirement completion across all classrooms of the first four
modules of the curriculum. Figure 5 depicts the average percentage
of requirements that students completed each required in each
lesson. The lessons are ordered in the same order in which they are
completed in the curriculum. We see that requirement completion
varies by module, with the fewest requirements being completed
by students on the Create project on the last module. In most of the
modules, completion rates were between 50% and 75%, a moderate
rate.

In order to better understand these results, Figure 6 presents the
same data broken down by individual classrooms and ordered so
as to see differences across grade level and teacher. In the figure,
each bar represents a distinct classroom of students with the color
indicating which teacher taught that class. Height of the bars denote

Day 1: Agency, Affect and Assessment

M1 M1 M2 M2 M3 M3 M4 M4

Use/Mod Create Use/Mod Create Use/Mod Create Use/Mod Create

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Figure 5: Requirement Completion across Activities

6 7
EC WD mF

Figure 6: Requirement Completion Versus Grade and
Teacher, Animation Module UM Activity

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

L]

4 5
Teacher WA

0.00%

8

mB H |]

the classrooms’ requirement completion rate across all lessons.
Finally, each cluster of charts in the figure represents a different
grade level, corresponding to 4th-8th grade, respectively.

Finding 1: Students in all grades were able to complete the activities.

Students in lower grade levels did not have more difficulty com-
pleting the tasks. In fact, students in lower grades showed slightly
higher completion rates for 4th-5th grade than 6th-8th grade, and
grade level is predictive in that being in any grade other than 4th
grade lowers your predicted completion rate, as described in more
detail below. Therefore, we can conclude that the content being
presented in the first modules of the Scratch Encore is developmen-
tally appropriate for learners as early as fourth grade (ages 10-11).
The slight dip in completion rates in older grades may suggest the
curriculum is too easy and therefore did not keep older learners
engaged.

Finding 2: Completion rates did differ by teachers.

The performance of classrooms taught by the same teacher was
consistent both within and across different grade levels. For in-
stance, classes of teachers D (green), E (yellow), I (gray), and H
(light blue) performed similarly even across different grade levels.
In order to determine the influence of teacher and grade on comple-
tion percentage, we conducted a series of three regressions. First,
we find that teachers statistically-significantly impact completion

18

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

percentage (F(8, 527) = 31.42, p<0.001, R? = 0.32). Second, we found
the same to be true for grade-level impact completion percentage
(F(4,531) = 31.12, p<0.001, R? = 0.19). Finally, we used a multiple
linear regression to determine the influence of teacher and grade
together on completion percentage, again, finding the impact to be
statistically significant (F(12. 523) = 22.03, p<0.001, R? = 0.34).

An analysis of Variance (ANOVA) was used to determine the
least restrictive model predicting completion percentage. Based
on this analysis, teacher alone is a better predictor of completion
percentage than just grade (F(4, 527) = 25.9, p<0.001). Additionally,
teacher and grade together better predict completion percentage
than grade alone (F(8, 523 = 14.40), p<0.001) and teacher alone (F(4,
523) = 2.54, p=0.04). This indicates that teacher significantly impacts
the completion percentage of students, especially when considered
in conjunction with grade. Teacher alone accounts for 32% of the
variance in student completion percentage and 34% of the variance
in completion percentage when considered with student grade. Tri-
angulating with classroom observation notes, we find that teachers
had very different classroom norms with respect to task completion,
which means fidelity, not the curriculum itself, was a major factor.
Some teachers required students to complete initial worksheets
(not analyzed for this study) prior to being given the modify task,
which sets an expectation of adherence to assigned tasks. Other
teachers allowed their students to work more independently, per-
haps resulting in a lower completion rate. We make no judgement
about which approach is better, only that they are different.

5.1.2 Extensions. The first explicit source of flexibility in Scratch
Encore is through extensions. While not strictly required for a UMC
curriculum, extensions serve as a point of flexibility and is a best
practice for accommodating differences in student learning and
implementation speeds. The intent of extensions is that students
who have completed the requirements can choose additional related
tasks, some meant to be purely creative (e.g. adding a new costume
or choosing a new sprite) while others exercise new or existing
knowledge in interesting ways (e.g. animating another sprite in a
different way). In our analysis, we investigate whether students
completed extensions as intended (e.g. waiting until requirements
are completed before completing them) and when extensions were
attempted, whether students chose non-coding extensions or coding
extensions.

Extension Score

0 1 2 3 4
Requirement Score

Figure 7: Requirement Completion Versus Extension Com-
pletion in Module 4, UM Activity

Figure 7 shows the distribution of students into groups based on
how many requirements were completed and extension scores on

Day 1: Agency, Affect and Assessment

the Module 4 (Conditional Loops) UM lesson. In this module, there
are four requirements (x axis) and 2 optional extensions (y axis).
The size of the circle represents the number of students with that
value of requirements and extensions completed.

Finding 3: Students generally complete requirements before working
on extensions.

If students were completing requirements (as intended), then
only the right-most column of would have entries for the extension
scores of 1 or 2. While this is not strictly adhered to, there is a trend
in this direction. For the most part, students complete requirements
before extensions (as evidence by the fact that the largest circle in
each column is the bottom one). Likewise, for each extension, the
highest number of students completing it have also completed all
of the requirements (as evidenced by the fact that the largest circle
in each row is the right-most one). This trend suggests learners are
eager to explore extensions and their inclusion in the curriculum is
important as students want the flexibility that extensions provide
as demonstrated by their choosing to pursue them despite not fully
completing the required portions of the activity. However, this
could also mean that extensions are a distraction to the intended
learning. Extensions are not all directly related to the concept being
exercised this project.

5.1.3 Block Usage. Having looked a the data from the more heavily
scaffolded portions of the modules (Use and Modify) we now shift
focus to the Create projects, looking at the blocks learners choose
to use as a means to explore the balance between structured content
learning and opportunity for student-driven exploration. For the
Create activities, structure is provided in the form of a planning doc-
ument as a means to encourage students to incorporate the blocks
that were introduced in current or previous modules into their
programs. However, the assignment is intentionally open-ended
enough to enable students to explore new blocks that have not yet
been taught. With this analysis, we explore how learners navigate
this tensions between the structured aspects (e.g. encouragement
to use recently-taught blocks) with the open-ended freedom of the
assignment.

100

hhh

Module 2 Module 3 Module 4

% of Students

B Required This Module Introduced Previously ® Not Introduced

Figure 8: Block Usage across Create activities

Figure 8 presents the blocks that students chose to use in in the
Create task from modules 2, 3, and 4. We did not include Module 1
because it is focused on introducing students to the Scratch interface
and introduces very few blocks. The dark blue bar indicates the
percentage of students who used a block that was introduced in this
module, the light blue column shows the percentage of students
who used blocks introduced in a previous activity, and the red

19

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

Blocks From Module 1
B New Blocks

@ Create Blocks Required
B Modify Blocks Required

Blocks From Module 2

Create: Block Usage
Animation L2

100%

% of Students

Figure 9: Block Usage in Animation Create Activity

column shows the percent of students who incorporated blocks
that had not yet been introduced as part of Scratch Encore.

Finding 4: Students incorporate desired computing concepts into
open-ended Create projects.

We can see from Figure 8 that over 80% of students use some
required blocks across the these three modules. Going one step
deeper, Figure 9 shows students’ block usage in the Create activity
of Module 3, which focuses on Animation. Over half of students
chose to use required blocks for the Create project, with wide
variation by block.

Finding 5: Students incorporate commands from previous modules
when completing open-ended Create tasks.

At first glance, it appears that over 90% of students incorporate
blocks from previous modules into their projects. Upon close inves-
tigation, when looking at what blocks are being incorporated from
earlier projects, there is a high level of variance. The blocks When
green flag clicked (98%), Set size (88%), and wait (81%) were used
very frequently, suggesting that either these blocks are very useful
or that students had a high level of comfort with them (or both).

We think that this outcome can be explained by the content
reinforcement that is part of the structure of Scratch Encore. By
this we mean the higher frequency of exposure to and using certain
blocks helped the students understand how and when to use them,
resulting in a higher level of comfort with them. Another possible
explanation of this outcome is that blocks that were introduced
in the beginning of the curriculum serve as building blocks for
more complex projects. As a result, they are used frequently in later
modules and lessons.

Finding 6: A majority of students are exploring new blocks in the
Create activities

Overall, about 70% of students use not-yet-introduced blocks.
Looking at Module 3 in particular, 70% of students used at least one
block that had not yet been introduced as part of the curriculum.
This finding indicates that a majority of students either had prior
knowledge of the block or chose to explore and experiment with the
full set of blocks. In either case, this finding show the importance of
including open-ended aspects of programming activities, either to

Day 1: Agency, Affect and Assessment

support exploration or allow learners to draw on prior knowledge,
or both.

This type of learning is aligned with the constructionist design
and constructivist learning theory which emphasizes the impor-
tance of allowing learners to explore and build new knowledge
upon the knowledge they already poses. Knowing that both drew
on existing the content just introduced while also incorporating
blocks beyond what has been introduced without being instructed
explicitly to do so shows that Create tasks are successfully bridg-
ing the goals of engaging learners with specific content while also
supporting exploration.

5.14 Use of Loops. Our final piece of data related to how flexibility
and conceptual learning can coexist within a single curriculum via
the UMC approach is to look at how students chose to involve loops
in their Create projects. Module 3 introduces through the anima-
tion of sprites. The UM activities show how looping worked using
three blocks: next costume, wait, and move X steps. Therefore,
students creating loops with 3 blocks inside could be reasonably
expected based on how the concept was introduced. In Module 3’s
Create task, the use of a repeat block was required, but students
had flexibility about how complex the repeating logic could be (e.g.
how many blocks inside the loop) and what blocks to use inside
the loop. In addition, they were only required to use two loops. To
understand the nature of exploration within a structured activity,
we investigated students’ choices with respect to the contents of
loops.

As can be seen in the box plot in Figure 10 that students used
many loops. Students used on average, almost 4 loops in their Create
projects. In addition, their loops contained an average of almost 7
blocks inside them.

W Average number of loops B Average number of blocks in loops

14
12

10

Figure 10: Loop Count and Complexity in Animation Create

Figure 11 shows the most common blocks students used inside
their loops. As expected, a majority of the blocks students chose
to use matched the blocks introduced by the lesson: wait, move,
costume change. However, we see that students also chose to use
many other blocks for their loops, including blocks that control
sprite motion, sprite appearance, sounds, and controlling script
execution speed via the wait block. There were even several nested
loops. The fact that learners used the previously taught concept
(loops in this case) in a variety of ways shows how the Use-Modify-
Create progression can help address the problem of learners tightly

20

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

coupling concepts with specific contexts or usages that has be
identified in previous work on elementary-aged students learning
Scratch [34].

control_wait
looks_nextcostume
looks_switchcostumeto
motion_movesteps
motion_glidesecstoxy
sound_play
mation_goto
mation_turnright
mation_gotoxy

Block types

sound_playuntildone
motion_glideta
locks_setsizeto
motion_turnleft
control_repeat
looks_changeeffectby

Count

Figure 11: Loop Block Usage in animation Create Activity

5.2 Creativity in Create Activities

We now turn our attention to non-content-focused goals of the
Create activities. Create activities are intentionally open-ended, not
just to allow student-driven exploration of new blocks, as shown in
Sections 5.1.3 and 5.1.4, but also to provide an opportunity for learn-
ers to incorporate aspects of themselves in their work, and in doing
so, make activities more personally meaningful, more engaging,
and to help build an identity as a person who does computing. The
constructionist philosophy emphasizes this creative outlet for stu-
dents’ own projects, personalizing them as they desire, using them
as vehicles of creativity and expression. However, these aspects of
a learning experience can be difficult to measure. In this work, we
have analyzed the Create projects in two ways to provide insight
into whether students are taking advantage of this opportunity. We
focus on Module 4, Conditional Loops, which had a transportation
theme.

5.2.1 Narrative Creation. One pattern that emerged from analysis
was the use of say blocks to create a narrative, something not
suggested in the requirements or extensions. Many students crafted
atheme or suggested a story, often using Say Blocks, to either create
a conversation between sprites, talk about the transportation theme
of this specific Conditional Loops lesson, or otherwise reference
some other element they included to create a more cohesive project.
For example, Figure 12 shows a project that creates an interactive
story in which one sprite waits for a train, and after boarding, the
user can press the arrow keys to make the train and passenger move
out of the station. Students also utilized age-appropriate humor,
such as the magic school bus calling the Lamborghini “Lambor-P-P”
(Figure 12). One student even created a two-scene story, combining
narrative, a conditional loop, and a scene change (Figure 13).

Finding 7: Say blocks are frequently used by learners to personalize
projects, often through creating conversations.

Figure 14 shows a histogram of the number of say blocks used
in each project. This shows that while about 94 students had no say
blocks, 172 students (65%) had at least one say block, with 86 stu-
dents (32%) having a dialogue containing more than one say block.

Day 1: Agency, Affect and Assessment

ace me Lambor-P-P

Figure 12: Short narrative examples: Catching the train (left).

Potty humor in the trash talk (right).

oo €D @
switch backdropto Moon +
o CETDIED = @
- T ~ @ <
say (T tor @ seconds
touching color () ?

move (D) steps

BB 1 oo much for mos s Y 5 0

Figure 13: Two-scene Narrative: Spaceship Story

Again, these numbers are significant as the say block had not been
formally introduced in the curricular materials, meaning learners
either discovered the command or had prior Scratch experience. In
either case, this data shows learners going beyond the curriculum
either through exploration or incorporating prior knowledge.

Count

e ——
6.90 7.90

1.90 5.90

2.90

3.90 4.90 8.50

Figure 14: Say Block Usage

5.2.2 Election of Sprites and Backdrops. Sprites and backgrounds
define the aesthetics of a Scratch project and are another mech-
anism for creativity and project personalization. Even with very
similar code, students can use different sprites and backgrounds to
change the theme and feel of the project. In fact, the Scratch Encore
curricular design hinges on this fact - the same academic mate-
rial can be situated within in very distinct contexts by changing

21

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

the sprites and backgrounds involved. Therefore, one indicator of
students taking ownership of their projects is the amount they per-
sonalize it by changing the sprites and backgrounds to something
of their own choosing.

The conditional loops module includes a starter project within
the Create task to get students started on the project. Students
were given a starter project with a main sprite that had 9 vehicle
costumes (e.g. train, bus, sedan, SUV), a "stop" sprite with 3 sign
costumes (e.g. stop sign, bus stop), and five transportation related
backdrop options (e.g. train platform, transit center, parking garage).
Students were not required to use the sprites or backdrops from
the starter project, but could if they desired. The default project
was a train platform with a bus and a bus stop. Of the 8 teachers
who taught the Conditional Loops module, 7 teachers (69.1% of
students) used the starter project with their students and 1 teacher
(30.9% of students) elected to have students begin with a blank
project. Because the starting point of students’ projects affects their
inclusion of sprites and backdrops, these two groups are analyzed
separately below.

Create Projects from Starter Project. To analyze how students
integrated their own ideas and personality into their projects, we
defined four categories the represent the degree to which they did so.
At one extreme, students could have made no changes to the sprites
or backgrounds. The next category is students keeping the original
sprites, but choosing among the costumes and backgrounds already
loaded into the project. The third category captures students who
added sprites, costumes, or backgrounds from the Scratch image
library. Finally, some students uploaded pictures they obtained from
outside of Scratch or created their own images using the drawing
tools inside Scratch.

Figure 15 breaks down student changes by category of change.
The starter project has three elements: A main sprite that will be
moving (originally a train but with costumes for different cars,
bus, etc.), what will cause it to stop (originally a stop sign), and
a background (urban scene). The stacked bar graph indicates the
percentage of students who made each kind of change for that
particular element. For example, the top (green) portion of the
background changes bar indicates the number of students who only
utilized the default background, whereas the bottom (blue) portion
of backdrop changes is the percentage of students who uploaded
their own backdrop. Finally, the Any stacked bar indicates what
percentage of students had that high of a level of initiative in any
of the three. That is, if a student used ALL initial costumes and
backdrop, they would be no changes from default. However, if a
student changed to a provided costume for the main sprite but went
into the scratch library for a backdrop, they would be categorized
as changed to Scratch library because that shows a higher level of
initiative.

Finding 8: Almost all students personalized their projects by modi-
fying sprites or backgrounds

Figure 15 breaks down student changes by category of change.
Only 11.1% of students (20 students) utilized nothing more than the
provided sprite costume and background, as shown in the green
portion of the left-most bar. Not only did 53.0% of students (96
students) change from the default main sprite costume to another
provided costume, but an additional 11.6% of students (21 students)

Day 1: Agency, Affect and Assessment

100.00% B No Changes from
Default

Costume/Backdrop

Changed to
Provided
Costume/Backdrop

B Changed to
Scratch Library
Costume/Backdrop

B Changed to
Uploaded/Created
Costume/Backdrop

75.00%
50.00%
25.00%

0.00%

Any Main Sprite Stop Sprite

Backdrop
Changes Changes

Changes

Figure 15: The degree to which students made changes to
main sprite, stop sprite, and/or background

changed to a main sprite from the Scratch Sprite Library, and 7.7%
(14 students) uploaded or created a costume of their own. These
added sprites included food trucks, different types of cars, and car
characters (i.e. Lightning McQueen from the Cars movie).

In addition, 66.9% (121 students) used new sprites or costumes
that were not included in the starter project either for the main
sprite, as described above, or as an additional sprite. Additional
sprites were common in student projects, whether they were in-
cluded within the written code or merely appeared on the stage. In
total, 51.4% of student projects (93 projects) include more than 2
sprites with projects having as many as 6 sprites. This often took
the form of a sprite standing at the bus stop, stop sign, or on the
train platform waiting for the mode of transportation (Figure 16).
In some cases, it also took the form of other cars on the road or
objects in the background.

Figure 16: Sprite and Backdrop Examples: Girl in City wait-
ing for Food Truck (left); Girls on Train Platform (right)

Of the students who were in classes that used the starter projects,
most students only included one backdrop in their code, 61.3%
of students (111 students) changed their backdrop from the de-
fault backdrop including 28.3% of students (51 students) adding a
backdrop from the Scratch Backdrop Library, 2.8% of students (5
students) uploading or creating their own backdrop, and the rest
choosing a backdrop we preloaded into the project. Often times,
these backdrops were other city scenes or places where transporta-
tion is expected (Figure 16).

Create Projects from Blank Screen. Student creativity within Cre-
ate projects that did not begin with a starter project was more

22

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

pronounced when compared against student projects from classes
that used the starter projects. Students used an average of 2.8 sprites
and an average total of 8.3 costumes in their projects; some projects
had as many as 14 sprites. Almost half of the projects (48%; 39
students) incorporated the transportation theme from the modify
project. Some did this using sprites or costumes from the Scratch
Library (e.g., sailboat, food truck, car). Other projects continued
the transportation theme with images students had downloaded
from the internet or created on their own (e.g., a Lamborghini, a
hand-drawn car, Jeffree Star’s custom pink BMW i8, the Magic
Schoolbus, a hoverboard, Thomas the Tank Engine). The other half
of the projects (52%; 42 students) diverged from the transportation
theme and represented aspects of youth culture ranging from video
game characters (e.g, Kirby, Pokemon), popular music or television
(e.g., Jojo Siwa, Why Don’t We), or memes (e.g., Wanna Sprite Cran-
berry featuring LeBron James, You Got No Jams featuring Kpop
stars Rap Monster and Jimin). Over half of the students (54.3%; 44
students) uploaded or created their own costume for use as the
main sprite within their project rather than simply using sprites
from the Scratch Sprite Library. Backdrops also varied between stu-
dent projects. While most students still only utilized one backdrop,
70.4% of students (57 students) selected a backdrop from the Scratch
Backdrop Library and 29.6% of students (24 students) uploaded or
created their own backdrop.

6 DISCUSSION

The goal of this paper is to understand to what degree a Use—
Modify-Create curriculum, as enacted through Scratch Encore,
provides structure that encourages content learning while maintain-
ing flexibility and open-endedness that encourages constructionist
ideals of student-driven learning and engagement.

6.1 Structure

Overall, the Use —> Modify (UM) activities within the curriculum
promoted student learning as evidenced by their completion of
project requirements. Although the average completion rate for
required tasks was just over 50%, for over half the modules, com-
pletion rates were greater than 65%, reaching as high as 76% and
students at all grade levels were able to successfully complete the
Scratch Encore activities (Finding 1). Yet, variance was very high
between teachers, larger than between grade levels (Finding 2).

To provide differentiation for students, Scratch Encore includes
both required elements and optional extensions for those who finish
early. While these are not specifically part of the UMC framework,
they are an application of Universal Design for Learning on UMC.
Students complete more requirements than extensions, in general,
but some students complete at least one extension prior to finishing
all of the requirements (Finding 3). While the presence of exten-
sions, a feature that lies between the structural and open-ended
goals of UMC, could distract students from the project require-
ments that are designed to demonstrate achievement of learning
goals, students did, in general, complete more requirements than
extensions (Finding 3). The varied completion rate could mean that
individual teachers choose how they want to use the curriculum,
indicating a level of flexibility in curricular use.

Day 1: Agency, Affect and Assessment

Interviews with teachers revealed challenges in keeping students
focused on completing project requirements before moving on to
extensions, so teacher fidelity may not be the dominant factor. To
address this challenge within the curriculum, materials were revised
in two ways: checkboxes were added for each project requirement
and extensions were moved so that they were farther from the
project requirements.

The UMC structure promotes student learning of specific com-
puting concepts by introducing blocks and concepts within the UM
lessons. We found that this structure successfully introduced the de-
sired concepts and that, overall, students were able to use the same
blocks taught during the UM lesson when working on their Create
project (Finding 4). Additionally, students incorporated blocks and
computing content learned during previous modules within the
Create tasks of later modules, showing an evolving understanding
of CS concepts (Figure 5). Yet, as students are using the blocks that
they were taught within the UM structure, they also experiment
and do so in new ways that they have not yet been taught, such as
nesting loops and using more loops than the requirements mandate
in module 3. This demonstrates that although the UM structure
allows for the introduction of blocks and CS content, it does not
limit students in how they use those blocks and concepts.

Overall, the UM portion of UMC provides a structure that aligns
with ZPD [32], scaffolding students’ learning by moving through
a series of tasks to move toward mastery of new concepts and
formally learn CS skills and concepts while providing extensions
for students who need more of a challenge.

6.2 Open-Endedness

UM and Create projects allowed for exploration due to their open-
ended nature and connection to constructionist goals. For all stu-
dents, the block exploration exhibited within Create projects demon-
strates an opportunity to experiment with constructionist ideas
and functionality in Scratch programs. A majority (about 70%) of
students incorporated blocks into each Create project that had not
been previously introduced (Finding 6). This demonstrates that,
although the UM sequence formally introduces blocks to students,
they openly explored other available blocks and used blocks that
were not yet introduced. One block that students explored to pro-
mote their self-expression and individualize their projects was the
say block (Finding 7). While not novel, the say block allowed stu-
dents to integrate their own commentary within their projects and
relate themes, even those provided by the UM or C starter projects,
to their own selves, interests, and knowledges.

The open-ended nature of the Create projects gave students the
opportunity to incorporate their own elements of self-expression
and creativity in their projects. Within the Conditional Loops Cre-
ate project, nearly all of the students express their own ideas or
creativity by changing sprites and backdrops including adding new
sprites and backdrops from the sprite libraries and uploading their
own images relating to their interest (Finding 8). Especially when
students were given a blank Create project encouraging them to
develop a project with requirements for the CS content but not the
aesthetics of the program, students incorporated aspects of their
cultures ranging from popular memes to their vehicles of choice.
This trend demonstrates that using the UMC pedagogical approach

23

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

does not limit the exploration and self-expression that students are
able to exhibit through their projects.

When taken as a whole, utilizing the Use—->Modify->Create ped-
agogical approach has largely succeeded in providing a balance
between structure and student-driven, open-ended exploration and
expression. One perspective on this sequence is that Use—->Modify
tasks provide additional scaffolding so that students can better
spend their time during student-driven Create projects on endeav-
ors related to the conceptual learning goals. Recent research showed
that students with UMC had positive affective outcomes in both the
UM and Create projects[19]. This paper provides additional sup-
port for that finding, showing students utilizing what they learned
in UM activities in their Create activities while at the same time
making different levels of changes to personalize their projects.

7 LIMITATIONS

While we had a large sample size overall, these students were spread
over a wide variety of grade levels and teachers. In addition, we
analyzed computational artifacts, but we have not presented analy-
sis of worksheets, classroom observations, and teacher interviews.
Such analysis might show correlations between teacher styles and
student behaviors. Finally, we do not have a control group using
a more structured or a more open-ended curriculum. Therefore,
while we have gained knowledge as to how learners experience a
UMC-structured curriculum, we cannot make any claims as to how
this may differ from other pedagogical strategies. Rather, the con-
tribution of this paper is in documenting how the UMC approach
helped bridge the open-ended nature of constructionist learning
with the content learning goals of classroom instruction.

8 CONCLUSIONS

Our analysis reveals that the UMC pedagogical approachprovided
students a productive balance between structure and open-ended
exploration. During open-ended tasks, many students followed
guidance in reinforcing new knowledge by utilizing blocks they
had just learned. They also explored new blocks not formally in-
troduced, as well as combined existing blocks in new ways. At the
same time, students also took advantage of the open-endedness
afforded by the Create tasks to explore new blocks as well as to
personalize backgrounds, sprites, and narratives to take ownership
of their projects and express themselves creatively. Collectively,
this work shows one way forward to incorporate the powerful ideas
of constructionism learning into the constraints of classrooms, pro-
viding one potential path out of the Play Paradox. In doing so, this
work helps provide guidance as to one productive way to help bring
computing to all learners.

9 ACKNOWLEDGEMENTS

We would like to thank the teachers and students who piloted
Scratch Encore. This material is based upon work supported by the
National Science Foundation under Grant No. 1738758.

REFERENCES

[1] [n. d.]. Code.org CS Curricula. https://curriculum.code.org/

[2] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. arXiv preprint arXiv:1705.09413
(2017).

https://curriculum.code.org/

Day 1: Agency, Affect and Assessment

(3]
(4]
(5]

[10]

=
&

[17]

(18

[19

K. Brennan. 2013. Learning computing through creating and connecting. Com-
puter 46, 9 (2013), 52-59.

K. Brennan, C Balch, and M. Chung. 2014.
//creativecomputing.gse.harvard.edu/guide/
Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada, Vol. 1. 25.

Seth Chaiklin et al. 2003. The zone of proximal development in Vygotsky’s
analysis of learning and instruction. Vygotsky’s educational theory in cultural
context 1 (2003), 39—64.

E. Spertus D. Wolber, H. Abelson and L. Looney. 2011. App Inventor: Create Your
Own Android Apps. O’Reilly Media, Sebastopol, California.

Caitlin Duncan, Tim Bell, and Steve Tanimoto. 2014. Should Your 8-year-old
Learn Coding?. In Proceedings of the 9th Workshop in Primary and Secondary
Computing Education (WiPSCE ’14). ACM, New York, NY, USA, 60-69.

Deborah A Fields, Michael Giang, and Yasmin Kafai. 2014. Programming in the
wild: trends in youth computational participation in the online scratch com-
munity. In Proceedings of the 9th workshop in primary and secondary computing
education. ACM, 2-11.

Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White, Marco Anaya,
and Zachary Crenshaw. 2020. Scratch Encore: The Design and Pilot of a Culturally-
Relevant Intermediate Scratch Curriculum. In Proceedings of the 51st ACM Tech-
nical Symposium on Computer Science Education (SIGCSE "20). Association for
Computing Machinery, New York, NY, USA, 794-800.

S. Grover, R. Pea, and S. Cooper. 2015. Designing for deeper learning in a blended
computer science course for middle school students. Comput. Sci. Educ 25, 2 (4
2015), 199-237.

1. Harel and S. Papert. 1990. Software design as a learning environment. Interactive
Learning Environments 1, 1 (1990), 1-32.

Idit Ed Harel and Seymour Ed Papert. 1991. Constructionism. Ablex Publishing.
Michael S. Horn, Corey Brady, Arthur Hjorth, Aditi Wagh, and Uri Wilensky.
2014. Frog Pond: A Codefirst Learning Environment on Evolution and Natural
Selection. In Proceedings of the 2014 Conference on Interaction Design and Children
(IDC ’14). ACM, New York, NY, USA, 357-360.

Yasmin Kafai, Kylie Peppler, and Robbin Chapman. 2009. The computer clubhouse:
A place for youth. eScholarship, University of California.

Yasmin B Kafai and Mitchel Resnick. 2012. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge.

Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (June 2005), 83-137.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32-37.

Nicholas Lytle, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houch-
ins, Alexandra Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany
Barnes. 2019. Use, Modify, Create: Comparing Computational Thinking Lesson
Progressions for STEM Classes. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education. 395-401.

Creative computing. http:

24

[20

[21]

[22]

~
=

S
=)

&
)

~
=

[31

(32]
(33]

(34]

(36]

[37

ICER ‘20, August 10-12, 2020, Virtual Event, New Zealand

Nicholas Lytle, Veronica Catete, Amy Isvik, Danielle Boulden, Yihuan Dong,
Eric Wiebe, and Tiffany Barnes. 2019. From “Use” to “Choose”: Scaffolding
CT Curricula and Exploring Student Choices While Programming (Practical
Report). In Proceedings of the 14th Workshop in Primary and Secondary Computing
Education (WiPSCE’19). Association for Computing Machinery, New York, NY,
USA, Article 18, 6 pages.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. Trans.
Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages.

John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk.
2008. Programming by Choice: Urban Youth Learning Programming with Scratch.
SIGCSE Bull. 40, 1 (March 2008), 367-371.

Amon Millner and Edward Baafi. 2011. Modkit: Blending and Extending Ap-
proachable Platforms for Creating Computer Programs and Interactive Objects. In
Proceedings of the 10th International Conference on Interaction Design and Children
(IDC ’11). ACM, New York, NY, USA, 250-253.

Richard Noss and Celia Hoyles. 1996. Windows on mathematical meanings:
Learning cultures and computers. Vol. 17. Springer Science & Business Media.

S. Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc.

Seymour Papert. 1993. The children’s machine: Rethinking school in the age of the
computer. ERIC.

Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36, 2 (1991), 1-11.

S. Papert, D. watt, A. diSessa, and S. Weir. 1979. Final report of the Brookline Logo
Project: Project summary and data analysis (Logo Memo 53). Technical Report.

MIT Logo Group, Cambridge, MA.
Ricarose Roque, Yasmin Kafai, and Deborah Fields. 2012. From Tools to Communi-

ties: Designs to Support Online Creative Collaboration in Scratch. In Proceedings
of the 11th International Conference on Interaction Design and Children (IDC ’12).
ACM, New York, NY, USA, 220-223.

Bruce Sherin, Brian J Reiser, and Daniel Edelson. 2004. Scaffolding analysis:
Extending the scaffolding metaphor to learning artifacts. The Journal of the
Learning Sciences 13, 3 (2004), 387-421.

C Addison Stone. 1998. The metaphor of scaffolding: Its utility for the field of
learning disabilities. Journal of learning disabilities 31, 4 (1998), 344-364.

Lev Semenovich Vygotsky. 1980. Mind in society: The development of higher
psychological processes. Harvard university press.

David Weintrop. 2019. Block-based Programming in Computer Science Education.
Commun. ACM 62, 8 (July 2019), 22-25. https://doi.org/10.1145/3341221

David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin.
2018. Starting from Scratch: Outcomes of early computer science learning expe-
riences and implications for what comes next. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. 142-150.

David Weintrop, David C Shepherd, Patrick Francis, and Diana Franklin. 2017.
Blockly goes to work: Block-based programming for industrial robots. In 2017
IEEE Blocks and Beyond Workshop (B&B). IEEE, 29-36.

David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming. In Proceedings
of the 14th International Conference on Interaction Design and Children (IDC ’15).
ACM, New York, NY, USA, 199-208.

David Wood, Jerome S Bruner, and Gail Ross. 1976. The role of tutoring in
problem solving. Journal of child psychology and psychiatry 17, 2 (1976), 89-100.

http://creativecomputing.gse.harvard.edu/guide/
http://creativecomputing.gse.harvard.edu/guide/
https://doi.org/10.1145/3341221

	Abstract
	1 Introduction
	2 Theory and Prior Work
	2.1 Theoretical Orientation
	2.2 Pedagogy In K-12 Computing Education
	2.3 Programming Environments for K-8 Learners
	2.4 Prior Work

	3 Enacting Use–>Modify–>Create
	3.1 Curriculum
	3.2 Example Module: Conditional Loops

	4 Methods
	4.1 Recruitment and Participants
	4.2 Data Collection
	4.3 Data Analysis

	5 Results
	5.1 Engagement with Technical Content
	5.2 Creativity in Create Activities

	6 Discussion
	6.1 Structure
	6.2 Open-Endedness

	7 Limitations
	8 Conclusions
	9 Acknowledgements
	References

