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INTRODUCTION
Since the beginning of the current global pandemic, COVID-19, 
the disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2, Figure 1, left), has infected over 
eight million people worldwide,1 and more than 10,000 in the 
state of Delaware.2 The rapid spread and severity of SARS-CoV-2 
has placed significant strain on our public health infrastructure 
and exerted pressure on our STEM workforce to quickly develop 
strategies to combat the virus.
We are constituents of that STEM workforce at the University 
of Delaware. Our team, including members of two research 
laboratories in the Department of Chemistry and Biochemistry, 
have received funding from the National Science Foundation 
(NSF) and the Delaware Established Program to Stimulate 
Competitive Research (EPSCoR) to develop a new model of 
SARS-CoV-2. The model, a structure of the SARS-CoV-2 
viral particle that encompasses all its constituent atoms, will 
provide an important basis for understanding the virus that 
causes COVID-19 from the bottom up. The approaches we 
are employing to develop the model are derived from a field of 
research referred to as computational structural virology and 
utilize an instrument we call the “computational microscope” 
(Figure 1, right).
In this article, we invite our fellow Delawareans to learn more 
about computational structural virology, how we are leveraging it 
to characterize SARS-CoV-2, and how this basic science approach 
can ultimately impact public health. We also underscore the 
role of academic research in recruiting and training our next-
generation STEM workforce to combat future viral outbreaks and 
introduce members of our highly diverse computational team at 
the University of Delaware.

THE COMPUTATIONAL MICROSCOPE
While most people are familiar with biomedical research 
that takes place at the laboratory benchtop or in a clinical 
setting, health-related research can also take place in silico or 
entirely within a computer. Computer-based investigations 
of viral diseases include epidemiological modeling to predict 
infection risk or spread in the population, sequencing studies 
to characterize similarities between pathogens or trace their 
evolution, data science initiatives to extract statistics and 
trends from accumulated public health information, and high-
throughput screening of drug compounds to identify potential 
antiviral treatments. Within computational structural virology, 
investigations also include modeling to develop virtual replicas 
of viruses or their components and simulations to investigate the 
dynamics of virus structures, as well as how the structures interact 
with each other, drugs, or the host cell during infection.3–5 Our 
SARS-CoV-2 project involves modeling and simulation of the 
atomistic viral particle.

For scientists like us, the computer is a research instrument. 
By combining theory from chemistry, physics, and biology to 
accurately describe the behavior of biomolecules, the computer 
transforms into a “computational microscope” (Figure 1, right), 
allowing us to examine realistic virtual virus structures and 
their dynamics at a level of detail that is unattainable by even 
the most powerful material microscopes.6 Importantly, the work 
we perform with our “computational microscope” integrates 
experimental data and is validated against experimental results 
to ensure that our models and simulations are representative 
of reality.7,8 The experimental data we incorporate comes 
from a variety of sources, including biochemical assays, X-ray 

ABSTRACT
The Perilla/Hadden-Perilla research team at the University of Delaware presents an overview of computational structural 
biology, their efforts to model the SARS-CoV-2 viral particle, and their perspective on how their work and training endeavors 
can contribute to public health.

Coronavirus through Delaware’s 
Computational Microscope

Carolina Pérez Segura, Nidhi Katyal, Ph.D., Fabio González-Arias, Alexander J. Bryer, Juan R. Perilla, Ph.D., and Jodi A. Hadden-Perilla, Ph.D.
Department of Chemistry and Biochemistry, University of Delaware

Figure 1.  Virus models via supercomputers. Schematic of the SARS-CoV-2 viral particle, left. 
Conceptual diagram of the “computational microscope,” right.

crystallography, cryo-electron microscopy, and nuclear magnetic 
resonance spectroscopy. Some of the experimentalists that 
we collaborate with to obtain this data have their laboratories 
right here in the State of Delaware. Since the accuracy of the 
“computational microscope” depends on the availability and 
quality of experimental data, our SARS-CoV-2 project will benefit 
from the plethora of structural information that has already been 
collected for the virus, as well as other related coronaviruses.

Importantly, the models that we construct and study with 
the “computational microscope” describe the structures of 
biomolecular systems down to the individual atoms that they are 
composed of. The simulations that we run include every atom 
in the model, as well as the atoms of water molecules and salt 
ions that surround the system and mimic its native physiological 
environment. When we model and simulate virus structures, the 
atoms that we must consider can number in the millions, and we 
require high-performance supercomputing resources to carry out 
the work. While studying the smaller structural components of 
SARS-CoV-2 (Figure 2) is amenable to local resources, such as the 
Delaware Advanced Research Workforce and Innovation Network 
(DARWIN) supercomputer, our model of the SARS-CoV-2 viral 
particle requires partnering with national resources, namely the 
leadership-class Frontera supercomputer at the Texas Advanced 
Computing Center, which is ranked fifth in the world.9

MODELING THE SARS-COV-2 VIRAL 
PARTICLE
Developing a model of the SARS-CoV-2 viral particle is a 
monumental task. Fortunately, our groups have many years 

of combined experience in computational structural virology 
and have worked on viruses like HIV-1 and hepatitis B in the 
past.10–13 To model an entire virus, we begin with modeling the 
individual structural components of SARS-CoV-2 (Figure 2), 
integrating as much experimental data as we have available and 
using computational approaches to fill in the gaps. Structures 
we are working on include the spike (S) protein, which mediates 
adhesion and entry of the virus, the membrane (M) protein, 
which plays an essential role in assembly of new viral particles, 
the envelope (E) protein, which forms a pentameric ion channel, 
and the helical nucleocapsid (N) protein, which encases the viral 
RNA (Figure 2).14–19

While the genome-containing nucleocapsid is packed into the 
core of the virus, numerous copies of the S, M, and E proteins 
are embedded in its surface, which is composed of a lipid bilayer 
envelope (Figure 2). The SARS-CoV-2 envelope encompasses a 
complex combination of lipid species, and the composition may 
be unique to the virus. We are separately developing a model of 
the envelope, including the realistic lipid composition, which 
will ultimately allow us to bring all the structural components 
together to produce a cohesive model of the viral particle. When 
completed, the SARS-CoV-2 model will incorporate the envelope, 
its surface-embedded proteins, the glycans that decorate those 
proteins, the viral RNA encased by the helical nucleocapsid 
packed within the particle core, as well as other non-structural 
and accessory proteins known to be packaged by the virus. While 
not the first atomistic model of a viral particle produced by 
our field,20–22 our final SARS-CoV-2 model aims to be the most 
comprehensive virtual representation of a virus ever constructed.

Figure 2. Structural components of the SARS-CoV-2 viral particle. Lipid bilayer envelope, left. Structural proteins, right, including the spike (S) protein, 
membrane (M) protein, envelope (E) protein, and N-terminal and C-terminal domains of the nucleocapsid (N) protein.
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Figure 2. Structural components of the SARS-CoV-2 viral particle. Lipid bilayer envelope, left. Structural proteins, right, including the spike (S) protein, 
membrane (M) protein, envelope (E) protein, and N-terminal and C-terminal domains of the nucleocapsid (N) protein.
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SUPPORTING PUBLIC HEALTH WITH 
BASIC SCIENCE
Computational structural virology is a field of basic science 
research. Its objective is ultimately to further our fundamental 
understanding of viruses. Generally, we are interested in 
elucidating structure-function relationships, or discovering how 
the details of viral architecture drive the biological processes 
involved in successful infection, replication, and propagation. 
Once we establish the mechanisms by which the structural 
components operate and work together to form the functional 
whole, then we can devise interventions that disrupt those 
operations to thwart the virus. For example, by characterizing a 
component known to play an essential role in particle assembly or 
mediate a key interaction with the host cell, our model can guide 
rational design or optimization of antiviral drugs that inhibit 
these events; by characterizing a component known to elicit a 
host immune response during infection, our model can facilitate 
the mapping of antigenic sites and support the development of 
vaccines. Further, by investigating the SARS-CoV-2 viral particle 
in aggregate, we can analyze emergent properties of the system 
that may be related to host-level factors such as infectivity, 
pathogenicity, and virulence.
Overall, basic science builds a foundation of knowledge for 
applied science to stand upon. Cultivating an understanding 
of SARS-CoV-2 from the bottom up will provide a powerful 
advantage over the virus. A model of an intact, atomistic virus 
particle will equip researchers with a detailed structural map 
of the pathogen and a depth of insight into its inner workings 
that will enhance biomedical research across other STEM fields, 
guiding new experiments and data interpretation. By promoting 
the development of prophylactic and therapeutic interventions, 
basic science translates into disease control and patient care; by 
expanding our fundamental understanding of the virus, basic 
science can lead to improved public health recommendations, 
education, policy, and outcomes. Moreover, the more we learn 
about viruses in general, the more prepared we become to combat 
and contain future outbreaks. Supporting basic science research is 
ultimately essential to maintaining the welfare of our population 
long-term, in Delaware and beyond.

TRAINING RESEARCHERS FOR FUTURE 
PANDEMICS
Our project to model the SARS-CoV-2 viral particle is NSF-
funded. In keeping with NSF’s strategic plan to develop a high-
quality, diverse national STEM workforce,23 we are actively 
training new researchers in the state-of-the-art computational 
skills they need to participate in addressing the current pandemic, 
as well as any that may arise in the future. Remarkably, a 
significant portion of our SARS-CoV-2 work is being carried 
out by students and postdoctoral researchers at the University 
of Delaware. Being engaged in biomedical research with the 
potential to impact an ongoing global health emergency has 
empowered these trainees at critical stages of their scholarly 
careers. As academics, we must always prioritize the recruitment 
and training of capable individuals who will become our next 
generation of scientists. Importantly, we should also aim to 
diversify the STEM workforce going forward.
Our research laboratories actively seek to attract diverse 
individuals to the field of computational structural virology. 
Notably, our team (Figure 3) is currently 50% male and 50% 
female, made up of domestic and international scholars, and 
includes members who identify as White, Black, Asian, Hispanic 
or Latino, LGTBQ, disabled, first-generation college student, 
first-generation immigrant, and Delaware native. Figure 3 shows a 
picture of our team during a recent video conference meeting. To 
support social distancing on the University of Delaware campus, 
the team has been working remotely since March 2020.
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Figure 3. Members of the Perilla/Hadden-Perilla research team.

A.  Olivia Shaw, undergraduate student (Hadden Lab); B. Dr. Jodi Hadden-Perilla, Assistant Professor; C. Dante Freeman, postbaccalaureate 
researcher (Hadden Lab); D. Dr. Nidhi Katyal, postdoctoral researcher (Perilla Lab); E. Chaoyi Xu, graduate student (Perilla Lab); F. Tanya Nesterova, 
undergraduate student (Perilla Lab); G. Hagan Beatson, undergraduate student (Perilla Lab); H. Dr. Juan Perilla, Assistant Professor; I. Oluwatoni Akin-
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SUPPORTING PUBLIC HEALTH WITH 
BASIC SCIENCE
Computational structural virology is a field of basic science 
research. Its objective is ultimately to further our fundamental 
understanding of viruses. Generally, we are interested in 
elucidating structure-function relationships, or discovering how 
the details of viral architecture drive the biological processes 
involved in successful infection, replication, and propagation. 
Once we establish the mechanisms by which the structural 
components operate and work together to form the functional 
whole, then we can devise interventions that disrupt those 
operations to thwart the virus. For example, by characterizing a 
component known to play an essential role in particle assembly or 
mediate a key interaction with the host cell, our model can guide 
rational design or optimization of antiviral drugs that inhibit 
these events; by characterizing a component known to elicit a 
host immune response during infection, our model can facilitate 
the mapping of antigenic sites and support the development of 
vaccines. Further, by investigating the SARS-CoV-2 viral particle 
in aggregate, we can analyze emergent properties of the system 
that may be related to host-level factors such as infectivity, 
pathogenicity, and virulence.
Overall, basic science builds a foundation of knowledge for 
applied science to stand upon. Cultivating an understanding 
of SARS-CoV-2 from the bottom up will provide a powerful 
advantage over the virus. A model of an intact, atomistic virus 
particle will equip researchers with a detailed structural map 
of the pathogen and a depth of insight into its inner workings 
that will enhance biomedical research across other STEM fields, 
guiding new experiments and data interpretation. By promoting 
the development of prophylactic and therapeutic interventions, 
basic science translates into disease control and patient care; by 
expanding our fundamental understanding of the virus, basic 
science can lead to improved public health recommendations, 
education, policy, and outcomes. Moreover, the more we learn 
about viruses in general, the more prepared we become to combat 
and contain future outbreaks. Supporting basic science research is 
ultimately essential to maintaining the welfare of our population 
long-term, in Delaware and beyond.

TRAINING RESEARCHERS FOR FUTURE 
PANDEMICS
Our project to model the SARS-CoV-2 viral particle is NSF-
funded. In keeping with NSF’s strategic plan to develop a high-
quality, diverse national STEM workforce,23 we are actively 
training new researchers in the state-of-the-art computational 
skills they need to participate in addressing the current pandemic, 
as well as any that may arise in the future. Remarkably, a 
significant portion of our SARS-CoV-2 work is being carried 
out by students and postdoctoral researchers at the University 
of Delaware. Being engaged in biomedical research with the 
potential to impact an ongoing global health emergency has 
empowered these trainees at critical stages of their scholarly 
careers. As academics, we must always prioritize the recruitment 
and training of capable individuals who will become our next 
generation of scientists. Importantly, we should also aim to 
diversify the STEM workforce going forward.
Our research laboratories actively seek to attract diverse 
individuals to the field of computational structural virology. 
Notably, our team (Figure 3) is currently 50% male and 50% 
female, made up of domestic and international scholars, and 
includes members who identify as White, Black, Asian, Hispanic 
or Latino, LGTBQ, disabled, first-generation college student, 
first-generation immigrant, and Delaware native. Figure 3 shows a 
picture of our team during a recent video conference meeting. To 
support social distancing on the University of Delaware campus, 
the team has been working remotely since March 2020.
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A.  Olivia Shaw, undergraduate student (Hadden Lab); B. Dr. Jodi Hadden-Perilla, Assistant Professor; C. Dante Freeman, postbaccalaureate 
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