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ABSTRACT

Age of Information (AoI) is studied in two-user broadcast
networks with feedback, and lower and upper bounds are
derived on the expected weighted sum AoI of the users. In
particular, a class of simple coding actions is considered and
within this class, randomized and deterministic policies are
devised. Explicit conditions are found for symmetric depen-
dent channels under which coded randomized policies strictly
outperform the corresponding uncoded policies. Similar be-
haviour is shown numerically for deterministic policies.

I. INTRODUCTION

Sending status updates in a timely manner has significant
importance in the Internet of Things (IoT) applications. To
measure the timeliness of information at a remote system,
the concept of Age of Information (AoI) was introduced in
[1]. AoI measures, at the receiving side, how much time has
passed since the generation time of the latest received packet.
In [2], a single source and server setup was considered under
First-Come First-Serve (FCFS) queue management and it was
shown that there is an optimal update rate that minimizes
time-average AoI. Further extensions to networks of multiple
sources and servers with and without packet management were
studied in [3], [4]. The role of packet loss was investigated
in [5]–[7] and various coding schemes were designed for
the purpose of minimizing AoI. Recently, [7] proved that
when the source alphabet and channel input alphabet have
the same size, with queue management, a Last-Come First-
Serve (LCFS) with no buffer policy is optimal. In other
words, source/channel coding is not beneficial in this scenario.
This is in contrast to FCFS M/G/1 queues where there is
an optimal blocklength for channel coding to minimize the
average age and average peak age of information [8]. In
multicast networks, [9] studies the impact of network coding
on the age of information considering parameters such as the
number of packets in a coding block as well as the size of the
underlying finite field.

We aim to shed light on the interplay between AoI
and (channel/network) coding in the context of broadcast
packet erasure channels (BPEC) with feedback. In contrast
to the existing literature on BPECs, in this work, we seek
efficiency in terms of age as opposed to rate. The underlying

challenge is as follows. On the one hand, the highest rate
of communication in BPECs can be attained when coding is
employed across packets of different users [10]. A higher rate
effectively corresponds to a smaller delay (both in the sense
that the queues get emptied faster and in the sense that fewer
uses of the network are needed in total to transmit a fixed
number of information bits). On the other hand, to achieve
high rates with coding, we have to incur delay by waiting for
the arrival of other packets for the purpose of coding as well
as prioritizing their transmission. So it is not clear a-priori
when coding is beneficial. We will devise scheduling policies
that schedule different coding actions, as opposed to schemes
that schedule users, and show the benefit of coding, in terms
of age, over uncoded schemes such as those proposed in [11].

We consider a discrete time model as in [11], devise
coding algorithms, and study the expected weighted sum of
AoI (EWSAoI) at the users. The first contribution of the
paper is a general lower bound on the achievable EWSAoI.
As opposed to previous lower bounds (e.g. [11]) that hold
only in the class of traditional scheduling algorithms, the new
lower bound is valid for any coding scheme. The second
contribution of the paper is that we devise scheduling policies
on coding actions to serve the users. To this end, we restrict
attention to a simple class of coding algorithms consisting
of three actions: uncoded transmission for user 1, uncoded
transmission for user 2, and coded transmission of overheard
packets for both users. We devise and analyze EWSAoI or an
upper bound on it for (i) stationary randomized policies and (ii)
deterministic Max-Weight (MW) policies. In the class of ran-
domized policies, for symmetric channels, we find conditions
under which coded policies perform strictly better than their
corresponding uncoded policies. For MW policies, we find
an upper bound on the achievable EWSAoI. Furthermore, we
numerically compare the performance of coded and uncoded
MW policies and show the gains of coding.

II. SYSTEM MODEL

We consider a model where time is slotted. At the
beginning of every time slot, new packets are sampled for
each user. Transmission occurs on a noisy network which we
model by a two-user broadcast packet erasure channel with
feedback, see Fig. 1 (left). In each time slot k, the input of
the channel is the packet X(k) and the output at user i is:
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Yi(k) =

{
X(k) if Zi(k) = 1

∆ otherwise

where {Zi(k)}∞k=1 is an iid Bernoulli process with probability
1 − εi modeling erasure at user i ∈ {1, 2} in time slot
k ∈ {1, 2, . . .} and ∆ is the symbol denoting erasure. Due
to the available feedback, the encoder has the knowledge of
{(Y1(`), Y2(`))}k`=1 at time k + 1.

Note that the pairs {(Z1(k), Z2(k))}k are independent
across time (over k = 1, . . .) but potentially correlated across
(Z1, Z2). Define ε1, ε2, ε12 as ε1 := Pr(Z1 = 0), ε2 :=
Pr(Z2 = 0), ε12 := Pr(Z1 = 0, Z2 = 0). In addition,
Pr(Z1 = 1, Z2 = 0) = ε2 − ε12, Pr(Z1 = 0, Z2 = 1) =
ε1− ε12. The statistics of (Z1, Z2) is assumed fixed and given
and can be characterized by (ε1, ε2, ε12).

We consider the age of information, defined below, as the
performance metric of our communication design.
Definition 1 (Age of Information [1]). Consider a source-
destination pair. Let {tk}k be the times at which packets are
generated and {t′k}k be the times at which packets are received
at the destination. At any time ξ, denote N(ξ) = max{k|t′k ≤
ξ}, and u(ξ) = tN(ξ). The Age of Information (AoI) at the
destination is h(t) = t− u(t).

For any communiction policy π, denote the resulting AoI
at user i, i = 1, 2, by hπi (k), k = 1, 2, . . .. We seek to design
policies that minimize the following expected weighted sum
AoI at the users:

E

[
1

2T

T∑
k=1

2∑
i=1

αih
π
i (k)

∣∣∣~h0

]
(1)

where ~h0 denotes the initial age pair (h1(1), h2(1)), and α1

and α2 are weights associated to users 1 and 2, respectively.
We assume αi ≥ 0 and α1 + α2 = 1. Hence the minimum
age is given by the following optimization problem (where we
have we omitted ~h0 for notational simplicity):

min
π∈Π

E[JπT ], where JπT =
1

2T

T∑
k=1

2∑
i=1

αih
π
i (k). (2)

III. THE LOWER BOUND

We prove a lower bound on EWSAoI as stated below.
Theorem 1. For any communication policy, we have

E[JπT ] ≥ 1

4

(
(
∑2
i=1

√
αi(2− ε12 − ε−i))2

(1− ε12)(2− ε1 − ε2)
+ 1

)
.

Proof Outline. Consider a general sample path associated with
a communication policy and a finite time-horizon T . For
this sample path, let Ni(T ) be the total number of packets
delivered to user i up to and including time slot T , and Ii(m)
be the number of time slots between the (m − 1)th and mth
deliveries to user i, i.e., the inter delivery times of user i.
Denote the age of user i after delivery of the mth packet by
Di(m) and let Li be the number of remaining time slots after

the last packet delivery to the same user. With this notation,
the time-horizon can be written as T =

∑Ni(T )
m=1 Ii(m) + Li

with i ∈ {1, 2}.

Next, consider the sum of the instantaneous ages in the
interval corresponding to Ii(m), m ≥ 2, denoted by ∆i[m].
As shown in Fig. 2, ∆i[m] is equal to the area underneath the
age curve in the corresponding interval minus Ii(m) small
triangle areas; i.e.,

∆i[m] =
∑

k in between delivery of m− 1th and mth packets

hi[k]

=
(Di(m− 1) + Ii(m))2

2
− (Di(m− 1))2

2
− Ii(m)

2

=
I2
i (m)

2
+Di(m− 1)Ii(m)− Ii(m)

2
. (3)

The expected weighted sum AoI as defined in (1) can be
re-written in terms of ∆i(m)’s:

JπT =
1

2T

T∑
k=1

2∑
i=1

αihi(k)

=
1

2

2∑
i=1

αi
T

Ni(T )∑
m=1

∆i(m)+
1

2
L2
i +Di(Ni(T))Li−

1

2
Li

. (4)

Note in (3) that Di(m− 1) ≥ 1. Substituting Di(m− 1) = 1
in (3), we recover [11, Eqn. (9)]. Using similar steps as [11,
Eqn. (9) - (14)], we have

lim
T→∞

JπT ≥
1

4

2∑
i=1

αi
T

Ni(T )
+

1

4
. (5)

We now depart from [11] by allowing for any general
class of coding and scheduling schemes. Recall that Ni(T ) is
the total number of packets received by user i, i = 1, 2. In
the limit of T → ∞, Ni(T )

T is the throughput of user i. We
furthermore know the capacity of two-user BPECs from [10].
In particular, any non-negative rate pair (R1, R2) is achievable
if and only if it satisfies the following conditions:

R1

1− ε1
+

R2

1− ε12
≤ 1,

R1

1− ε12
+

R2

1− ε2
≤ 1. (6)

Therefore, we have

lim
T→∞

N1(T )
T

1− ε1
+

N2(T )
T

1− ε12
≤ 1 (7)

lim
T→∞

N1(T )
T

1− ε12
+

N2(T )
T

1− ε2
≤ 1. (8)

Using (7) and (8) along with Cauchy-Schwarz inequality, we
continue from (5) and derive

lim
T→∞

JπT ≥
1

4
lim
T→∞

(
α1

N1(T )/T
+

α2

N2(T )/T
) +

1

4

≥ 1

4

( (
∑2
i=1

√
αi(2− ε12 − ε−i))2

(1− ε12)(2− ε1 − ε2)
+ 1
)
.

Details of the proof can be found in [12].



3

Fig. 1: Broadcast packet erasure channel (left), Encoder as a
virtual network of queues (right)

IV. A NETWORK CODING SCHEME

Traditional network strategies schedule transmissions to
the users [11]. It is, however, known that overheard packets
can act as side information, create coding opportunities, and
increase the rate of communication. In particular, [10] has
proposed encoding algorithms that track overheard packets in a
virtual network of queues and send XOR of overheard packets
when possible. We follow this approach and model the encoder
by a virtual network of queues as shown in Fig. 1 (right). Let
Q

(i)
1 denote the (virtual) queue of incoming packets for user

i and Q(i)
2 the (virtual) queue of packets that are intended for

user i but are received only by the other user. For i = {1, 2},
we use the notation −i as short for {1, 2}\i. The packets
in Q

(i)
2 are not received at their intended receivers, but are

received at the other receiver and act as side information for
it – this can be exploited in the code design at the encoder.
In particular, the encoder can XOR packets in Q(1)

2 with Q(2)
2

and form more efficient coded packets for transmission. In
this model, we assume a finite buffer size 1 for every (virtual)
queue because it is always more efficient (in terms of age) to
transmit the last generated packet and disregard the rest with
packet management [12, Lemma 1].

We consider a simple class of coding algorithms that
consists of three actions, including a network coding action.
In each time slot k, the encoder decides between the following
three actions, denoted by A(k) ∈ {1, 2, 3} and defined below:

• A(k)=1: a packet is transmitted from Q
(1)
1 ;

• A(k)=2: a packet is transmitted from Q
(2)
1 ;

• A(k)=3: a coded packet is transmitted from Q
(1)
2 , Q(2)

2 .

Let hπi (k) be the positive real number that represents age at
user i at time k. For simplicity, we drop the superscript π. The
age hi increases linearly in time when there is no delivery of
packets to user i and drops with every delivery to a value
that represents how old the received packet is. To capture the
evolution of hi in the class of 3−action algorithms described,
we proceed as follows.

First, we define wi(k) as the (current) age of information
at Q(i)

2 in slot k. More specifically, if at time k there is a packet
p in Q(i)

2 with generation time tp, then the age wi(k) is equal
to w(k) = k − tp. We define wi(k) to be zero if there is no
packet in Q

(i)
2 . Below, we describe the evolution of wi(k).

Suppose at time k there is a packet p in Q(i)
2 . At time k + 1,

Fig. 2: a sample path of the channel state (h1, h2, w1, w2)
which initial state (h1, h2, w1, w2) = (3, 4, 1, 2)

if packet p is replaced by a new packet l, the age becomes
wi(k + 1) = 1 (recall that packets are sampled at every time
slot and they replace old packets. Hence the packet ` was
generated one time slot before its move to Q

(i)
2 ). If packet

p is successfully delivered at user i, then it is removed from
Q

(i)
2 and wi(k+ 1) = 0. Moreover, once a packet is delivered

successfully at user i from Q
(i)
1 , then the existing packet in

Q
(i)
2 (which is necessarily older) becomes obsolete and hence

we remove it from Q
(i)
2 and the age wi(k + 1) is set to 0.

Thus, the recursion of wi(k) can be written as follows:

wi(k + 1) =


0 ifA(k) ∈ {i, 3}, Zi(k) = 1

1 ifA(k) = i, (Zi(k), Z−i(k)) = (0, 1)

(wi(k) + 1) · 1{wi(k)>0} otherwise.
(9)

Based on wi(k), the age function hi(k) evolves as follows:

hi(k + 1) =

{
1 if A(k) = i, Zi(k) = 1

wi(k) + 1 if A(k) = 3, Zi(k) = 1

hi(k) + 1 otherwise.
(10)

A sample path for the evolution of w1, h1 and w2, h2

is shown in Fig. 2. The initial state is (h1, h2, w1, w2) =
(3, 4, 1, 2), and the actions and the channels are as follows.

k 1 2 3 4 5
A(k) 2 1 1 2 3

(Z1(k), Z2(k)) (1,1) (1,0) (0,1) (1,0) (1,1)

V. CODED RANDOMIZED POLICIES

Consider a stationary randomized policy where each
action is chosen with a fixed probability in each time slot,
independent of the system’s status. Denote by µi the proba-
bility of action A(k) = i, i ∈ {1, 2, 3}, k ∈ {1, . . . , T}, where
µ1 + µ2 + µ3 = 1.

We will first find the exact EWSAoI of the coded ran-
domized policy. We start with ∆i(m) derived in (3). Consider
i = 1. The expectation of ∆1(m) is

E[∆1(m)|~h0]=E
[
I2
1 (m)

2
+D1(m− 1)I1(m)− I1(m)

2

∣∣∣~h0

]
(a)
=

E
[
I2
1

]
2

+ E[D1]E[I1]− E[I1]

2
.
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Equality (a) holds because of the following observations: (i)
the processes {I1(m)}m and {D1(m)}m are each iid and
not dependent on ~h0 (so we use I1 and D1 to denote the
underlying random variables, respectively), and (ii) I1(m) and
D1(m−1) are independent (while I1(m) and D1(m) may be
dependent). Thus, the EWSAoI of user 1 is

lim
T→∞

1

T

T∑
k=1

E[h1(k)|~h0] = lim
T→∞

1

T

N1(T )∑
m=1

E[∆1(m)|~h0]

(11)

= lim
T→∞

N1(T )

T

(
E
[
I2
1

]
2

+ E[D1]E[I1]− E[I1]

2

)
(12)

(b)
=
E
[
I2
1

]
2E[I1]

+ E[D1]− 1

2
. (13)

where (b) holds because the arrival process is a renewal
process [13] and hence limT→∞

T
N1(T ) = E[I1].

Then, we consider the statistics of D1 and I1. At each
slot k, and for d ≥ 1, we have

P (h1(k) = 1) = µ1(1− ε1),

P (h1(k) = d) = µ1µ3(1− ε1)(ε1 − ε12)

× (µ1ε12 + µ2 + µ3ε1)d−2 d ≥ 2.

(14)

To find the probability distribution of D1, condition the above
probabilities on the event that a packet is delivered to user 1
at time slot k. The probability of this event can be found by
summing (14) over all d ≥ 1:

P 1
delivery =

µ1(1− ε1)(µ1 + µ3)(1− ε12)

1− µ1ε12 − µ2 − µ3ε1
.

We thus find

P (D1 = d) =

 µ1(1− ε1)/P 1
delivery d = 1

µ1µ3(ε1−ε12)(1−ε1)(µ1ε12+µ2+µ3ε1)
d−2

P1
delivery

d ≥ 2

and the expectation of D1 is equal to

E(D1) = 1 +
µ3(ε1 − ε12)

(µ1 + µ3)(1− ε12)(1− µ1ε12 − µ2 − µ3ε1)
. (15)

The distribution of I1 can be found by treating I1 and
D1 jointly. First of all, we have

P (I1 = 1) = P (I1 = 1, D1 = 1) = µ1(1− ε1).

Then we look at the event of I1 = ` and D1 = d for ` ≥
2, d ≤ ` (otherwise, if d > `, then Pr(I1 = `,D1 = d) = 0

because the packet in the queue Q(1)
2 becomes obsolete once a

new packet is delivered to user 1). So we suppose d ≤ `, and
consider the following cases: (i) If d = 1, then a packet was
delivered by action i at slot `. (ii) For d ≥ 2, the delivered
packet was moved to Q(1)

2 at slot `−d+1, stayed there, and got
received at user 1 at slot `. Now consider slots 1 to `− d+ 1.
Denote by t the first slot in which a packet is received in Q(1)

2 ,
1 ≤ t ≤ `− d+ 1. Then we have the two sub-cases: (ii-1) If
t exists, then Q(1)

2 is empty before t, and the delivered packet
(another packet different from the delivered packet) moves to
Q

(1)
2 at t when t = ` − d + 1 (when t < ` − d + 1) and

from that point Q(1)
2 is non-empty. (ii-2) If there is no such

slot t, which may happen for d = 1, then Q
(1)
2 is empty for

the entire duration of ` slots. Considering the above cases, for
` = 1, 2, . . ., d ≤ `, we can show the following lemma (see
[12] for the proof).
Lemma 1. The probability distribution of the inter delivery
random variable I1 is given by

P (I1 = `) = δ1x
`−1
1 + β1y

`−1
1 (16)

where
x1 = µ1ε12 + µ2 + µ3

y1 = µ1ε1 + µ2 + µ3ε1

δ1 = µ1(1− ε12) +
µ2

1(ε1 − ε12)(1− ε12)

−µ1(ε1 − ε12) + µ3(1− ε1)

β1 = − µ1(ε1 − ε12)(1− ε1)

−µ1(ε1 − ε12) + µ3(1− ε1)

(
µ1 + µ3

)
.

Using Lemma 1, we find E[I1] and E[I2
1 ] to be:

E[I1] =
δ1

(1− x1)2
+

β1

(1− y1)2
(17)

E[I2
1 ] =

δ1(1 + x1)

(1− x1)3
+
β1(1 + y1)

(1− y1)3
. (18)

Finally, substituting (15), (17), (18) into (13), we find EWSAoI
as given by the following theorem.
Theorem 2. The EWSAoI of Randomized policy is charac-
terized by

E[JR]=
1

2

2∑
i=1

αi

 µ3(1−εi)
(µi(1−ε12))2

+ −µi(εi−ε12)

((µi+µ3)(1−εi))2

µ3(1−εi)
µi(1−ε12) + −µi(εi−ε12)

(µi+µ3)(1−εi)

+
µ3(εi − ε12)

(µi+µ3)(1−ε12)(µi(1−ε12)+µ3(1−εi))

)
.

(19)
Remark 1. To find an optimal coded randomized policy with
respect to age, we have to choose the probability vector
(µ∗1, µ

∗
2, µ
∗
3) such that E[JR] is minimized.

Remark 2. Setting µ3 = 0, we recover the EWSAoI of [11]
which corresponds to uncoded randomized policies.

A. Symmetric BPECs

Consider the class of symmetric BPECs. Let the erasure
probabilities of both channels to users 1 and 2 be equal to
ε and ε12 be the probability of simultaneous erasure at both
users. So ε > ε12. Note that ε12 is either a function of ε or
a constant, thus we rewrite ε12 as ε12(ε). For simplicity, let
α1 = α2. We find regimes of operation where optimal coded
randomized policies strictly improve EWSAoI over uncoded
randomized policies such as [11].
Theorem 3. Optimal coded and uncoded randomized policies
achieve the same age if and only if ε12(ε)− 2ε+ 1 ≥ 0. Oth-
erwise, optimal coded randomized policies strictly outperform
uncoded randomized policies.
Remark 3. When the channels are independent, i.e., ε12(ε) =
ε2, coded and uncoded randomized policies have the same
performance with respect to age.
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VI. MAX-WEIGHT POLICY

In this section, we devise deterministic policies using
techniques from Lyapunov Optimization. Denote ~s(k) =
(h1(k), h2(k), w1(k), w2(k)). Define the Lyapunov function.

L(~h(k)) =
1

2

2∑
i=1

αih
2
i (k), (20)

and the one-slot Lyapunov Drift

∆(~h(k)) = E[L(~h(k + 1))− L(~h(k))|~s(k)]. (21)

We devise the Max-Weight (MW) policy such that it min-
imizes the one-slot Lyapunov drift. In particular, in each slot
k, the MW policy chooses the action that has the maximum
weight as shown in following Table

A(k) Weights
1 α1(1−ε1)

2 h1(k)(h1(k) + 2)

2 α2(1−ε2)
2 h2(k)(h2(k) + 2)

3 1
2

∑
iαi(1−εi)1{wi(k)>0}(h

2
i (k)+2hi(k)−w2

i (k)−2wi(k))

While the exact analysis of the resulting EWSAoI is
difficult for the above MW policy, we derive an upper bound
on it as stated below. The proof can be found in [12].
Theorem 4. The EWSAoI achieved by the proposed Max-
Weight policy is upper bounded by

LMW
UB =

√√√√1

2

2∑
i=1

αi
µi(1− εi)

2∑
i=1

αiΨi +
1

2

2∑
i=1

αiΦi

where

Φi =
1 − µ3P

i
ne(1 − εi) − µi(1 − εi)

µi(1 − εi)
,

Ψi =1 − µ3P
i
ne(1 − εi) +

(
1 − µi(1 − εi) − µ3P

i
ne(1 − εi)

)2
µi(1 − εi)

,

P ine =
µi(εi − ε12)

µ3(1 − εi) + µi(εi − ε12) − µ3µi(1 − εi)(εi − ε12)
.

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the performance of the
proposed coded algorithms with the uncoded algorithms in
[11]. In Figure 3, we plot the EWSAoI of optimal coded and
uncoded randomized policies, coded and uncoded Max-Weight
policies, as well as the lower bound of Theorem 1. We have
chosen α1 = 0.3, α2 = 0.7, and ε1 = ε2 = ε, where ε
varies from 0.5 to 0.9. We consider a dependent channel with
ε12 = ε2/5. We see that for the proposed policies, coding is
beneficial when the channel erasure is larger than a threshold.
Although the gain is small for MW policies, we believe the
gain will be more significant over networks with many users.

0.5 0.7 0.9
0

4

8

ε

E
W

SA
oI

Lower Bound
Coded Randomized

Uncoded Randomized
Coded Max-Weight

Uncoded Max-Weight

Fig. 3: EWSAoI as a function of erasure probability for a class
of dependent channels with ε12 = ε2/5.
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