
A Robust State Estimator for Multi-Agent Systems Under Impulsive
Noise and Missing Measurements

Junfei Xie, Member, IEEE, Luis Rodolfo Garcia Carrillo, Lei Jin, and João P. Hespanha

Abstract— We address the problem of estimating the state
of a Multi-Agent System (MAS) with dynamics subjected
to impulsive disturbances, based on measurements that are
corrupted with impulsive noise and are sometimes missing.
To facilitate the online implementation of the proposed state
estimator for MAS, a graph formulation is proposed first. Then,
making use of the Huber Loss, the estimator adopts a general
cost function that addresses missing measurements and is robust
to impulsive noise and disturbances. The solution is validated
under a synthetic scenario, where a team of UAVs equipped with
onboard video cameras, inertial sensors, transceivers, and GPS,
cooperatively geolocate and track a ground moving target agent.
Comparison results with respect to three different state-of-the-
art estimators are provided to show the superior performance
and benefits of the proposed robust estimator.

I. INTRODUCTION

State estimation plays a major role in Multi-Agent Systems
(MAS) applications. At present, MAS commonly rely on
measurements from global positioning systems (GPS) to
determine the position and orientation of each one of its
individual agents. Unfortunately, interferences, jamming sig-
nals, or lack of GPS coverage may generate situations when
some agents lack geospatial information, either permanently
or temporarily. In this difficult situation, the MAS can
still generate information about the agents’ positions using
alternative sensor modalities, such as vision based-sensors,
RF sensors, and acoustic sensors. Unfortunately, these sensor
modalities are prone to impulsive noise: vision-based sensors
provide large errors when a visual landmark is temporarily
obstructed or misinterpreted, and RF/acoustic sensors can
report false measurements due to multi-path reflections. Fur-
thermore, impulsive disturbances in MAS scenarios emerge
for agents that most of the time move along smooth paths,
but occasionally engage in sharp turns or evasive maneuvers.

One of the most popular strategies to estimate the state of
dynamical systems from noisy measurements is the Kalman
Filter (KF) [1]. This algorithm is appealing in that it allows
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the incorporation of statistical information about measure-
ment noise and the process dynamics into the estimation
processes, enabling the construction of good estimators
with scarce measurement data. In addition, it reduces the
estimation problem to a simple least-squares optimization,
which can be efficiently solved. The KF however has a
disadvantage which in fact is shared with other algorithms
that minimize sums of squared residuals: sensitiveness to
impulsive noise [2]. This limitation is due to the fact that
the KF is designed under the assumption of Gaussian noise.
Under this assumption, large disturbances are unlikely and
the filter forces the estimates to be much smoother than
what they should be. To address non-Gaussian measurement
noise, `1-norm based estimators have been proposed [3], [4],
which are shown to outperform the KF. However, they did
not consider impulsive disturbances in the process model.

There are a few studies that explored the estimation of
system state under large disturbances using the KF, by mod-
eling disturbances as a mixture of two different processes
[5], [6]. A more recent study [7] uses a combination of `1
and `2-norm criteria to estimate the system state under abrupt
disturbances, but it does not consider impulsive noise in the
measurement data. In our previous study [8], we developed
a maximum likelihood estimator to address impulsive noise
and disturbances, by modeling noise and disturbances as a
mixture of Gaussian and Laplacian terms. Built upon [8],
we seek a more robust estimator in this study and further
consider the practical issue of missing measurements.

The main contributions of this paper include (i) the devel-
opment of a robust state estimator that captures the statistical
information effectively about impulsive noise/disturbances in
MAS based on the Huber Loss; (ii) the development of a gen-
eral cost function to address missing measurements in MAS;
(iii) the representation of the proposed MAS state estimation
problem as a graph that effectively encodes the state of the
estimator over time and facilitates the online implementation
of the estimator; and (iv) the extensive comparison studies
with existing state-of-the-art estimation algorithms that show
the superior performance of our approach. For demonstration
purpose, the scenario where a team of Unmanned Aerial
Vehicles (UAVs) cooperate to track and geolocate a target
moving on the ground is investigated.

The rest of the paper is organized as follows. Section II
introduces the mathematical formulation of the MAS state
estimation problem. The main result, which consists of a
robust estimator for MAS, is presented in Section III. The es-
timator is validated under two synthetic MAS target tracking
scenarios of increasing complexities in Section IV. Finally,
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conclusions and future work are introduced in Section V.

II. PROBLEM FORMULATION

Consider a MAS that consists of N UAVs and a ground
moving target. The UAVs are tasked to cooperatively track
the target, whose dynamics are unknown. Each UAV is
equipped with an onboard video camera, RF transceivers, and
navigation sensors including GPS and Inertial Measurement
Unit (IMU). To estimate the state of the target, i.e., the
target geolocation [9], each UAV makes use of its own
relative measurements of the target captured by means of
its onboard vision system and fuses this information with
its own GPS-based location. In addition, making use of
the RF transceivers, each UAV incorporates into its own
estimation, the measurements captured by and received from
other UAVs. Under this scenario, multiple challenges may
be encountered, e.g., (i) different sensors may generate
measurements at different sampling rates and with different
accuracies, (ii) the vision systems and the GPS may produce
erroneous measurements (outliers), (iii) measurements will
not be produced if the target is out of the UAVs’ sensing
range, and (iv) measurements may be lost during the trans-
mission of data among the UAVs.

To mathematically formulate this problem, we introduce
xT [k] to represent the state of the target at time step k. Notice
that xT [k] is the unknown variable we aim to estimate. The
true dynamics of the target can be described by xT [k+1] =
f (xT [k],u[k],d[k]), where f (·) is the dynamic function of
the system, u[k] is the control input at time k, and d[k]
is the uncertain disturbance that affects system dynamics.
As f (·), u[k] and d[k] are unknown and unmeasured, we
approximate the dynamics of the target using a modified
white acceleration model [10] as follows:

xT [k+1] = FxT [k]+Gw[k] (1)

where the state xT [k] contains the target’s position and
velocity, i.e., xT [k] = [px[k], ṗx[k], py[k], ṗy[k]]>. (px, py) is
the 2D position of the target, (ṗx, ṗy) defines the velocity
of the target, and the superscript > denotes transposition.

F = diag[Fc,Fc], Fc =

[
1 ∆t
0 1

]
, and ∆t is the sampling

interval. G = diag[Gc,Gc], Gc =

[
∆t2

2 0
0 ∆t

]
. The term w[k]

captures the modeling errors and uncertain disturbances,
whose covariance matrix R is assumed stationary over time.

Remark 1.- At this point, it is worth mentioning that
more accurate and appropriate models can be adopted to
approximate the target’s dynamics if adequate knowledge of
the target is available, which can be perceived through object
detection and classification techniques.

Two types of measurements are used to estimate the state
of the target: (i) the absolute position of a UAV provided by
its onboard GPS sensor described by yi[k] = Cixi[k] + vi[k]
and (ii) the relative position of the target with respective
to the UAV described by yiT [k] = Cixi[k]−CxT [k] + viT [k],
which is captured by means of the onboard UAV’s vision

Fig. 1. MAS estimation state problem in a multi-UAV tracking scenario.

system. Ci =C =

[
1 0 0 0
0 0 1 0

]
. xi[k] is the state of UAVi,

i∈ {1,2, . . . ,N}. vi[k] and viT [k] are GPS induced and vision-
system induced measurement errors, respectively. viT [k] is
relatively small most of the time, but can be large occa-
sionally due to false detection of the vision-system. As the
precision of the GPS and IMU is fairly good, the state
of the UAV xi[k] is directly obtained from these sensors
without considering system dynamics. However, it is worth
mentioning that GPS may also generate large errors (outliers)
due to interference and signal jamming.

Denote the derived state of UAVi as x̂i[k]. Then, the relative
position of the target can be described by

yiT [k] =Cix̂i[k]−CxT [k]+ ei[k] (2)

where the term ei[k] accounts for both GPS and vision-system
induced measurement noise. The covariance matrix of ei[k],
denoted as Q, is assumed constant.

A. Graph Representation of the MAS State Estimation Prob-
lem

The aforementioned multi-UAV tracking problem can be
efficiently described by a directed graph G = (V ,E ), where
each node in the node set V represents the state of a UAV
or target at some instant of time k, and each edge in the
edge set E represents the constraint between two nodes that
is imposed by measurements or by the target’s dynamics. In
particular, each edge (ns,ne) that starts from node ns and
ends at node ne is described by the following equation

z = Ans−Bne + ε (3)

As illustrated in Figure 1, for UAV-to-target edges (mea-
surement constraint), the edge equation (3) matches with
equation (2) through the following associations

z = yiT [k], A =Ci, ns = x̂i[k], (4)
B =C, ne = xT [k], ε = ei[k].

For target-to-target edges (motion constraint), the edge equa-
tion (3) matches with equation (1) through the following
associations

z = O, A = G−1F, ns = xT [k], (5)
B = G−1, ne = xT [k+1], ε = w[k].
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where O = [0,0,0,0]>. In both cases, the terms z, A, and B
are known. The terms ns and ne correspond to the states of
the UAV or target. The term ε is the measurement noise or
unmeasured disturbance. The state x̂i[k] associated with UAVi
is directly obtained from its onboard GPS and IMU sensors.
The state of the target, i.e., xT [k], is unknown and needs to
be estimated by considering both the motion constraint in
equation (1) and the measurement constraint in equation (2).
By stacking all the unknown node variables in a vector xxx,
all the ε = ei[k] in equation (4) in vector εεεei, and all the
ε = w[k] vectors in equation (5) in vector εεεw, all the UAV-
to-target edges associated with UAVi can be combined and
represented in a compact form as zzzei = Heixxx+ εεεei, and all
target-to-target edges can be represented as zzzw = Hwxxx+ εεεw.

This graph-based representation of the MAS state estima-
tion problem is especially efficient when used for a real-time
implementation. At each new time step k, a node representing
the target’s state and an edge representing the motion con-
straint is inserted into the graph. If new measurements are
generated at this time step, nodes representing the associated
UAVs’ states and edges representing the new measurements
are also inserted into the graph. Note that the insertion of new
nodes and edges into the graph correspond to the addition
of new rows (and columns) to zzzei, Hei, zzzw, or Hw. As these
changes do not impact the remaining graph, a good data
structure that facilitates the state estimation is maintained.
In practice, due to computation and memory limitations, we
limit the size of the graph by removing nodes and edges that
correspond to old data as new nodes and edges are inserted,
which correspond to the removal of rows (and columns) from
zzzei, Hei, zzzw, or Hw.

III. MAIN RESULT: A ROBUST ESTIMATOR FOR MAS

In this section, we introduce a novel robust estimator to
solve the MAS state estimation problem formulated in the
previous section.

A. Objective Functions with Missing Measurements

Consider the state-space model shown in equation (1).
Assume Gaussian noise and N = 1. Under the Bayesian
Maximum Likelihood method, the unknown state of the
target can be estimated by

x̂T [k] =argmin
(
(xT [k]− x̂∗T [k])

>P[k]−1(xT [k]− x̂∗T [k])+

(yT [k]−CxT [k])>Q−1(yT [k]−CxT [k])
)
, (6)

where x̂∗T [k] = Fx̂T [k− 1] is the estimate of xT [k] given the
previous state estimate and the dynamics, and P[k] is the
covariance matrix of (xT [k]− x̂∗T [k]). yT [k] = yi[k]− yiT [k] is
the position of the target measured by the UAV, where i = 1.

If the model and the initial values x̂∗T [0] and P[0] are
accurate and no measurements are missing, the covariance
matrix P[k] can be updated by P[k] = cov(xT [k]− x̂∗T [k]) =
FP∗[k− 1]F> + GRG>, where P∗[k] = cov(xT [k]− x̂T [k]).
P∗[k] can be calculated recursively via the Kalman filter
recursive algorithm [1]: P∗[k] = P[k]− P[k]CT (CP[k]CT +
Q)−1CP[k].

Suppose now that m ≥ 1 successive measurements are
missing before the current measurement at time k. Re-
cursively , x̂∗T [k] = Fx̂T [k − 1] = Fmx̂T [k − m]. The first
available measurement before the current measurement at
time k is thus the measurement generated at time k −
m, and the covariance matrix P[k] should be updated
by P[k][m] = cov(xT [k]−Fmx̂T [k−m]), where the super-
script [m] indicates the presence of m successive miss-
ing measurements before the time instance under evalu-
ation. Then, the one step dynamics described in equa-
tion (1) become the m-steps dynamics, described as xT [k] =
FmxT [k − m] + ∑

m
j=1 Fm− jGw[k − m + j]. Via some cal-

culations, we can derive Fm = diag[Fm
c ,Fm

c ] with Fm
c =[

1 m∆t
0 1

]
, and ∑

m
j=1 Fm− jGw[k−m + j] = G[m]w∗[k] with

G[m] = diag[G[m]
c ,G[m]

c ], G[m]
c =

[
(m∆t)2

2 0
0 m∆t

]
, where w∗[k]

has the same distribution as w[k]. Therefore, the m-step
dynamics have the exactly same formula as the one-step
dynamics described in equation (1), only with ∆t replaced by
m∆t. The corresponding recursive formula for P[m][k] is now
expressed by P[m][k] = FmP∗[k−1](Fm)>+G[m]R(G[m])>.

If the latest M UAV-to-target measurements are used esti-
mate the current state of the target, following the maximum
likelihood method with Gaussian assumptions on the errors,
the objective function is adjusted to

x̂T [k] =argmin

(
k

∑
j=k−kM

(xT [ j]− x̂∗T [ j])
>(P[m j ][ j])−1(xT [ j]− x̂∗T [ j])

+
k

∑
j=k−kM

δ j(yT [ j]−CxT [ j])>Q−1(yT [ j]−CxT [ j])

)
, (7)

where m j denotes the number of successive missing measure-
ments before time j, kM represents the time when the first
among the M measurements is generated. The term δ j = 0
if there is no measurement generated at time j, and δ j = 1
otherwise. Note that for any instant j with no observation,
x̂T [ j] = x̂∗T [ j] is the result of minimizing the cost function in
equation (7).

When the graph representation described in the previ-
ous section is applied, the estimates of the target’s states
can be obtained by solving minimize

xxx
‖Aw(Hwxxx− zzzw)‖2

2 +

‖Ae1(He1xxx− zzze1)‖2
2, where Aw and Ae1 are diagonal matrices

with
(

P[m j ][ j]
)− 1

2
G, ∀ j ∈ {k− kM, . . . ,k− 1,k} and Q−

1
2 ,

∀δ j = 1, j ∈ {k−kM, . . . ,k−1,k}, as their diagonal elements,
respectively. ‖ · ‖2 denotes the l2 norm.

In cases when multiple UAVs are tasked to track the
target cooperatively, we propose a weighted cost function
to fuse all measurements, which considers heterogeneous
MAS with UAVs carrying cameras of different precision. In
particular, let σi be the standard deviation of a measurement
generated by the UAVi’s camera, indicating its precision, for
i = 1,2, · · · ,N. The target’s states can then be estimated by

minimize
xxx

‖Aw(Hwxxx− zzzw)‖2
2 +

N

∑
i=1

1
σi
‖Aei(Heixxx− zzzei)‖2

2 (8)

Here for each element of Aw, i.e.,
(

P[ j][m j ]
)− 1

2
G, m j now

6021

Authorized licensed use limited to: San Diego State University. Downloaded on August 20,2020 at 17:31:15 UTC from IEEE Xplore.  Restrictions apply. 



denotes the number of successive time instances before time
j when no measurements are generated.

B. Robust Loss Function

A loss function measures how well an algorithm or model
fits the outcomes. Commonly used loss functions for a
variable x are the Squared Loss ρ∞(x) = x2, the Absolute
Loss ρ0(x) = |x|, and the Huber Loss, defined as ρa(x) ={

1
2 x2, for |x| ≤ a
a(|x|− 1

2 a), otherwise
, where a is a positive number.

The Huber Loss function ρa(x) was first introduced in [11].
Diverse control problems require state estimation techniques
which, in turn, require robustness in such a way that the
obtained results are less influenced by outliers. The Squared
Loss approach is highly sensitive to outliers because it is
punished very heavily by the squaring of the error. The
Absolute Loss approach avoids the problem of weighting
outliers too much by scaling the loss only linearly. The Huber
Loss is a compromise between Squared Loss and Absolute
Loss. In particular, the Huber Loss approaches the Squared
Loss when a→ ∞ and Absolute Loss when a→ 0.

In the optimization function (8), the Squared Loss is ap-
plied for both estimation and measurement error components.

However,both components may involve impulsive noise (out-
liers), which can be addressed by robust loss functions. In
this study, we use the Huber loss for both the estimation
and measurement errors to improve the performance. A more
general form of equation (8) that allows the selection of loss
functions is given below

minimize
xxx

ρaw (Aw(Hwxxx− zzzw))+
N

∑
i=1

1
σi

ρai (Aei(Heixxx− zzzei)) (9)

where aw and ai, i ∈ {1,2, . . . ,N} are zeros if the Absolute
Loss is chosen, infinities if the Squared Loss is chosen and
positive numbers if the Huber Loss is chosen. To solve
problem (9), standard methods of convex optimization can be
used, such as CVX [12] and YALMIP [13]. In the following
simulation studies, we set aw = ai = 2, ∀i∈ {1,2, . . . ,N}, and
we use CVX to solve problem (9).

IV. SIMULATION RESULTS

In this section, we conduct extensive simulation studies to
evaluate the performance of the proposed robust estimator for
MAS. Two scenarios with increasing levels of complexities
are considered.

1% (uniform) 10% (uniform) 20% (uniform) ν = 1 (t) ν = 1.5 (t)
measurement error 10.8188m 25.1747m 35.6328m 29.7823m 11.3826m
KF estimation error 8.0046m 15.2958m 22.7106m 18.8719m 7.5597m

BLS estimation error 7.8278m 14.9382m 22.2341m 19.0643m 7.3467m
sum-of-norms estimation error 7.0772m 6.4094m 10.4175m 7.4666m 6.0241m

robust estimator error 5.3048m 5.5084m 8.0318m 6.2184m 5.7279m

TABLE I
COMPARISON OF THE RMS ESTIMATION ERRORS OF DIFFERENT ESTIMATORS UNDER OUTLIERS OF DIFFERENT CHARACTERISTICS.
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Fig. 2. Impact of Outliers: The instantaneous estimation performance of the following algorithms: a) Kalman Filter, b) BLS estimator, c) sum-of-norms
estimator, and d) proposed robust estimator. e) The target’s trajectory estimated by the proposed robust estimator. 20% uniformly distributed outliers were
introduced.
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A. First Scenario: A Single UAV Tracks a Target

We start from studying the simplest case where a single
UAV (N = 1) is tasked to geolocate and track a ground
moving target. To simulate the moving target, we adopt the
kinematic uni-cycle model [14]. The UAV determines the
relative position of the target using the geolocation approach
described in [9]. The GPS/IMU onboard of the UAV operates
at 20Hz, and the sampling interval ∆t = 0.05s. To estimate
the state of the target, the latest M = 15 UAV-to-target relative
measurements are used to construct a graph like the one
shown in Figure 1. The other parameters are configured as
follows. R=P[0] = I4×4 and Q= I2×2, where In×n ∈Rn×n is a
unit matrix. The first measurement yT [0] is used to initialize
the position of the target.

To demonstrate the performance and benefits of the pro-
posed robust estimator, we compare it with three state-of-the-
art estimators: (i) Kalman Filter (KF), (ii) the batched least
square (BLS) estimator that also uses the latest 15 UAV-to-
target measurements, and (iii) the sum-of-norms estimator
introduced in [8]. In this and following simulations, the
weight parameter λ of the sum-of-norms estimator, which
characterizes the relative weights of impulsive (Laplacian)
and Gaussian components in the noise, is tuned using a range

of values as suggested in [8] to achieve a good performance.

1) Impact of Outliers: In order to evaluate the resilience
of the proposed robust estimator against outliers of different
characteristics, two different models were implemented to
simulate the outliers. The first approach is similar to the
one used in [8], which corrupts the measurements with
uniformly distributed noise ranging from 40m to 70m. In
our simulations, we change the amount of outliers intro-
duced by varying the percentages with respect to the total
number of measurements. The second approach corrupts
the measurements with noise generated from the Student’s
t-distribution, which has a similar shape as the normal
distribution but with a heavier tail. The parameter of the t-
distribution, the degrees of freedom ν , is varied in simulations
to model outliers of different characteristics. Note that a
smaller ν leads to a heavier tail. The simulation results are
summarized in Table I, where the root-mean-square (RMS)
estimation error is used as the performance evaluation metric.
Figure 2 shows the instantaneous estimation errors generated
by different estimators and the target’s trajectory estimated
by the proposed robust estimator, when 20% uniformly
distributed outliers are present. These results demonstrate
the promising performance of the proposed robust estimator,

1% missing 10% missing 20% missing 40% missing
measurement error 35.8215m 35.4122m 34.7541m 37.7812m
KF estimation error 22.9701m 23.1594m 23.7785m 33.5473m

BLS estimation error 22.5718m 22.8851m 25.1728m 31.2794m
sum-of-norms estimation error 10.9128m 10.4728m 15.5712m 19.2022m

robust estimator error 8.1266m 8.4694m 8.8115m 10.8259m

TABLE II
COMPARISON OF RMS ESTIMATION ERRORS OF DIFFERENT ESTIMATORS UNDER DIFFERENT PERCENTAGES OF MISSING MEASUREMENTS.
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Fig. 3. Impact of Missing Measurements: The estimation performance of the following algorithms: a) Kalman Filter, b) BLS estimator, c) sum-of-norms
estimator, and d) proposed robust estimator. e) The target’s trajectory estimated by the proposed robust estimator. The total number of measurements
missing is 40%.
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which outperforms the other methods especially when the
outliers are prominent.

2) Impact of Missing Measurements: To evaluate the
performance of the proposed robust estimator under missing
measurements, we used the dataset created in the previ-
ous experiment which includes 20% uniformly distributed
outliers. Then, we randomly removed different percentages
of the measurements. The results of this simulation study
are provided in Table II. Additionally, the instantaneous
estimation errors of different estimators and the target’s
trajectory estimated by the proposed robust estimator under
40% measurement missing rate are visualized in Figure 3.
Notice that the proposed robust estimator is resilient to
missing measurements and it outperforms the other three
estimators significantly, especially when a large portion of
the measurements are missing.

B. Second Scenario: Two UAVs Cooperatively Track a Target

We consider now a more complicated scenario, where a
MAS consisting of two UAVs are tasked to track a ground
moving target cooperatively. We adopt the same experimental
settings described in the previous section to configure this
experiment, but with an additional UAV included in the
formulation. The transmission delays between the two UAVs
are ignored. To simulate outliers and cameras of different
precisions, we corrupt 20% of all measurements generated
by the first UAV with uniformly distributed noise ranging
from 40m to 70m, and 10% of all measurements generated
by the second UAV with uniformly distributed noise ranging
from 30m to 60m.

0 20 40 60 80
Time (s)

0

20

40

60

80

100

In
st

an
ta

ne
ou

s 
E

rr
or

 (m
)

Measurement Error (UAV 1)
Measurement Error (UAV 2)
Robust Estimator Error

(a)

-300 -200 -100 0 100 200
x (m)

-100

0

100

200

300

y 
(m

)

S

E

Estimated Positions
Noisy Measurements by UAV 1
Noisy Measurements by UAV 2
Ground Truth

(b)

Fig. 4. a) The instantaneous estimation performance of the proposed robust
estimator for measurements collected by two UAVs and b) the estimated
trajectory of the target.

As measurements may be lost during the transmission, we
randomly remove 20% of the total number of measurements
produced by each UAV. The estimation performance of the
proposed robust estimator is shown in Figure 4(a), which
has an RME estimation error of 6.6577m. Compared with
the measurement error of 36.7993m for the first UAV and
22.6096m for the second UAV, our MAS estimator improves
the precision by around 240%. Figure 4(b) visualizes the tra-
jectory of the target estimated by our robust MAS estimator.

V. CONCLUSION

In this paper, we developed a robust state estimator
for MAS. This estimator has a general cost function that
addresses missing measurements in MAS and is robust to
impulsive noise and disturbances by adopting the Huber
Loss. To facilitate online implementation of the estimation
algorithm, a graph representation of the MAS state esti-
mation problem was also developed. Simulations of two
MAS scenarios with different complexities validate the pro-
posed method. Comparisons with state-of-the-art estimation
algorithms further demonstrate the promising performance
of the proposed robust estimator. In the future, we will
conduct systematic analysis on the parameters’ impact, and
implement the robust estimator in a real MAS.
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