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Abstract—In recent years, deep learning based computer
vision technology has progressed rapidly thanks to the significant
increases in computing power and high-quality datasets. In this
article, we present an aerial view image and video dataset
dedicated to facilitating vision applications on the UAV platform,
such as object detection, classification and tracking. The dataset
consists of 5,000 images, each of which is carefully annotated
according to the guidelines of the PASCAL VOC. The dataset is
designed to cover diverse real-life scenes with aerial view angles
which is different from other datasets. Such kind of specific
dataset will be of great importance in developing and testing deep
learning algorithms for UAV applications. Moreover, the dataset
can serve as a benchmark to evaluate UAV visual solutions.

Index Terms—UAYV, image dataset, benchmark, object detec-
tion, object tracking

I. INTRODUCTION

In the past few years, deep learning based computer vision
technology has attracted tremendous attention due to its state-
of-the-art performance on a wide range of visual applications.
Both academia and industry have made significant progress
in several core techniques such as object detection and
object tracking. From these techniques, various applications
are enabled such as surveillance, resource monitoring, and
wilderness search and rescue.

Hardware platforms designed specifically for deep learning,
such as GPU and TPU, make it practical for powerful and
sophisticated deep learning models to be deployed in real-
world applications. For example, faster RCNN [1], YOLO
[2] and SSD [3] are used for object detection and classifica-
tion, while generative adversarial networks [4] and cascaded
refinement networks [S] are used for image synthesis. The
implementation of all these models requires high computing
power.

In addition to powerful computing hardware platforms,
high-quality datasets also play an important role in driving the
development of these models. Many organizations, as pioneers
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in the field of artificial intelligence, have made a significant
contribution to the development of high-quality datasets for
computer vision applications. For instance, ImageNet [6],
Pascal VOC [7] and MS COCO [8] are the cornerstones
for preliminary recognition algorithms. Supported by VIVID
[9], OTB [10], MOT Challeng [11] and other datasets, track-
ing algorithms have achieved great success in recent years.
However, most of these visual datasets are collected from
ground view angles, and therefore, are not suitable for aerial
applications, which is a field of great potential.

As Unmanned Aerial Vehicles (UAVs) become mature
and affordable, they have been used in many applications.
Equipped with WiFi devices, aerial networks can be quickly
deployed in certain emergency scenarios. Furthermore, if
directional antennas are installed, airborne WiFi network
can provide more reliable and larger coverage that is of
great importance in disaster relief practices [12] [13]. With
the support of the UAV system, a high-performance UAV
system was studied to make the most efficient use of limited
computing resources to achieve computation extensive tasks,
such as positioning biometric objects and outdoor casualty
searches [14]. Since lots of UAV functions were designed
separately, emerged rapidly, and took aim at specified scenatio
and application, there is a lack of systematic analytical model
to exploit and implement UAV functions. A comprehensive
study was presented in which a three-layer reference model
has been proposed to facilite UAV-based airbone computing
functions [15]. Equipped with cameras and integrated with
computer vision algorithms, UAVs have tremendous potential
in real disaster relief applications. Therefore, there is great
demand for aerial view visual datasets that can be used for
developing visual applications on UAVs. Although there have
been some efforts [16], [17] on constructing datasets for object
detection or tracking on UAV platforms, large-scale and high-
quality aerial visual datasets are rare due to the challenges of
flying UAVs in public areas and the difficulty in aerial data
collection and annotation.
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In this paper, we present a large-scale and carefully an-
notated aerial visual benchmark that can be used for various
kinds of computer vision tasks on UAV platform. The dataset
consists of images from different sources and with different
view angles. It covers many real-life scenes, such as parking
lots, street views, social parties, travelling and so on. Further-
more, the image annotation files are saved as XML files in
the same way as ImageNet and PASCAL VOC do, which is
a standard and representative way of data annotation. This
dataset can be used to develop, optimize, and validate object
detection and tracking algorithms for UAV applications.

II. RELATED WORK

A number of benchmarks and datasets have been created,
which lay the foundation for the development of computer vi-
sion algorithms. Some well-known datasets, such as PASCAL
VOC [7], ImageNet [6], and MS COCO [8], are used for gen-
eral object classification and detection. There are also datasets
created for target tracking, such as [10], [18] for single object
tracking and [11], [19] for multiple object tracking, as well
as datasets dedicated for semantic and segmentation analysis,
such as Cityscapes Dataset [20].

A. Visual Datasets for General Purpose Computer Vision

Several large image benchmarks have been created for
object classification and detection. The PASCAL VOC [7]
provides a competition platform since 2005 for object recog-
nition, classification, detection and segmentation. It provides
a large image dataset of 20 classes and 11,530 annotated
images. Furthermore, it provides a standardized evaluation
platform for recognition algorithms. The ImageNet [6] is
also a well-known benchmark for object classification and
detection, which starts from 2010 and runs annually. It is
similar as the PASCAL VOC but greatly expands the number
of classes and images. It also provides a way to track progress
and learn from innovative models. The Microsoft COCO [8]
is another widely used visual recognition dataset designed for
object recognition. It focuses on natural scenes in daily life
and provides 328k images with 2.5 million labeled instances.
These datasets have been widely used in the field of deep
learning for object recognition and spurred the emergence of
some well-known deep learning models.

Besides of above well-known datasets or benchmarks de-
signed for general purposes, there have some important
datasets used in specific areas. Enzweiler and Gavrila [21]
provide a survey and experiments on pedestrian detection,
which is a hot and rapidly evolving branch of computer vision
and has great potential in recent applications, such as auto
driving vehicles and advanced robotics. They have created a
large-scale dataset with 37,450 images obtained from 3,915
rectangular positions by means of mirroring and randomly
shifting. Piotr et al [22] present the Caltech Pedestrian Dataset
for pedestrian detection, which has a larger scale than pre-
vious existing datasets. This dataset includes approximately
10 hours of video taken by a driving vehicle and 350,000
bounding boxes labelled on 250,000 frames. It also provides
an improved evaluation metric.

There are also some datasets created for developing and
testing object tracking algorithms. In [9], an evaluation web-
site was introduced for evaluating the performance of tracking
algorithms. On this evaluation website, ground-truth datasets
are provided for tracking experiments and corresponding
testbed software is also provided. In [23], 26,500 labelled
frames were extracted from 28 video sequences following the
representation model of CAVIAR. These frames are classified
into 6 activity scenarios. For each person in the frames, a
bounding box and the descriptions are provided. In [24], an
online benchmark for object tracking is provided. In order to
evaluate different tracking algorithms, they created a uniform
and representative dataset which contains 50 fully annotated
sequences. They also created a code library including 29 track-
ing algorithms for performance comparison. Visual Object
Tracking challenge 2015 (VOT2015) [18] provides a testing
platform for short-term visual trackers, and 62 trackers have
been tested using this benchmark. Compared to VOT2014, the
dataset provided in VOT2015 is twice larger and introduces
new performance testing methods. Article [25] focuses on
tracking models for deformation and occlusion and provides
an evaluation dataset for deformable object tracking. Article
[26] focuses more on the real-time performance of trackers
and provides a video dataset of high frame rate and extensive
evaluation. Article [27] studied tracking algorithms with the
depth information. It created a dataset of RGBD videos to
compare the performance of different tracking algorithms with
RGB and RGBD inputs.

Even though lots of datasets have been created for visual
tasks, all of aforementioned datasets are not created for aerial
applications.

B. UAV-based Datasets

With the proliferation of UAV based applications and the
popularity of deep learning algorithms, there is a great need
for aerial visual datasets that can be used for computer
vision algorithm development. However, there are very limited
UAV based datasets available in the field of computer vision.
Robicquet et al. [17] studied the impact of social common
sense rules on trajectory prediction and provided a new multi-
object dataset containing various goals. Hsieh et al. [28] pro-
vided a method to count and localize objects simultaneously.
Correspondingly, a large-scale dataset of parking lots has been
created to evaluate their methods and nearly 90,000 cars from
aerial view have been recorded for counting. In [16], the
authors collected a video dataset from aerial view for target
tracking, and compared different trackers using this dataset,
which contains 123 annotated video sequences captured from
aerial perspective. In [29], the authors developed a motion
model for camera motion estimation. To evaluate this model, a
benchmark dataset that contains 70 videos from the aerial view
was created. Article [30] presented a benchmark named Vis-
Drone2018. This dataset contains 179,264 frames and 10,209
static images acquired from the aerial perspective. It has
been used for both object recognition and tracking algorithm
development. However, the annotations of this dataset are
saved as text files, which are different from the common XML
format that is used in PASCAL VOC and ImageNet.
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In this paper, we selectively collect and create a large-
scale image dataset from the aerial perspective, which covers
diverse of scenes and is annotated carefully by following the
standardized way used in PASCAL VOC and ImageNet.

III. UAV-BASED BENCHMARK DATASET

Large-scale and well-annotated datasets are essential for
developing a well-performed deep learning model. Ideally,
the datasets should cover as many scenarios as possible
from various view angles, so that the model could learn
more representative features of the same objects, which can
be adopted in different applications with less generalization
errors.

A. Multiple sources

UAVs have already been used for different purposes in
reality. In personal life, UAV can be used to record travel or
parties for memory; in scientific research, UAVs can collect
data and monitor objects. Patrol supervision can also be done
by UAVs. Although UAVs are used in those applications, the
characteristics of visual data captured from UAV are quite
different. Therefore, a large-scale dataset that can represent
all different scenarios is vital. To provide a relatively compre-
hensive coverage of diverse scenarios, we collect visual data
from different sources, as follows.

o In [31], a video dataset has been created for monitoring.
The main scenario is the parking lot in which the
behavior of many people were recorded to detect possible
criminal activities. Cars were recorded from different
angles and at different distances and people were on the
move and in different forms.

o We have also used two datasets, UCF Aerial Action and
PNNL Parking [32] [33] from the Center For Research
In Computer Vision at the University of Central Florida.
The former covers various actions of a person recorded
from various angles, while the latter monitored the crowd
and people in the scene have various forms and actions.

o DJIis a leading company in the field of civil UAVs. They
have a community for their UAV users, skypixel, and
many UAV enthusiasts to upload their own videos that
record their life activities. These resources contain many
scenes recorded in their lives and travels. The resource
is very diverse, so we also selected a lot of useful data
from here.

Besides these datasets, we also selected some data from other
sources to increase the diversity. Moreover, we also collect
lots of data using our own UAVs.

B. Diverse scenes

Since UAVs can be used in a wide range of applications in
various fields, we tried to include as many scenes as possible
in our dataset, and some examples are shown in Fig 1. The
basic statistics of the scenes are shown in Table II. In parking
lots, combinations of cars and people are typical scenes and
typical actions of people are to open a door or enter into
a car. In travelling, the background varies in a wide range,
from a monochrome background to a colourful background.
This feature may affect the recognition of the background.

In parties, crowd is the representative feature, where people
were recorded from various angles and they overlapped with
each other. There are also lots of other scenes and our dataset
provides reasonable samples to represent them.

We collect image data from various datasets, and carefully
select typical images to cover as many scenes as possible to
broaden representation.

Fig. 1: Various scenes have been covered in our dataset. Here
are some representative samples from the parking lot, social
party, travelling and routine life.

C. Multiple resolutions

Usually, the camera devices mounted on UAVs could have
multiple models with various resolutions. Therefore, if the
dataset covers different resolutions, it can simulate more
scenes and simulate multiple different devices. Our dataset
includes various resolutions to cover various types of devices
as shown in Fig 2. Video materials and images from skypixel
are usually a record of daily life and entertainment for UAV
enthusiasts, and these images usually have higher resolutions.
Therefore, we carefully picked some of the data from skypixel.
We also picked some data from the UCF Aerial Action and
PNNL Parking, which contains data of different resolutions.
This diversity facilitates the training of more practical deep
learning models.

Fig. 2: Examples with different resolutions. The first row
shows images with low resolution (850x480). The second row
shows images with high resolution (1920x1080).
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TABLE I: The basic statistic of UNT_Aerail_Dataset

UNT_Aerial_Dataset | Person
No. of Images 4394
No. of Object 26921

boat | car | bicycle | truck | bus
90 | 3324 | 296 | 267 | 26
797 | 14225 | 583 | 272 | 27

TABLE II: Statistic of Dataset

Scenes No. of Images || No. of Objects per Image | No. of Images || Angle of View | No. of Images
Parking Lot 552 1~10 3967 Vertical View 1335
Action Test 2108 11 ~ 20 608 Side View 3665
Routine Life 414 21 ~ 50 378
Outdoor Living 626 51 ~ 100 25
Harbour 50 101 ~ 150 8
Social Party 1251 151 ~ 200 14
D. View angles E Summary

The most important difference between a typical visual
dataset and an aerial view dataset is the view angle. The form
of a character, car or most other things appears very differently
from the top and front views as shown in Fig 3. For example,
it is easy to distinguish different parts of the human body
from the front view, such as the faces, arms or legs, while
from the top view, only the crown of the head and shoulders
can be seen, and these are either invisible or look different
from the front perspective. If overlooking, the scene is totally
different. The same is true for cars and most other things.
Usually the videos are recorded continuously when the UAV
moves, therefore, images are taken at different distances and
from various view angles.

Fig. 3: Example images from different angles. The first row
shows the different forms of people from overlooking and the
top view. The second row shows the different shapes of cars
from different view angles.

E. Different heights and distances

An important difference between images or videos from a
UAV view and from a head-up view is that the images and
videos captured by the UAV are top-down or at an angled top
view. The view from this angle is quite different from the the
head-up view. For safety reasons, the UAV cannot be too close
to the subject, so the UAV must have a certain distance from
the object being photographed. Accordingly, this result in a
smaller target and makes object recognition more challenging.

The datasets of images from aerial view are indeed nec-
essary because they show clearly different features compared
with normal image datasets.

o The angle of sight is different from that observed from
the ground, which indicates that the image captured from
the perspective of the UAV is quite different from the
usual angle of view. The angle will have a great influence
on the final model. Therefore, our dataset manages to
cover as many angles as possible.

o For safety reasons, the UAV must be at a certain distance
away from the objects, so the distance is farther than the
usual angle of view. However, the target object will be
smaller or even difficult to identify.

o Due to long distance, the range of the field of view will
become larger and the number of objects captured by the
image will be larger. Therefore, dense crowds or groups
of vehicles are common in aerial view, and overlapped
and different forms are typical features that should be
considered. Our dataset contains many of these scenarios.

To create a dataset that accomplishes these three goals, we
collect photos from a variety of scenes, including various res-
olutions. Photographs in different scenarios make the database
more inclusive and more representative. Our database contains
pictures of various scenes, such as parking lots, crowd activ-
ities, travel activities, and scenes on the highway. Images of
different resolutions are more representative, imitating input
in a variety of situations, and are beneficial for training more
robust and more adaptable models. The labelled images are
shown in Fig 4. In these examples, different scenes, angles
and object densities are shown.

Our benchmark is of high diversity. The source of our
dataset consists of frames captured from more than 70 videos
and also images from different scenes. DJI is the world’s
leader in commercial and civilian UAV industry, and some
of our sources are from Skypixel, the community supported
by DJI.

IV. TESTING AND EVALUATION

Convolution Neural Networks (CNNs) [34] have been
proved to be a great success in the two core problems of
computer vision, object recognition and detection. CNNs
apply 3D kernel filters to extract different features from
original input images or feature maps of previous layers and
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Fig. 4. Example of images with label boxes. Sample images
from different angles and different object density are included.

occasionally intersperse with several pooling layers, which
aim to reduce the size of the feature map thus greatly reducing
the parameters of the model. Ended with fully-connected
layers, the network can be used to predict detections and
classifications. The typical object detection network SSD
is a well-known network model based on CNN. It has a
base convolution network to extract features and additional
progressively smaller convolution layers corresponding to
different receptive fields, followed by fully connected layers
for detection and classification.

A. Models

There are three kinds of well-known deep learning models
which are used for training and evaluating on our dataset.

Faster RCNN [1] is an improved version based on RCNN
and Fast RCNN, which has higher accuracy and faster recog-
nition than previous versions. The Faster RCNN actually has
two subnets. One is a small CNN network called the Regional
Proposal Network (RPN) for generating regional proposals.
The other CNN network is used for predicting categories and
detecting locations from the proposals of RPN.

You Only Look Once (YOLO) [2] is an object detection
model designed for real-time detection. YOLO is much faster
than the Faster RCNN, but it is less accurate than the Faster
RCNN, which is a balance between speed and accuracy.
In YOLO, the authors consider the detection problem as a
regression problem. The YOLO model takes the image as
the input, and then divides the input image into grids of
size S x S. Each grid has N bounding boxes and predicts
with confidence of N x C, where C is the total number
of categories. The confidence reflects the possibility that this
bounding box contains an object from a certain category.

While the accuracy of Faster RCNN is higher than that
of YOLO, YOLO is much faster than Faster RCNN. The
SSD (Single Shot Detector) network achieves a good balance
between speed and accuracy. The basic idea of the SSD
network is similar as YOLO, which divides the input image
and feature maps into grids of different sizes, and generates
bounding boxes from grids, which are then used for detection
and classification.

In this study, we use all these three recognition models to
train and test our dataset.

B. Dataset

In order to make the dataset more representative and the
model trained on this dataset more robust, we further expand
the dataset during the training process by randomly shifting
and cropping. While this data extension does not cover all
angles and the effect of the extension is limited, it will
facilitate the training of powerful models.

C. Testing Results

To demonstrate the usefulness of our dataset in training
models, we conduct a controlled trial. We use a typical
detection model, SSD detection network. We split our dataset
into two parts, the training set and testing set. The model that
was not trained on our dataset has a very low testing accuracy
of 0.03 mAP, but the model trained on our dataset achieves
an accuracy of 0.399 mAP. For YOLOv3, without training on
our dataset, its accuracy is only 0.05 mAP, but it can achieve
0.63 mAP if trained on our dataset.

V. CONCLUSION

We introduce a new image dataset for the research of
object detection and classification on the UAV platform. This
dataset contains 5000 images collected from various videos
and high resolution photos. About 10k instances are gathered,
annotated and organized to facilitate the development of
classification and detection algorithms. Our dataset covers
various of scenarios and has different resolutions, making it
more representative and practical.

In the future, we will scale up our dataset and annotate more
kinds of objects. Due to the difference between the UAV view
and the normal view, we will include more features into our
dataset.
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