

BirdsEyeView: Aerial View Dataset for Object Classification and Detection

Yunlong Qi

*Dept. of Electrical Engineering
University of North Texas
Denton, TX, 76207
yunlongqi@my.unt.edu*

Kejie Lu

*Dept. of Computer Science and Engineering
University of Puerto Rico at Mayagüez
Mayagüez, Puerto Rico, 00681
kejie.lu@upr.edu*

Dong Wang

*Google Cloud
Google Inc.
New York, NY, 10011
wdzc@google.com*

Yan Wan

*Dept. of Electrical Engineering
University of Texas at Arlington
Arlington, TX, 76010
yan.wan@uta.edu*

Junfei Xie

*Dept. of Electrical and Computer Engineering
San Diego State University
San Diego, CA 92182
jxie@sdsu.edu*

Shengli Fu

*Dept. of Electrical Engineering
University of North Texas
Denton, TX, 76207
shengli.fu@unt.edu*

Abstract—In recent years, deep learning based computer vision technology has progressed rapidly thanks to the significant increases in computing power and high-quality datasets. In this article, we present an aerial view image and video dataset dedicated to facilitating vision applications on the UAV platform, such as object detection, classification and tracking. The dataset consists of 5,000 images, each of which is carefully annotated according to the guidelines of the PASCAL VOC. The dataset is designed to cover diverse real-life scenes with aerial view angles which is different from other datasets. Such kind of specific dataset will be of great importance in developing and testing deep learning algorithms for UAV applications. Moreover, the dataset can serve as a benchmark to evaluate UAV visual solutions.

Index Terms—UAV, image dataset, benchmark, object detection, object tracking

I. INTRODUCTION

In the past few years, deep learning based computer vision technology has attracted tremendous attention due to its state-of-the-art performance on a wide range of visual applications. Both academia and industry have made significant progress in several core techniques such as object detection and object tracking. From these techniques, various applications are enabled such as surveillance, resource monitoring, and wilderness search and rescue.

Hardware platforms designed specifically for deep learning, such as GPU and TPU, make it practical for powerful and sophisticated deep learning models to be deployed in real-world applications. For example, faster RCNN [1], YOLO [2] and SSD [3] are used for object detection and classification, while generative adversarial networks [4] and cascaded refinement networks [5] are used for image synthesis. The implementation of all these models requires high computing power.

In addition to powerful computing hardware platforms, high-quality datasets also play an important role in driving the development of these models. Many organizations, as pioneers

This work was partially supported by National Science Foundation (NSF) under Grants CI-1730589/1730675/1730570/1730325 and CAREER-1714519.

in the field of artificial intelligence, have made a significant contribution to the development of high-quality datasets for computer vision applications. For instance, ImageNet [6], Pascal VOC [7] and MS COCO [8] are the cornerstones for preliminary recognition algorithms. Supported by VIVID [9], OTB [10], MOT Challeng [11] and other datasets, tracking algorithms have achieved great success in recent years. However, most of these visual datasets are collected from ground view angles, and therefore, are not suitable for aerial applications, which is a field of great potential.

As Unmanned Aerial Vehicles (UAVs) become mature and affordable, they have been used in many applications. Equipped with WiFi devices, aerial networks can be quickly deployed in certain emergency scenarios. Furthermore, if directional antennas are installed, airborne WiFi network can provide more reliable and larger coverage that is of great importance in disaster relief practices [12] [13]. With the support of the UAV system, a high-performance UAV system was studied to make the most efficient use of limited computing resources to achieve computation extensive tasks, such as positioning biometric objects and outdoor casualty searches [14]. Since lots of UAV functions were designed separately, emerged rapidly, and took aim at specified scenario and application, there is a lack of systematic analytical model to exploit and implement UAV functions. A comprehensive study was presented in which a three-layer reference model has been proposed to facilitate UAV-based airborne computing functions [15]. Equipped with cameras and integrated with computer vision algorithms, UAVs have tremendous potential in real disaster relief applications. Therefore, there is great demand for aerial view visual datasets that can be used for developing visual applications on UAVs. Although there have been some efforts [16], [17] on constructing datasets for object detection or tracking on UAV platforms, large-scale and high-quality aerial visual datasets are rare due to the challenges of flying UAVs in public areas and the difficulty in aerial data collection and annotation.

In this paper, we present a large-scale and carefully annotated aerial visual benchmark that can be used for various kinds of computer vision tasks on UAV platform. The dataset consists of images from different sources and with different view angles. It covers many real-life scenes, such as parking lots, street views, social parties, travelling and so on. Furthermore, the image annotation files are saved as XML files in the same way as ImageNet and PASCAL VOC do, which is a standard and representative way of data annotation. This dataset can be used to develop, optimize, and validate object detection and tracking algorithms for UAV applications.

II. RELATED WORK

A number of benchmarks and datasets have been created, which lay the foundation for the development of computer vision algorithms. Some well-known datasets, such as PASCAL VOC [7], ImageNet [6], and MS COCO [8], are used for general object classification and detection. There are also datasets created for target tracking, such as [10], [18] for single object tracking and [11], [19] for multiple object tracking, as well as datasets dedicated for semantic and segmentation analysis, such as Cityscapes Dataset [20].

A. Visual Datasets for General Purpose Computer Vision

Several large image benchmarks have been created for object classification and detection. The PASCAL VOC [7] provides a competition platform since 2005 for object recognition, classification, detection and segmentation. It provides a large image dataset of 20 classes and 11,530 annotated images. Furthermore, it provides a standardized evaluation platform for recognition algorithms. The ImageNet [6] is also a well-known benchmark for object classification and detection, which starts from 2010 and runs annually. It is similar as the PASCAL VOC but greatly expands the number of classes and images. It also provides a way to track progress and learn from innovative models. The Microsoft COCO [8] is another widely used visual recognition dataset designed for object recognition. It focuses on natural scenes in daily life and provides 328k images with 2.5 million labeled instances. These datasets have been widely used in the field of deep learning for object recognition and spurred the emergence of some well-known deep learning models.

Besides of above well-known datasets or benchmarks designed for general purposes, there have some important datasets used in specific areas. Enzweiler and Gavrila [21] provide a survey and experiments on pedestrian detection, which is a hot and rapidly evolving branch of computer vision and has great potential in recent applications, such as auto driving vehicles and advanced robotics. They have created a large-scale dataset with 37,450 images obtained from 3,915 rectangular positions by means of mirroring and randomly shifting. Piotr et al [22] present the Caltech Pedestrian Dataset for pedestrian detection, which has a larger scale than previous existing datasets. This dataset includes approximately 10 hours of video taken by a driving vehicle and 350,000 bounding boxes labelled on 250,000 frames. It also provides an improved evaluation metric.

There are also some datasets created for developing and testing object tracking algorithms. In [9], an evaluation website was introduced for evaluating the performance of tracking algorithms. On this evaluation website, ground-truth datasets are provided for tracking experiments and corresponding testbed software is also provided. In [23], 26,500 labelled frames were extracted from 28 video sequences following the representation model of CAVIAR. These frames are classified into 6 activity scenarios. For each person in the frames, a bounding box and the descriptions are provided. In [24], an online benchmark for object tracking is provided. In order to evaluate different tracking algorithms, they created a uniform and representative dataset which contains 50 fully annotated sequences. They also created a code library including 29 tracking algorithms for performance comparison. Visual Object Tracking challenge 2015 (VOT2015) [18] provides a testing platform for short-term visual trackers, and 62 trackers have been tested using this benchmark. Compared to VOT2014, the dataset provided in VOT2015 is twice larger and introduces new performance testing methods. Article [25] focuses on tracking models for deformation and occlusion and provides an evaluation dataset for deformable object tracking. Article [26] focuses more on the real-time performance of trackers and provides a video dataset of high frame rate and extensive evaluation. Article [27] studied tracking algorithms with the depth information. It created a dataset of RGBD videos to compare the performance of different tracking algorithms with RGB and RGBD inputs.

Even though lots of datasets have been created for visual tasks, all of aforementioned datasets are not created for aerial applications.

B. UAV-based Datasets

With the proliferation of UAV based applications and the popularity of deep learning algorithms, there is a great need for aerial visual datasets that can be used for computer vision algorithm development. However, there are very limited UAV based datasets available in the field of computer vision. Robicquet et al. [17] studied the impact of social common sense rules on trajectory prediction and provided a new multi-object dataset containing various goals. Hsieh et al. [28] provided a method to count and localize objects simultaneously. Correspondingly, a large-scale dataset of parking lots has been created to evaluate their methods and nearly 90,000 cars from aerial view have been recorded for counting. In [16], the authors collected a video dataset from aerial view for target tracking, and compared different trackers using this dataset, which contains 123 annotated video sequences captured from aerial perspective. In [29], the authors developed a motion model for camera motion estimation. To evaluate this model, a benchmark dataset that contains 70 videos from the aerial view was created. Article [30] presented a benchmark named Vis-Drone2018. This dataset contains 179,264 frames and 10,209 static images acquired from the aerial perspective. It has been used for both object recognition and tracking algorithm development. However, the annotations of this dataset are saved as text files, which are different from the common XML format that is used in PASCAL VOC and ImageNet.

In this paper, we selectively collect and create a large-scale image dataset from the aerial perspective, which covers diverse of scenes and is annotated carefully by following the standardized way used in PASCAL VOC and ImageNet.

III. UAV-BASED BENCHMARK DATASET

Large-scale and well-annotated datasets are essential for developing a well-performed deep learning model. Ideally, the datasets should cover as many scenarios as possible from various view angles, so that the model could learn more representative features of the same objects, which can be adopted in different applications with less generalization errors.

A. Multiple sources

UAVs have already been used for different purposes in reality. In personal life, UAV can be used to record travel or parties for memory; in scientific research, UAVs can collect data and monitor objects. Patrol supervision can also be done by UAVs. Although UAVs are used in those applications, the characteristics of visual data captured from UAV are quite different. Therefore, a large-scale dataset that can represent all different scenarios is vital. To provide a relatively comprehensive coverage of diverse scenarios, we collect visual data from different sources, as follows.

- In [31], a video dataset has been created for monitoring. The main scenario is the parking lot in which the behavior of many people were recorded to detect possible criminal activities. Cars were recorded from different angles and at different distances and people were on the move and in different forms.
- We have also used two datasets, UCF Aerial Action and PNNL Parking [32] [33] from the Center For Research In Computer Vision at the University of Central Florida. The former covers various actions of a person recorded from various angles, while the latter monitored the crowd and people in the scene have various forms and actions.
- DJI is a leading company in the field of civil UAVs. They have a community for their UAV users, skypixel, and many UAV enthusiasts to upload their own videos that record their life activities. These resources contain many scenes recorded in their lives and travels. The resource is very diverse, so we also selected a lot of useful data from here.

Besides these datasets, we also selected some data from other sources to increase the diversity. Moreover, we also collect lots of data using our own UAVs.

B. Diverse scenes

Since UAVs can be used in a wide range of applications in various fields, we tried to include as many scenes as possible in our dataset, and some examples are shown in Fig 1. The basic statistics of the scenes are shown in Table II. In parking lots, combinations of cars and people are typical scenes and typical actions of people are to open a door or enter into a car. In travelling, the background varies in a wide range, from a monochrome background to a colourful background. This feature may affect the recognition of the background.

In parties, crowd is the representative feature, where people were recorded from various angles and they overlapped with each other. There are also lots of other scenes and our dataset provides reasonable samples to represent them.

We collect image data from various datasets, and carefully select typical images to cover as many scenes as possible to broaden representation.

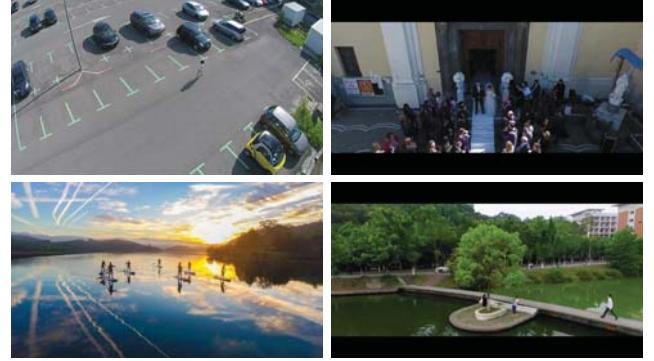


Fig. 1: Various scenes have been covered in our dataset. Here are some representative samples from the parking lot, social party, travelling and routine life.

C. Multiple resolutions

Usually, the camera devices mounted on UAVs could have multiple models with various resolutions. Therefore, if the dataset covers different resolutions, it can simulate more scenes and simulate multiple different devices. Our dataset includes various resolutions to cover various types of devices as shown in Fig 2. Video materials and images from skypixel are usually a record of daily life and entertainment for UAV enthusiasts, and these images usually have higher resolutions. Therefore, we carefully picked some of the data from skypixel. We also picked some data from the UCF Aerial Action and PNNL Parking, which contains data of different resolutions. This diversity facilitates the training of more practical deep learning models.

Fig. 2: Examples with different resolutions. The first row shows images with low resolution (850x480). The second row shows images with high resolution (1920x1080).

TABLE I: The basic statistic of UNT_Aerial_Dataset

UNT_Aerial_Dataset	Person	boat	car	bicycle	truck	bus
No. of Images	4394	90	3324	296	267	26
No. of Object	26921	797	14225	583	272	27

TABLE II: Statistic of Dataset

Scenes	No. of Images	No. of Objects per Image	No. of Images	Angle of View	No. of Images
Parking Lot	552	1 ~ 10	3967	Vertical View	1335
Action Test	2108	11 ~ 20	608	Side View	3665
Routine Life	414	21 ~ 50	378		
Outdoor Living	626	51 ~ 100	25		
Harbour	50	101 ~ 150	8		
Social Party	1251	151 ~ 200	14		

D. View angles

The most important difference between a typical visual dataset and an aerial view dataset is the view angle. The form of a character, car or most other things appears very differently from the top and front views as shown in Fig 3. For example, it is easy to distinguish different parts of the human body from the front view, such as the faces, arms or legs, while from the top view, only the crown of the head and shoulders can be seen, and these are either invisible or look different from the front perspective. If overlooking, the scene is totally different. The same is true for cars and most other things. Usually the videos are recorded continuously when the UAV moves, therefore, images are taken at different distances and from various view angles.

Fig. 3: Example images from different angles. The first row shows the different forms of people from overlooking and the top view. The second row shows the different shapes of cars from different view angles.

E. Different heights and distances

An important difference between images or videos from a UAV view and from a head-up view is that the images and videos captured by the UAV are top-down or at an angled top view. The view from this angle is quite different from the the head-up view. For safety reasons, the UAV cannot be too close to the subject, so the UAV must have a certain distance from the object being photographed. Accordingly, this result in a smaller target and makes object recognition more challenging.

F. Summary

The datasets of images from aerial view are indeed necessary because they show clearly different features compared with normal image datasets.

- The angle of sight is different from that observed from the ground, which indicates that the image captured from the perspective of the UAV is quite different from the usual angle of view. The angle will have a great influence on the final model. Therefore, our dataset manages to cover as many angles as possible.
- For safety reasons, the UAV must be at a certain distance away from the objects, so the distance is farther than the usual angle of view. However, the target object will be smaller or even difficult to identify.
- Due to long distance, the range of the field of view will become larger and the number of objects captured by the image will be larger. Therefore, dense crowds or groups of vehicles are common in aerial view, and overlapped and different forms are typical features that should be considered. Our dataset contains many of these scenarios.

To create a dataset that accomplishes these three goals, we collect photos from a variety of scenes, including various resolutions. Photographs in different scenarios make the database more inclusive and more representative. Our database contains pictures of various scenes, such as parking lots, crowd activities, travel activities, and scenes on the highway. Images of different resolutions are more representative, imitating input in a variety of situations, and are beneficial for training more robust and more adaptable models. The labelled images are shown in Fig 4. In these examples, different scenes, angles and object densities are shown.

Our benchmark is of high diversity. The source of our dataset consists of frames captured from more than 70 videos and also images from different scenes. DJI is the world's leader in commercial and civilian UAV industry, and some of our sources are from Skypixel, the community supported by DJI.

IV. TESTING AND EVALUATION

Convolution Neural Networks (CNNs) [34] have been proved to be a great success in the two core problems of computer vision, object recognition and detection. CNNs apply 3D kernel filters to extract different features from original input images or feature maps of previous layers and

Fig. 4: Example of images with label boxes. Sample images from different angles and different object density are included.

occasionally intersperse with several pooling layers, which aim to reduce the size of the feature map thus greatly reducing the parameters of the model. Ended with fully-connected layers, the network can be used to predict detections and classifications. The typical object detection network SSD is a well-known network model based on CNN. It has a base convolution network to extract features and additional progressively smaller convolution layers corresponding to different receptive fields, followed by fully connected layers for detection and classification.

A. Models

There are three kinds of well-known deep learning models which are used for training and evaluating on our dataset.

Faster RCNN [1] is an improved version based on RCNN and Fast RCNN, which has higher accuracy and faster recognition than previous versions. The Faster RCNN actually has two subnets. One is a small CNN network called the Regional Proposal Network (RPN) for generating regional proposals. The other CNN network is used for predicting categories and detecting locations from the proposals of RPN.

You Only Look Once (YOLO) [2] is an object detection model designed for real-time detection. YOLO is much faster than the Faster RCNN, but it is less accurate than the Faster RCNN, which is a balance between speed and accuracy. In YOLO, the authors consider the detection problem as a regression problem. The YOLO model takes the image as the input, and then divides the input image into grids of size $S \times S$. Each grid has N bounding boxes and predicts with confidence of $N \times C$, where C is the total number of categories. The confidence reflects the possibility that this bounding box contains an object from a certain category.

While the accuracy of Faster RCNN is higher than that of YOLO, YOLO is much faster than Faster RCNN. The SSD (Single Shot Detector) network achieves a good balance between speed and accuracy. The basic idea of the SSD network is similar as YOLO, which divides the input image and feature maps into grids of different sizes, and generates bounding boxes from grids, which are then used for detection and classification.

In this study, we use all these three recognition models to train and test our dataset.

B. Dataset

In order to make the dataset more representative and the model trained on this dataset more robust, we further expand the dataset during the training process by randomly shifting and cropping. While this data extension does not cover all angles and the effect of the extension is limited, it will facilitate the training of powerful models.

C. Testing Results

To demonstrate the usefulness of our dataset in training models, we conduct a controlled trial. We use a typical detection model, SSD detection network. We split our dataset into two parts, the training set and testing set. The model that was not trained on our dataset has a very low testing accuracy of 0.03 mAP, but the model trained on our dataset achieves an accuracy of 0.399 mAP. For YOLOv3, without training on our dataset, its accuracy is only 0.05 mAP, but it can achieve 0.63 mAP if trained on our dataset.

V. CONCLUSION

We introduce a new image dataset for the research of object detection and classification on the UAV platform. This dataset contains 5000 images collected from various videos and high resolution photos. About 10k instances are gathered, annotated and organized to facilitate the development of classification and detection algorithms. Our dataset covers various of scenarios and has different resolutions, making it more representative and practical.

In the future, we will scale up our dataset and annotate more kinds of objects. Due to the difference between the UAV view and the normal view, we will include more features into our dataset.

REFERENCES

- [1] R. Girshick, "Fast r-cnn," in *Proceedings of the IEEE international conference on computer vision*, 2015, pp. 1440–1448.
- [2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 779–788.
- [3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, "Ssd: Single shot multibox detector," in *European conference on computer vision*. Springer, 2016, pp. 21–37.
- [4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in *Advances in neural information processing systems*, 2014, pp. 2672–2680.
- [5] Q. Chen and V. Koltun, "Photographic image synthesis with cascaded refinement networks," in *IEEE International Conference on Computer Vision (ICCV)*, vol. 1, no. 2, 2017, p. 3.
- [6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein *et al.*, "Imagenet large scale visual recognition challenge," *International Journal of Computer Vision*, vol. 115, no. 3, pp. 211–252, 2015.
- [7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes (voc) challenge," *International Journal of Computer Vision*, vol. 88, no. 2, pp. 303–338, Jun. 2010.
- [8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context," in *European conference on computer vision*. Springer, 2014, pp. 740–755.
- [9] R. Collins, X. Zhou, and S. K. Teh, "An open source tracking testbed and evaluation web site," in *IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2005)*, vol. 2, 2005, p. 35.

[10] Y. Wu, J. Lim, and M.-H. Yang, "Object tracking benchmark," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 37, no. 9, pp. 1834–1848, 2015.

[11] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, "Motchallenge 2015: Towards a benchmark for multi-target tracking," *arXiv preprint arXiv:1504.01942*, 2015.

[12] J. Chen, J. Xie, Y. Gu, S. Li, S. Fu, Y. Wan, and K. Lu, "Long-range and broadband aerial communication using directional antennas (acda): design and implementation," *IEEE Transactions on Vehicular Technology*, vol. 66, no. 12, pp. 10 793–10 805, 2017.

[13] Y. Gu, M. Zhou, S. Fu, and Y. Wan, "Airborne wifi networks through directional antennae: An experimental study," in *Wireless Communications and Networking Conference (WCNC), 2015 IEEE*. IEEE, 2015, pp. 1314–1319.

[14] B. Wang, J. Xie, S. Li, Y. Wan, S. Fu, and K. Lu, "Enabling high-performance onboard computing with virtualization for unmanned aerial systems," in *2018 International Conference on Unmanned Aircraft Systems (ICUAS)*. IEEE, 2018, pp. 202–211.

[15] K. Lu, J. Xie, Y. Wan, and S. Fu, "Toward uav-based airborne computing," *IEEE Wireless Communications*, pp. 1–8, 2019.

[16] M. Mueller, N. Smith, and B. Ghanem, "A benchmark and simulator for uav tracking," in *European conference on computer vision*. Springer, 2016, pp. 445–461.

[17] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, "Learning social etiquette: Human trajectory understanding in crowded scenes," in *European conference on computer vision*. Springer, 2016, pp. 549–565.

[18] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager, G. Nebehay, and R. Pflugfelder, "The visual object tracking vot2015 challenge results," in *Proceedings of the IEEE international conference on computer vision workshops*, 2015, pp. 1–23.

[19] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-H. Yang, and S. Lyu, "Ua-detrac: A new benchmark and protocol for multi-object detection and tracking," *arXiv preprint arXiv:1511.04136*, 2015.

[20] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban scene understanding," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 3213–3223.

[21] M. Enzweiler and D. M. Gavrila, "Monocular pedestrian detection: Survey and experiments," *IEEE Transactions on Pattern Analysis & Machine Intelligence*, no. 12, pp. 2179–2195, 2008.

[22] P. Dollár, C. Wojek, B. Schiele, and P. Perona, "Pedestrian detection: A benchmark," in *Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on*. IEEE, 2009, pp. 304–311.

[23] R. B. Fisher, "The pets04 surveillance ground-truth data sets," in *Proc. 6th IEEE international workshop on performance evaluation of tracking and surveillance*, 2004, pp. 1–5.

[24] Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2013, pp. 2411–2418.

[25] D. Du, H. Qi, W. Li, L. Wen, Q. Huang, and S. Lyu, "Online deformable object tracking based on structure-aware hyper-graph," *IEEE Trans. Image Processing*, vol. 25, no. 8, pp. 3572–3584, 2016.

[26] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey, "Need for speed: A benchmark for higher frame rate object tracking," in *Computer Vision (ICCV), 2017 IEEE International Conference on*. IEEE, 2017, pp. 1134–1143.

[27] S. Song and J. Xiao, "Tracking revisited using rgbd camera: Unified benchmark and baselines," in *The IEEE International Conference on Computer Vision (ICCV)*, December 2013.

[28] M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu, "Drone-based object counting by spatially regularized regional proposal network," in *The IEEE International Conference on Computer Vision (ICCV)*, vol. 1, 2017.

[29] S. Li and D.-Y. Yeung, "Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models," in *AAAI*, 2017, pp. 4140–4146.

[30] P. Zhu, L. Wen, X. Bian, L. Haibin, and Q. Hu, "Vision meets drones: A challenge," *arXiv preprint arXiv:1804.07437*, 2018.

[31] M. Bonetto, P. Korshunov, G. Ramponi, and T. Ebrahimi, "Privacy in mini-drone based video surveillance," in *Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on*, vol. 4. IEEE, 2015, pp. 1–6.

[32] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, "Part-based multiple-person tracking with partial occlusion handling," in *Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on*. IEEE, 2012, pp. 1815–1821.

[33] A. Dehghan, S. Modiri Assari, and M. Shah, "Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 4091–4099.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.