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Abstract— Two main problems are addressed in this paper.
The first one is the model identification for a commercial
unmanned aircraft system (UAS): the Parrot Mambo multi-
copter. The second one aims at synthesizing a robust controller
for guaranteeing the stability of the X and Y translational
dynamics of this UAS. To accomplish these goals, we first collect
input-output data from a set of real-time flight experiments.
Next, by applying an extended least square (ELS) algorithm
to the data, a group of dynamic models are identified. Due
to uncertainties, the obtained models are similar in nature
but exhibit parametrical variations. For this reason, from
the set of identified models, a unique nominal (i.e., average)
parameter-dependent linear model is built, which also takes
into account the minimum and maximum values defining the
model parametrical variations. Finally, a static linear controller
is synthesized for the dynamics of interest, guaranteeing global
stability for every model. The identification results and the
performance of the closed-loop controller are validated in a set
of numerical simulations, demonstrating the effectiveness of the
proposed modeling and control approaches.

I. INTRODUCTION

Uncertainties are one of the main causes for poor perfor-
mance and instability in feedback systems, therefore, robust
stability is an important and nontrivial issue for any control
design. Over the past decades, H∞ control strategies for
robust stability of linear and nonlinear systems have been
extensively studied, and many interesting results have been
introduced. In particular, some classic and recent works in
this area can be found in [1]–[4], and the references therein.
In order to apply robust control techniques, a model of the
system to be controlled is needed. However, when dealing
with real-time systems, it is rare that the manufacturer
of a system makes available the equations describing the
corresponding dynamic model. This is the case with most, if
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Fig. 1. The Mambo Drone. A commercially available mini UAS Platform
developed by Parrot.

not all of the Unmanned Aircraft System (UAS) platforms
commercially available [5].

In this work, we focus on the development of an H∞
robust control strategy for the Parrot Mambo UAS multi-
copter, see Figure 1. Not surprisingly, the equations describ-
ing the dynamics of such system are not provided by the
manufacturer. Therefore, as a first step towards developing
the control strategy, a model identification procedure is
conducted. We start by applying an extended least-squares
(ELS) identification technique to a set of data containing
input-output system information. This kind of technique has
been studied in [6], [7], and [8].

It is well known that any identification procedure of a
real-time system is commonly affected by uncertainties and
errors. Indeed, if we perform multiple instances of an identi-
fication procedure applied to the exact same system, we will
ultimately end up with similar but slightly different results.
For this reason, we decided to conduct multiple identification
tests, collecting each time input-output data pairs. With
this procedure, instead of obtaining just a single accurate
model, multiple solutions are obtained. As mentioned before,
each one of the identified models is somehow affected
by uncertainties and errors. This is where the H∞ robust
control strategy comes into play. The proposed controller is
designed in such a way that it is able to stabilize the real-
time UAS platform, by taking into account the worst case
parametric variations in the models obtained from the system
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identification procedure.
The rest of the manuscript is organized as follows. Sec-

tion II describes the identification technique, which is based
on a recursive ELS methodology, and is also extended for lin-
ear systems with output delays. The H∞ robust control strat-
egy is introduced in Section III. Next, Section IV presents
the model identification procedure to identify the dynamics
of the Mambo UAS test-bed. Section V complements the
identification results with a robust controller for the UAS.
Numerical simulations are presented in Section VI to demon-
strate the performance of both the proposed identification
and robust control techniques. Finally, concluding remarks
and future research directions are presented in Section VII.

II. IDENTIFICATION

This section summarizes a recursive least square algorithm
to identify a linear system affected by output additive noises.
Next, we show an extension of such methodology for linear
systems with time delays. Finally, we introduce relevant
practical considerations for implementing the identification
approach, which simplify the identification task under certain
conditions.

A. Recursive Least-Squares
Following the methodology introduced in [6], [7], we

summarize an ELS algorithm for identifying a Single Input,
Single Output (SISO) linear time-invariant (LTI) discrete-
time system. Consider an n-th order difference equation
model of the form

Aqzk = Bquk (1)

where the subscript k is the time sample, uk and zk are scalar
input and output, respectively, q is the unity advance opera-
tor, and Aq and Bq are the linear n-th order polynomials in
q such that:

q−1zk = zk−1 (2)

Aq = 1 + a1q
−1 + · · ·+ anq

−n (3)

Bq = b1q
−1 + · · ·+ bnq

−n (4)

Assumption 1: The system in equation (1) is stable, and the
coefficients ai and bi are constant (with i = 1, 2, · · · , n).
Also, the output is corrupted by an additive Gaussian zero-
mean white noise νk.

yk = zk + νk (5)

From equations (1) and (5), we obtain:

Aqyk = Bquk + εk (6)

with εk = Aqνk.
Introducing the matrices:

θ =[a1, a2, · · · , an, b1, b2, · · · , bn]T (7)

y =[yn+1, yn+2, · · · , yNls
]T (8)

e =[en+1, en+2, · · · , eNls
]T (9)

φi =[−yi−1,−yi−2, · · · ,−yi−n,

ui−1, ui−2, · · · , ui−n]
T (10)

Φ =[φn+1, φn+2, · · · , φNls
]T (11)

where the superscript T mean the matrix transpose and Nls

the number of measurements available, it is possible to obtain
the following equation

y = Φθ + ε (12)

The optimal least square (OLS) solution θ̂OLS that minimizes
the norm εT ε is then given by:

θ̂OLS = (ΦTΦ)−1ΦT y. (13)

In order to eliminate the bias induced by the noise in θ̂OLS ,
εk is modeled as:

Cqεk = ek (14)

with Cq = 1 + c1q
−1 + · · · + cnq

−n, and ek is an inde-
pendently distributed random sequence. The order of the
constants terms ci is m.

Defining:

Π =[c1, c2, · · · , cm]T (15)

e =[en+1, en+2, · · · , eNls
]T (16)

wi =[−εi−1,−εi−2, · · · ,−εi−m]T (17)

Ω =[wn+1, wn+2, · · · , wNls
]T (18)

the term εk can now be estimated by:

ε̂k = Âqyk − B̂quk (19)

with Â and B̂ the respective estimation of A and B.
Combining the estimation problems for matrices θ and Π,
we arrive at a nonlinear problem:

y = [φ Ω]

[
θ
Π

]
+ e (20)

whose solution is provided as follows:

θ̂ =θ̂OLS − θ̂Bias (21)

θ̂Bias =(ΦTΦ)−1ΦTΩΠ̂ (22)

Π̂ =[ΩTΩ]−1ΩT ε (23)

This problem is nonlinear and must be solved iteratively.
In particular, at each iteration, θ̂OLS is first found using
equation (13), ε̂ is then computed using equation (19),
and finally θ̂ is calculated using equations (21)-(23). This
procedure is repeated until the norm of the difference of
two θ̂ corresponding to two consecutive iterations is small
enough.

In the following analysis, we extend the identification
procedure to address hardware-induced time delays that
affect the measurements.

B. Dead-Time Identification

A system with an output time-delay of τ samples can be
represented as

yk = zk−τ + νk (24)

Therefore, in order to obtain meaningful modeling and
control results, the value of τ must be identified first. We
now recall a solution for this time-delay estimation problem,
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which was originally proposed in [9]. This technique com-
bines the ELS and an optimization procedure. In particular,
given the expected τmin and τmax, the ELS algorithm is first
applied in parallel to a set of (τmax − τmin + 1) models, all
of which have the same Aq and Bq polynomial orders, but
different dead times given as follows

τi = τmin + i, i = 0, 1, 2, ..., (τmax − τmin). (25)

Then, a performance index is computed for each model by
comparing its output with the ground truth obtained in the
real process using

Ipi =
1

τmax − τmin

t=τmax−τmin∑
t=1

‖y − ŷi‖2, (26)

where ŷi is the output of the i-th model. Finally, the best
model is chosen as the one which gives the lowest Ipi. The
dead time of the best model is then considered as the best
estimation of the dead time.

C. Practical Considerations

Below we recall some practical considerations from [10],
which are important to achieve a better identification.

• Signal scaling: The least-squares are, generally, numer-
ically well conditioned when the numerical values of
both the inputs and the outputs have roughly the same
order of magnitude.

• Down-Sampling: If the data acquisition system can
sample the system at higher frequencies than the iden-
tification needs, then a down-sample can be applied to
the signals, which actually helps remove measurement
noises from the signals.

• Dealing with known parameters: Due to physical
considerations, one often knows one or more poles/zeros
of the process. Imposing the predefined structure with
its known parameters simplifies the problem.

• Quality of Fit: the quality of fit can be checked by
computing the Mean-Square Error (MSE) achieved by
the estimate, normalized by the Mean-Square Output
(MSO) as

MSO

MSE
=

‖φθ̂ − y‖2
‖y‖2 (27)

Remark 1: The first objective of our research concerns with
the system identification of the Parrot Mambo UAS. Exe-
cuting several identification experiments for this platform,
a collection of linear models with the same structure but
different parameters are obtained. Our next objective is then
to express all those models as a single model with variant
parameters.

The following section explains the synthesis for a robust
controller for a class of linear time variant (LTV) discrete
systems.

III. ROBUST CONTROL

Given a parameter dependent LTV discrete-time system of
the form:

xk+1 =A(ξk)xk +B(ξk)uk + E(ξk)dk

zk =C(ξk)xk +D(ξk)uk + F (ξk)dk
(28)

where the state x ∈ R
n, the perturbation d ∈ R

p and the
matrices A(ξk), B(ξk), C(ξk), D(ξk), E(ξk), and F (ξk) are
assumed to depend affinely on the time-varying parameter ξk
with values assumed in the unit simplex

Ξ =

{
ξ ∈ R

N
+ :

N∑
i=1

ξi = 1

}
(29)

The affine assumption means that the matrices A(ξk), B(ξk),
C(ξk), D(ξk), E(ξk), and F (ξk) can be written as[

A(ξk) B(ξk) C(ξk)
D(ξk) E(ξk) F (ξk)

]
=

N∑
i=1

ξi,k

[
Ai Bi Ci

Di Ei Fi

]
(30)

where N is the number of vertices and the subscript i denote
each of the vertices. For the purpose of defining the H∞
cost criterion, consider the asymptotically stable open-loop
dynamics of the form:

xk+1 =Akxk + Ekdk (31)
yk =Ckxk + Fkdk (32)

for which the H∞ performance is defined by the l2-to-l2
gain:

‖H‖∞ = μ = sup
‖dk‖2 �=0

‖zk‖2
‖dk‖2 (33)

The following lemma provides a linear condition for ob-
taining a static controller, ensuring a predefined H∞ per-
formance (μ).

Lemma 1 (from [2]): The system in equation (28) is poly-
quadratically stabilizable with H∞ performance bound μ, if
and only if there exist Qi = QT

i � 0 and X , L such that⎡
⎢⎢⎣
X +XT −Qi � � �

0 μI � �
AiX +BiL Ei Qj �
CiX +DiL Fi 0 μI

⎤
⎥⎥⎦ � 0 (34)

where the � is used for the symmetric transpose, � for the
positive definite condition, and for all i, j = 1, ..., N . The
robust control law is given by uk = Kxk, with K = LX−1.

It is possible to minimize μ and obtain a linear optimiza-
tion problem that finds a static linear controller with mini-
mal H∞ performance bound. We next show the numerical
solution of the identification problem for the Parrot Mambo
Multicopter UAS.

IV. APPLICATION: SYSTEM IDENTIFICATION FOR THE
PARROT MAMBO MULTICOPTER UAS

The Parrot Mambo multicopter UAS was first launched
by Parrot in 2017, as part of the Parrot’s MiniDrones
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family 1. When equipped with the protective casing, the
UAS dimensions are 180mm x 180mm x 40mm, with an
average weight of 70 grams. A group of on-board sensors
are used to stabilize the UAS, specifically, a downwards-
looking camera, an ultrasonic sensor, a barometer, and an
Inertial Measurement Unit (IMU). The vehicle is powered
by a 3.7V 550 mAh 2Wh Li-Po battery, enabling a flight
time of 7-10 min, depending on the nature of the task to be
performed and the accessories implemented. The maximum
flight speed is 8 meters/sec. The communication with the
vehicle is established by means of two different protocols,
BLE and WiFi. The first protocol is used by default, and
the second one is applied when using the First Person View
(FPV) flight accessories.

For measuring ground truth when performing the identifi-
cation procedure, we made use of a 10-camera Motion Cap-
ture System from Vicon. This system is cable of providing
the position and orientation of the robot at rates in excess of
500 measurements per second, with a 0.1mm precision. This
system essentially provides fast and reliable indoor GPS for
testing and validation of modeling and control solutions.

A. Design of the Identification Experiment

The real-time experiments were designed with the objec-
tive of obtaining sufficient information from the UAS, in
such a way it is possible to guarantee the convergence of the
identification algorithm. In these tests, the UAS was flown
in a squared trajectory, at 1m above the floor (i.e., the X-Y
plane) of the laboratory flight arena, see Figure 2. While the
system was flying, the Motion Capture System and a ground
control station were used for collecting input-output infor-
mation for the motions in the X and Y inertial coordinates,
at a rate of 100Hz. An illustration of the collected squared
motion of the UAS, as well as the corresponding control
signals are shown in Figures 3 and 4.

At this point, the practical considerations in Section II-
C become handy. Knowing that the model from velocity
to position is described by a pure integration, we proceed

1www.parrot.com/global/drones/parrot-mambo-fpv

Fig. 2. For system identification purposes, the UAS was flown in a squared
trajectory, at 1m above the floor (i.e., the X-Y plane) of the lab flight
arena. A Motion Capture System and a ground control station were used
for collecting input-output information for the UAS motions in the X and
Y directions, at a rate of 100Hz.
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Fig. 3. Experiment used to extract the data for model identification. The
UAS was flown in a squared trajectory, at 1m above the floor (i.e., the X-Y
plane) of the laboratory flight arena.
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Fig. 4. An example of the X-Y dynamics during the experiment. The
upper plot shows the translational motion, while the lower plot shows the
corresponding control signals. In the plots, the blue and red colors are
associated with the X, and Y dynamics, respectively.

to derive the position, and to identify the model from
the input to the velocity. Since a simpler model is more
desirable, we choose a first order model for the dynamics
identification, in combination with a first order model for
the noise identification. The corresponding model is then

yk = −ayk−1 + buk−1 + cek−1 + ek (35)

For each experiment, we identified 4 parameters: a, b, c, and
the output time delay τ . After analyzing various experiments,
we concluded that the value of τ = 17 minimizes the
MSE/MSO ratio. Figure 5 illustrates the real data validation
of the first order model for the velocity dynamics (Δx) in
the X coordinate. A similar plot and result were obtained
for the Y dynamics. In theory, the UAS multicopter platform
is symmetric. Therefore, the X and Y dynamics should be
very similar. For this reason, we decided to combine the
parameters obtained in both X and Y directions, and use
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Fig. 5. Identification of the UAS dynamics in X. Real-data validation of
the first order nominal model for the X coordinate.

them as a single larger set. As an illustration of the mixing
procedure, the overall a and b parameters obtained from the
experiments are show in Figure 6. In this plot, the blue dots
correspond to the parameters for the X dynamics, while the
red dots correspond to the parameters for the Y dynamics.
The four green crosses are the vertices associated with the
combination of the maximum and minimum values for a and
b parameters. Also, the black cross represents the mean (i.e.,
the average) model, which represents the nominal model.
The nominal, minimum, and maximum values will be used
hereafter in equation (30).
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Fig. 6. Model parameters for the translational model.

V. CONTROLLER SYNTHESIS

Now that the nominal model and associated variations are
identified, we can proceed to synthesize the controller. First,
we write the model as in equation (30). Using the knowledge
that the system is composed by an integrator plus a first order
system, it is possible to rewrite the model as a state space
model. Defining the state vector x̄k = [xk,Δxk], the input

uk, and the output y, we obtain

x̄k+1 =Ax̄k +Buk, y = Cx̄k +Duk (36)

A =

[
1 1
0 −am

]
, B =

[
0
bm

]
, C =

[
1 0

]
, D = 0 (37)

where am and bm are identified as the nominal model, and
amin < am < amin and bmin < bm < bmin. Numerically:

am =− 0.99837

amax =− 0.99735 amin = −0.99903

bm =0.23428 · 10−3

bmax =0.27517 · 10−3 bmin = 0.20032 · 10−3

(38)

Recall that the output of the UAS model is affected by a time
delay τ , we propose to down-sample the model to a number
equal to τ , such that the time delay is equal to the sampling
time and hence does not affect the dynamics of the new
model. This implies that the matrices of the down-sampled
model, Ad and Bd, are computed as:

Ad =Aτ , Bd =
τ−1∑
j=0

AjB

Cd =C and Dd = D

(39)

To complete the model as in equation (28), we need the
information of E(ξk) and F (ξk), which are used for tuning
purposes. Here, we select:

E = [0 1]T and F = [1] (40)

To minimize the energy spent by the controller, we replace
the D matrix with Dopt = 0.075. Using equation (39), the
tuning matrices E and F in equation (34), and the matrix
Dopt instead of D, we then solve the optimization problem
using the CVXPY [11] and MOSEK [12] libraries for Python
language with SciPy [13]. The following controller gain
matrix is obtained:

K = [−3.52718,−269.24932] (41)

In the following section, we validate the performance
of the proposed control strategy by means of numerical
simulations.

VI. SIMULATIONS

The simulations were performed using Python language
and the library SciPy [13]. We simulate in closed-loop, using
the controller K obtained from Section III, and the models
identified in Section IV. As mentioned in Section III, the
controller is built for a down-sampled system, i.e., the model
is sampled at 100Hz, but for each time sample multiple
of τ (0.17s) the input is updated. Figure 7 shows the X
coordinates of 9 models, when the UAS is following the
same sequence of set-points with the same initial conditions
given below:

x =0 ∀t : t < 2

x =− 1 ∀t : 2 ≤ t < 10

x =0 ∀t : 10 ≤ t < 17

x =4 ∀t : 17 ≤ t < 25

x =0 ∀t : t ≥ 25

(42)

Authorized licensed use limited to: San Diego State University. Downloaded on August 20,2020 at 17:32:51 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20 25 30 35 40

−1.1

−0.3

0.5

1.3

2.1

2.9

3.7

x
[c

m
]

0 5 10 15 20 25 30 35 40

t [s]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Δ
x

[c
m

]

Fig. 7. Simulation results for position and velocity. The plot shows the
closed-loop time response for X dynamics, for all models. The set-points
are shown in cyan color.
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Fig. 8. Simulation results for position and velocity. The plot shows the
closed-loop input signal for the X translational motion, for all models.

Figure 8 illustrates the input of each model over time.
Notice that for each system model, the controller saturates
the input and reaches each set-point in about 4 seconds. In
addition, the saturation does not make the systems, which are
marginally stable, unstable. To validate the robustness of the
controller, we introduced a perturbation in the velocity, with
a magnitude p = 0.31 · 10−4, between 32s and 38s. As soon
as the perturbation is applied, the velocity is immediately
stabilized at the origin, but it can be seen that an offset
appears in the position. From Figure 8, we can see that when
the perturbation is applied, each system has a different input
to stabilize the velocity.

VII. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a model identification procedure for
a parameter-variant discrete-time linear system, and applied
this methodology to a commercial UAS: the Parrot Mambo
multicopter. An integrator plus a first order structure with
output time-delays was chosen as the nominal model for

the Mambo. Real-time input-output data-sets from multiple
real-flight experiments were obtained from a Motion Capture
system. Then, a collection of linear models with the same
structure but different parameters were obtained. These mod-
els were expressed as a single model with variant parameters.
A robust controller to guarantee the global stability for the
translational dynamics of such system was also proposed,
which was synthesized with a minimal H∞ norm. Numerical
simulations show the effectiveness of the proposed approach,
against model uncertainties, delays, and disturbances.

A. Future Work

Future work will address the real-time implementation of
the proposed controller using the Robot Operating System
(ROS) environment. The difficulties associated with the real-
time implementation will also be considered. Also, a pertur-
bation estimation is envisioned, in order to feed-forward the
perturbation information, and equip the controller with the
capability of rejecting certain classes of perturbations.
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