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ABSTRACT: With the advent of the materials genome initiative
(MGI) in the United States and a similar focus on materials data
around the world, a number of materials data resources and
associated vocabularies, tools, and repositories have been
developed. While the majority of systems focus on slices of
computational data with an emphasis on metallic alloys, NanoMine
is an open source platform with the goal of curating and storing
widely varying experimental data on polymer nanocomposites
(polymers doped with nanoparticles) and providing access to
characterization and analysis tools with the long-term objective of
promoting facile nanocomposite design. Data on over 2500
samples from the literature and individual laboratories has been
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curated to date into NanoMine, including 230 samples from the papers bound in this virtual issue. This virtual issue represents an
experiment of the flexibility of the data repository to capture the unique experimental metadata requirements of many data sets at
one time and to challenge the authors to participate in the curation of their research data associated with a given publication. In
principle, NanoMine offers a FAIR platform in which data published in papers becomes directly Findable and Accessible via simple
search tools, with open metadata standards that are Interoperable with larger materials data registries, and allows easy Reuse of data,
e.g. benchmarking against new results. Our hope is that with time, platforms such as this one could capture much of the newly
published data on materials and form nodes in an interconnected materials data ecosystem which would allow researchers to robustly
archive their data, add to the growing body of readily accessible data, and enable new forms of discovery by application of data

analysis and design tools.

he formation of data repositories in the materials domain

is a response to the urgent need to harness data driven
tools to accelerate materials discovery and design.'~” The
majority of such data resources are focused on metallic
material systems and computational materials data, where
software prediction tools can rapidly sweep through composi-
tional space to predict specific structures and properties of
interest, thereby providing uniformly aligned data readily
classified into metadata structures. Examples of these data
resources can be found in a recent perspective article.®
Experimental and computational data from polymeric material
systems offer significant challenges to centralized data
platforms because of the complexity and high dimensionality
of the data as well as the lack of standardization for many of
the experimental and simulation tools and approaches.
However, to make progress in polymer design and move
away from the expensive trial and error process in the infinite
design space, it is essential to meet this challenge.” Similarly,
for polymer nanocomposites, we need a framework that can
robustly categorize and store the vast amount of experimental
data currently held in .pdf files of publications and individual
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research computers in a way that makes it easy to plot, find
correlations, and import into other platforms for analysis.
NanoMine’ "' is an example of a living data resource
dedicated to nanocomposite research data which has been
built using a structured vocabulary, a robust data representa-
tion, multiple data ingress pathways, nascent search and
visualization tools, and a suite of characterization and analysis
tools.

The materials vocabulary used to organize the metadata
framework for NanoMine also forms part of the high level
“polymer data core”’” and makes possible indexing from other
data stores such as the Materials Data Facility (MDF).'>"* The
metadata was initially built into an XML schema-based

Received: April 3, 2020
Accepted: June 16, 2020

https://dx.doi.org/10.1021/acsmacrolett.0c00264
ACS Macro Lett. 2020, 9, 1086—1094


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="L.+Catherine+Brinson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Deagen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+McCusker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Deborah+L.+McGuinness"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Linda+S.+Schadler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Linda+S.+Schadler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marc+Palmeri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Umar+Ghumman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anqi+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bingyin+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmacrolett.0c00264&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00264?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00264?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00264?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.0c00264?fig=tgr1&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsmacrolett.0c00264?ref=pdf
https://pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org/macroletters?ref=pdf

ACS Macro Letters

pubs.acs.org/macroletters

Polymer
Nanocomposite

has attribute

has attribute

has value

in relation to

standard
deviation

has value Independent Variables

Uncertainty

(a)

in relation to

Surface
Treatment
Role

in relation to

Polymer
Nanocomposite

surface
treatment

a by

h 4 \ 4

matrix filler
type type

surface
treatment
type

(b)

Figure 1. Two conceptual maps of different parts of the NanoMine knowledge graph as a template of how instances of particular types can relate in
the graph. In (a), Polymer Nanocomposite instances have attributes of type Property, which can in turn have units of type “unit of measure”. In (b),
we show that matrix and filler parts of the polymer nanocomposite have a type (like polystyrene or silica) and are specific instances relating to
individual samples. These themselves can also have properties, and their role in the nanocomposite is expressed using role objects, like Matrix Role,

Filler Role, or Surface Treatment Role. Note that “a” in

class itself.

the graph is shorthand for “type”, which is the link between an instance of a class and the

representation'”'! starting from the MDCS framework
developed by NIST.'® We extended that schema, maintaining
compatibility, and developed an ontology for materials science,
leveraging existing science'® and provenance ontologies.'” This
ontology serves as an extensible knowledge representation
model for material science. This approach allows the tools we
develop for search, visualization, and data sharing to extend
across multiple materials science domains and interoperate
with existing standards for scientific metadata. Below, we
present details on the data framework, the curation of data into
that framework, and visualization and analysis tools, with
examples and lessons from the data collected from
participating authors with highlighted articles'®™>* in this
virtual “Polymer Data” issue of Macromolecules and Macro
Letters. We focus here on the NanoMine data framework.
However, the methods, challenges, and opportunities exem-
plified herein extend generally for this new frontier of FAIR
materials data.

Data Framework: The NanoMine data platform began with
a nanocomposite specific schema where the structure and the
fields were developed using a sampling of papers from the
polymer nanocomposites literature. In the initial deployment,
over 250 individual terms or parameters were defined in
NanoMine to capture and organize data on provenance (e.g.,
“author name”), composition (e.g, “molecular weight”),
processing (e.g., “annealing temperature”), characterization
(e.g, “tensile test”), microstructure (e.g., “interparticle
distance”), and properties (e.g, “Young’s modulus”)."” As
data from additional papers were ingested into the platform,
new fields were added to the schema on an as-needed basis
with a current state of ~350 individual terms, including ~10
new terms added in the process of curation for this virtual
issue.'" While the schema approach provided an initial stable
organizational platform, to support the larger vision for
continued growth, extension of the platform, and ready ability
to overlay and extract knowledge, the data terms and structure
were transformed into a richer knowledge graph framework
supported by an ontology.

Ultimately, we want to store not only data but also
knowledge about what the data may imply and how it may
be interconnected. For a machine to “understand” a set of data,
the data must be properly annotated with metadata describing
what the data represent. In Semantic Web standards, this is
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captured in a machine-readable form as a knowledge graph,
often stored in a database using the Resource Description
Framework (RDF).*> The knowledge graph comprises a
multitude of nodes representing entities in a particular domain
along with edges that capture the relationships between pairs
of nodes, and every node and edge is defined by a globally
unique identifier in the form of a Universal Resource Identifier
(URI) such as a Universal Resource Locator (URL). Nodes in
the knowledge graph can be things like individual samples,
properties, journal articles, or people. Links represent relation-
ships between two nodes and are labeled with a predicate.
These “triples” can be expressed as statements (links) such as
“Sample X was attributed to Author Y”. Each of the entities are
identified using URIs and are defined in ontologies which
capture the meanings of the terms using a computer
understandable language. Critically, ontologies do not need
to be fully defined at the outset; nodes and edges (links) in the
knowledge graph can be added as the domain evolves and new
insights emerge. This structure is flexible and extensible,
allowing multiple communities to simultaneously develop and
use ontologies that can later be linked together. We followed a
standard ontology engineering method for designing the
ontology based on the use cases of the project.’® In Figure
1, we show a conceptual map or diagram that shows how
different types (classes) of entities in NanoMine relate to each
other using different predicates.

To support this effort, we expanded on the development of
the Whyis knowledge graph management framework® and
have established a materials ontology for nanocomposites.
Whyis provides capabilities to translate knowledge from many
different sources, including tabular, XML, JSON, and plain
text, into consistent, unambiguous integrated knowledge
representations. Each nanomaterial sample, property of that
sample, material constituents, and all of their relationships are
identified using URIs. Further, Whyis uses a representation for
managing fragments of knowledge graphs and their prove-
nance, called nanopublications,37 to ensure consistent
versioning, tracking, and justification for each new piece of
knowledge. This approach also allows Whyis to implement a
distributed knowledge inference system that supports knowl-
edge translation as well as tools for deductive inference, entity
recognition and resolution from text. Inference tools can be
readily developed and deployed in the knowledge graph. One

https://dx.doi.org/10.1021/acsmacrolett.0c00264
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Figure 2. Schematic overview of the workflow for curating semistructured experimental data from the literature into the structured data schema for

NanoMine.

example currently under construction is a tool to support
automated analysis of microstructural images which can then
add new quantitative descriptors of the microstructures of
samples to the graph. More complex tools such as machine
learning approaches can also be employed, using the rigorous
knowledge representation to discover relationships between
composition, processing, structure, and properties.

Curation: Curating data “from the wild” (e.g, research
articles, images, supporting documents, spreadsheets) into the
NanoMine framework (or any data framework) remains a key
challenge on several fronts. The curation process must
maximize the amount of information extracted from the
source data while also ensuring that incoming data meet the
standards of quality for the platform. The process must enable
retrieval and organization of data from diverse formats reliably
into the data framework. Additionally, as the curation process
is the initiation point for addition of new fields and descriptors
to the data framework, the process must allow for development
and extension of the platform.

At present, data curation in NanoMine is performed
manually by researchers with domain expertise and familiarity
with the NanoMine schema (Figure 2). In development of this
virtual issue, we approached a set of authors of papers in ACS
Macro Letters and Macromolecules over the past several years
with the offer to highlight their data in this volume. Bringing
these external researchers into the process (those without
familiarity with the schema but an intimate knowledge of their
data) provided valuable insights into knowledge extraction. In
past cases, researchers have curated their own data into
NanoMine through customized schema templates in the form
of Excel workbooks."' For this issue, while some authors
utilized customized excel templates, several external authors
provided their data in a tabular format, which were then
mapped by the NanoMine team to the schema. In nearly all
cases, bridging the gap between individual data sets and the
NanoMine schema involved an iterative, back-and-forth
dialogue between these external researchers and the NanoMine
team. To make available data accessible and fully leverage the
suite of tools provided by NanoMine, the curation platform
will be further adapted to new pathways for data ingestion.

At the current rate of global scientific output, the number of
cited references in the scientific literature doubles approx-
imately every nine years.”® According to the Web of Science,
there exist nearly 50 000 peer-reviewed publications with the
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specific topic “polymer nanocomposites” since the field began
in the early 1990s with current output approaching 5000 new
articles per year. To maintain pace with growing amounts of
available data, the process of identifying relevant information
from the literature and incorporating into the NanoMine
scheme will require a greater degree of automation. New
advances in the task of information extraction are continuously
being developed and hold promise for automating components
of the data curation process in the future. For example, recent
research efforts applying modern natural language processing
techniques to materials literature have shown promise in
automated extraction of synthesis information for inorganic
crystalline materials and identification of potential candidate
materials of interest.’”~*' Future developments aim to
streamline aspects of the curation process and allow
researchers to more intuitively import their research results.
Moving forward, new tools for data curation are being pursued
that aim to more seamlessly integrate data collection, analysis,
and sharing into the everyday workflow of materials scientists.

The curation process does not necessarily end when the data
have been submitted to NanoMine. Despite any efforts to
create a comprehensive schema or ontology, new knowledge or
information inevitably arrives that does not conform to the
current versions. An open-world assumption, acknowledging
that information evolves, and thus any vocabulary is inherently
incomplete, is integral to the decision to adopt an ontology-
based approach to the materials data framework. Given the
flexibility and extensibility of ontologies, we can assign
metadata to the materials knowledge graph as that information
is needed. In some cases, the addition of new terms to the
ontology may enable latent information from earlier curated
works to be imported into NanoMine. Furthermore, analysis of
individual or aggregated data sets may generate new insights,
which themselves may become new metadata in the frame-
work. In the following section, we discuss the ongoing
development of visualization and analysis tools that aim to
generate additional value from individual and aggregated data
sets.

Visualization and Analysis: Once data from an array of
samples exists in the knowledge graph framework, it is possible
to search, visualize, download and analyze the data in different
ways. While these tools are under continuous development, we
present here a few examples that intersect with the data from
the papers in this virtual issue.

https://dx.doi.org/10.1021/acsmacrolett.0c00264
ACS Macro Lett. 2020, 9, 1086—1094
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Figure 3. Example interactive charts of aggregated NanoMine data, where linked plots enable simultaneous interaction with multiple views of the
data. Dashed arrows are shown here to illustrate interactivity. In (a) and (b), the change in glass transition temperature is displayed as scatter and
density plots. Here, DGEBA epoxy, PMMA, and polyimide were selected using shift+click interactions with the legend. In (c) and (d), both scatter
plots feature dynamic zooming and highlighting. When the user hovers over a point in the lower plot, the corresponding point in the above plot is
highlighted with a bold outline. Hovering over a point in (a) or (d) displays a tooltip with basic provenance information as shown here with data

points from Zheng et al.*>

(adapted from ref 32, Copyright 2018 American Chemical Society) and Carroll et al.*’

(adapted from ref 20, Copyright

2017 American Chemical Society), respectively, that were curated into NanoMine for this virtual issue.

Search and Visualization: Users may access NanoMine data
through a faceted browser GUI that enables data exploration
among select properties and attributes (the facets, e.g., polymer
name, physical property of interest, author name, etc.), with
ability to intuitively narrow the results according to desired
intersections across facets. Visualizations are created using
Vega-Lite, a declarative specification language for interactive
*> In the faceted browser, users can select
properties and material types to narrow their search and
then visualize selected properties using simple charts using
Vega-Lite. Advanced users can access the raw data directly by
querying the publicly available NanoMine SPARQL endpoint
and provide Vega and Vega-Lite chart specifications for more
advanced visualization. These charts encode the provided data
as static elements (e.g., x-position, y-position, shape, color) as
well as interactive elements (e.g.,, mouse-hover tooltips, mouse-
click, or click-and-drag selections). Visitors to the site can
browse the NanoMine Gallery of Interactive Charts,"’ which
showcases examples of NanoMine data visualized through
customized Vega-Lite specifications.

Example demonstrations for the NanoMine Gallery were
prepared by querying NanoMine data and merging with
curated data from select articles in this virtual issue (Figure 3).
In the first example, filler loading is plotted against the
normalized glass transition temperature, T, (Figure 3a). The
normalization is performed by subtracting the T, of the neat
matrix reference (control value) from the T, of the polymer
nanocomposite sample. By selecting one or more points in the
scatterplot, all samples containing the same matrix material are
highlighted along with the corresponding probability distribu-
tions in the density plot below (Figure 3b). In another

visual charts.
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example, electrical conductivity is plotted against filler loading
(Figure 3c, d). While the selected data shown in the plots span
4 orders of magnitude, a log scale was selected for the x-axis to
capture the nearly 20 orders of magnitude spanned by all of the
electrical conductivity data within NanoMine. While some
polymer nanocomposites are engineered as electrical insu-
lators, others are designed for maximum electrical conductivity
such as the polystyrene/graphene composites from Zheng et
al.’” in this virtual issue.

Microstructure Characterization and Reconstruction (MCR)
Tools: A collection of module tools for MCR and simulation
software to model bulk nanocomposite material response in
NanoMine augments knowledge generated by experimental
data. Integrating these different sources of knowledge from
both experiments and simulation is critical for establishing
processing—structure—property relationships and subsequently
enabling material design. The MCR techniques developed in
our research™*™*° have been incorporated into NanoMine to
provide parsimonious microstructure analysis workflow for
researchers as shown in Figure 4. We provide two popular
binarization tools namely, Otsu’s method*” and Niblack’s
method,*
reconstruction techniques (correlation function, physical
descriptors, and spectral density function),** applicable for
two-phase, isotropic nanocomposites, and each providing
quantitative descriptors of the structure that can be used for
data comparison or analysis.

Each tool is accompanied by detailed instructions on how to
interact with the tool as well as recommendations for how to
select tools best suited for a particular microstructure. The
newly added “Intelligent Characterization” tool selects the

as well as three microstructure characterization and

https://dx.doi.org/10.1021/acsmacrolett.0c00264
ACS Macro Lett. 2020, 9, 1086—1094
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Figure 4. Workflow depicted highlights the key features of MCR tools in NanoMine, starting from a TEM image (upper left*’) binarized using
either the Otsu method or Niblack method (upper right*®). After that, the microstructure can be characterized using the Correlation Function,
Physical Descriptors, or Spectral Density Function (lower right*’). Lastly, a statistical equivalent of the microstructure image can be reconstructed
in 2D or 3D for use in FEA simulations (lower left). Adapted from ref 49, Copyright 2020 World Scientific.

most suitable characterization method between the “physical
descriptors™® and the “spectral density function (SDF)”'
approaches based on analyzing the user uploaded image(s).
The example result in Figure S shows that SDF is preferred
over physical descriptors for this particular microstructure.
Characterization results, such as those shown in Figure Sc,
generated on SDF parametrization, can be easily passed to the
NanoMine Database for subsequent use in machine learning
and other data mining procedures.

The MCR tools can also be used for reconstructing
statistically equivalent 2D or 3D images for a given isotropic
microstructure image. Figure 6 shows an example of the result
page for microstructure reconstruction using the physical
descriptor-based method for a sample from this virtual issue.””
Minor discrepancies of the two correlation functions (original
versus reconstructed) are contributed by the noise in the
original image and the approximation introduced by using the
descriptors. Such reconstructed images can serve as inputs to
structure—property simulations to predict material behavior
and therefore are key components of material design
workflows.

Our MCR tools have several user-friendly features that make
these tools attractive for researchers. For example, all
computations are performed on the NanoMine server, all
tools support commonly used image file formats and the ability
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to analyze a batch of images, and NanoMine provides e-mail
alerts to users upon completion of their requests. It is also
important that the data framework can readily store many
images from the same material sample, providing a complete
representation of the material microstructure not possible in a
typical published paper with limited figures. These batches of
images can be processed in the MCR workflow and are very
useful in gaining insight into the material heterogeneity
through an informative statistical description. This capability
was capitalized when extra images that are not part of the
original publications were provided by multiple authors for this
virtual issue.

Challenges and Opportunities: The papers in this virtual
issue represent a successful experiment in the growing web of
accessible materials data: the authors contributed data from
their publications to a common platform, which encoded the
data for each of their samples in a searchable and accessible
format, allowing quick visualization of data from these papers
integrated with data from a body of previously curated
samples. The relative ease of creating such benchmarking
visualizations (e.g, Figure 3) demonstrates a critically
important function of the knowledge graph. At the same
time, this static representation is just the beginning of the
analysis possibilities that are enabled by capture of large swaths
of data in a robust, accessible framework.

https://dx.doi.org/10.1021/acsmacrolett.0c00264
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Chemical Society. (B) The results page of Intelligent Characterization using the input image in (A) shows the binarized image as well as some basic
information. (C) The output (downloadable excel file) containing detailed description of the SDF parameters.
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Figure 6. TEM image reconstruction using NanoMine. (Left) TEM micrograph of silica in poly(ethylene oxide) from Jimenez et al,,>* Copyright
2019 American Chemical Society. (Middle) One 2D slice from the 3D reconstruction of the original image using Physical Descriptor technique.
(Right) Comparison of two-point correlation functions between reconstructed and original (target) images.
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Of the many opportunities enabled by coalescence of
materials data in this manner, the most critical surround the
concepts of discovery and design. With composition,
processing, structure, and property parameters uniformly
tagged, it will be possible to apply data analysis methods to
shed light on mechanistic underpinnings for interesting
phenomena. For example, as the MCR tools are applied to
all current and future samples, meaningful and consistent
quantification of the microstructure, such as quality of
nanoparticle dispersion or alignment, can be used as features
in variable importance studies for specific property values.
Performing these analyses in conjunction with processing
features will allow important processing—structure—property
relationships to be highlighted and then targeted for more in
depth investigation. The ability to perform these studies over
wide ranging data from many different laboratories under
many different experimental conditions will open unique
opportunities for discovery not currently available in the
traditional methods of research. On the front of material
design, the knowledge graph framework and assembled data
enable new methods for optimization and design of new
materials with desired suites of physical properties. Our MCR
tools will help extract the most effective material design
representations, e.g., descriptors versus spectral density
functions, and use them as materials design variables in the
iterative optimization process integrated with processing—
structure—property relations.

While the vision for discovery and design enabled by data
sharing platforms is sweeping and compelling, a number of
challenges remain. Most critical among them are rigorous
curation of both archived and newly generated data,
interoperability across the growing ecosystem of materials
data platforms, and usability to ensure researchers can easily
access, search, visualize, upload, or download data and
information, enabling rapid and detailed analyses across data
sets. The growing acceptance and enthusiasm for materials
data sharing, and the explosion of the intersection of AI/ML
across all sciences, has created a fertile environment and there
is common understanding of the importance of interoperability
and sharing of frameworks, vocabularies and tools. Encourage-
ment and support from funding agencies on interoperability
and platform usability would be especially helpful to leverage
the funds spent on the initial platform development and
research questions into long-term, sustained benefit for all. A
significant challenge is that a large fraction of the essential
work needed for usability and interoperability typically falls
outside the scope of PhD/postdoc research work.

Perhaps the most significant challenge, especially for
experimental data is on the curation side. Curating
experimental data into any framework remains a time-
consuming bottleneck to realization of large repositories of
experimental materials research data in a consistent metadata
framework. The benefits to an author of depositing well-
annotated data in a repository are significant, including
additional avenues for discovery, use and citation of the
work by others, the ability to readily benchmark and visualize
that data with similar work, and the ready integration with
coupled analysis tools. However, the avenues of exposure and
networking are not yet well established, and the benefit of the
coupled resources requires an investment of time. Overall, the
nontrivial overhead of time required to sift, clean, tag, and
upload data creates substantial barriers to participation.
Therefore, efforts in automated information extraction,
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crowdsourcing, and data validation are essential to assist with
scale and robustness of data imported into NanoMine and
other data platforms. The experience of this virtual issue, and
assembly of its associated underlying data sets, indicates that
new systems and processes for crowdsourcing data into the
platform are critical to significantly increase the quantity of
data archived and thus the value of the platform.

In summary, NanoMine presents a powerful framework for
future materials discovery and design for nanocomposites and
provides an example of structure, methods, and tools that
generalize to any material system. Lessons learned in the
experiment of creating this virtual issue include the value of a
flexible underlying structure, the importance of user-friendly
search and visualization tools, and the advantage of ready
storage of many images for microstructural analysis. The
largest challenge facing NanoMine and all data resources for
experimental materials data are creation of tools that enable
users to easily curate and access the data. Despite the FAIR
principles used in developing NanoMine, practical issues such
as ease of data ingestion and data query and visualization
remain. Solutions include recruiting and supporting the coding
community to participate in the ongoing materials genome
initiative experiment, partnerships with publishers to unify
expected data standards and formats and even requirements
from funding agencies on durable accessibility of data. Rich
future development opportunities beckon to expand this and
other platforms with machine learning and design optimization
tools to enable fully automated materials discovery.
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