
  

  

Abstract—In this communication, a translational roadmap 
for a noninvasive Brain Machine Interface (BMI) system for 
rehabilitation is presented. This multi-faceted project 
addresses important engineering, clinical, end user and 
regulatory challenges. The goal is to improve the feasibility 
of at-home neurorehabilitation for patients with chronic 
stroke by providing a low-cost, portable, form fitting, 
reliable, and easy-to-use system. The proposed BMI system 
is also designed to enable direct communication between the 
end-user and clinician, allowing for continuous patient-
specific rehabilitation optimization. 

 

I. INTRODUCTION 

There are about 7.2 M persons living with stroke [1]. 
Stroke is the primary cause of long-term disability in the 
US, leading to reduced quality of life and social stigma, 
with many of them requiring long-term care. With more 
than ~800,000 people having stroke in the US every year, 
and a global market size expected to reach $31B by 2021 
[2], there is a pressing need for novel stroke rehabilitation 
tools and devices for in-clinic and at-home use for 
sustainable long-term therapy that also promotes cortical 
reorganization toward recovery. Unfortunately, simple 
rehabilitation tools (passive exercisers) and more 
sophisticated devices (such as robot-assisted therapy 
devices) fail to engage and motivate the patients, are hard 
to match to their needs, or are limited to clinical settings. 
Moreover, these systems do not necessarily promote 
motor relearning towards recovery, are costly and/or 
difficult to deploy for in-home use. To promote motor 
reorganization, developers are now turning to devices 
equipped with interfaces for video gaming and virtual 
reality, but these technologies are still in the very early 
stage of development. Thus, there is a lack of safe, 
effective, engaging, and low-cost smart neuro-
rehabilitative systems that can provide clinic and home-
based sustained long-term neuro-recovery of motor 
function for stroke survivors. 

 
 
*This work is supported by NSF-PFI-RP award #1827769 
Alexander Craik is with the IUCRC BRAIN Center, University of 

Houston, TX 77004 USA. (Phone: 713-743-0796; fax: 713-743-4444; 
email: arcraik@uh.edu) 

Atilla Kilicarslan is with the IUCRC BRAIN Center, University of 
Houston, TX 77004 USA. (Phone: 832-276-1789, email: 
akilica2@central.uh.edu) 

Jose L. Contreras-Vidal is with the IUCRC BRAIN Center, University 
of Houston, TX 77004 USA. (Phone: 713-743-4429, email: jlcontreras-
vidal@uh.edu) 

 
 

Current stroke rehabilitation roadmaps are adapted from 
the clinical practice guideline endorsed by The Stroke 
Council of the American Heart Association [3]. Based on 
stroke severity, the healthcare professional decides on 
inpatient/outpatient interventions. Inpatient rehabilitation 
starts with the assessment of the type and intensity of the 
rehabilitation. The clinician monitors the patient’s 
recovery and decides if there is sufficient improvement for 
the patient to live in the community again. If not, the 
rehabilitation continues at the clinic, the extent of which 
depends on patient status and insurance benefits. If there is 
sufficient improvement, the patient can get discharged. At 
this point, the process merges with the outpatient 
rehabilitation practices. If necessary, a suitable 
rehabilitation practice starts or continues as outpatient. If 
not, the patient is left with an option to continue home-
based exercise routines. Home rehabilitation process can 
vary greatly as at this point the clinician’s involvement is 
minimal, and feedback is provided on the basis of clinical 
follow-ups, if any. On the other hand, if the rehabilitation 
continues as outpatient, the clinician checks if optimal 
recovery is reached or the recovery is plateaued, resulting 
again in often self-applied home exercise routines (if the 
patient is motivated and/or there is family support) and 
clinical follow-ups. 

Whether the rehabilitation occurs at the clinic or at 
home, the main issues that are often faced by the patients 
are: 1) the limited duration of the therapy routines, 2) the 
cost and accessibility of the inpatient/outpatient therapy 
and devices, and 3) the lack of established norms for home 
exercise routines/therapy. The main challenges for the 
healthcare professional are: 1) monitoring and tracking the 
patient’s progress, 2) lack of reliable metrics (currently 
based mostly on observation), and 3) engaging the patient 
thereby promoting cortical plasticity, which perhaps is the 
most critical component on stroke rehabilitation [3]–[6]. 
Importantly, there is currently no established framework 
that combines the therapeutic roadmap to provide 
sustained long-term therapy for individuals with stroke at 
home, with medical devices that a) can continuously 
monitor/log patient status for clinicians, b) provide human-
centric assessment metrics to assess success of the 
intervention, and c) promote patient’s engagement to the 
therapeutic session in an effective way. 

To address these unmet needs, we are engineering a 
system with diagnostic, assistive and therapeutic functions 
that is safe, cost-effective, and reliable, with advanced 
form factors, connectivity for clinician monitoring, and 
embedded high performance processing capabilities that 
users want to wear and benefit for extended periods of 
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time. In this paper, we review our translational roadmap 
for the proposed neurorehabilitative system for stroke 
rehabilitation. 

II. METHODS 

The design of the Brain-Machine Interface (BMI) 
system is based on our patented decoding and signal 
denoising algorithms for real-time BMI applications [13], 
[24], [27], [28]. Specifically, we have demonstrated the 
feasibility of inferring gait kinematics and surface 
electromyography (EMG) patterns, as well as non-
locomotive (e.g., sit-to-stand) movements from active-
electrode scalp electroencephalography (EEG)[7]–[11]; 
we have developed real-time adaptive noise cancelling 
algorithms for identifying and removing artefactual 
components from scalp EEG that increase the signal to 
noise ratio [12], [13], [24]; multi-day, real-time, closed-
loop EEG-decoding of the lower-limb kinematics [14]–
[16]; and adaptation to visual-motor gait perturbations 
during real-time closed-loop BMI control of a virtual 
avatar suggesting that BMIs can be used to promote 
cortical plasticity [14]–[16].  

 
The translational research and development of the BMI 

system, supported under a National Science Foundation 
Partnerships for Innovation (PFI) award, is comprised of 
three main components: 1) the BMI Module, 2) the 
Information and Control (IC) Module, and 3) a 
multifunctional single degree of freedom Upper Limb 
Rehabilitation Robot as the initial robotic platform. A 
schematic of this system is presented in Figure 1.While 
the system is shown as being operated with the actuator at 
the elbow, the BMI system is not limited to this setup and 
is also intended to be applicable for a variety of upper 
limb rehabilitation methods programs. 

 
 

 
 
Figure 1: BMI system diagram, which highlights the 

three major components: the BMI module, the IC module, 
and the upper limb rehabilitation robot. 

 

A. Brain Machine Interface (BMI) Module 
BMI systems seek to translate neural brain patterns to 

machine-acceptable commands using mathematical 
mapping tools called decoders, which infer the user’s 
motor intent. Depending on the interfaced systems and 

intended applications, these mapping tools can be 
formulated in the form of continuous-profile model-based 
decoders to interpret time varying parameters of action 
from neural signals (i.e., leg/arm joint angles, joint 
velocities, surface electromyographic (EMG) patterns) 
using Kalman or Weiner filters [7]–[11], [16], or in the 
form of neural classifiers that map discrete states of neural 
patterns to discrete classes to be controlled (e.g., stand-up, 
turn left or right, stop, etc.) [13], [17]. Given the spectrum 
and extent of motor deficits observed in clinical 
populations, BMI-robot systems require some form of 
shared control/shared autonomy. In our shared-control 
classifier application, we have shown that multiple classes 
of user intent can be decoded via non-invasive EEG 
measurements. With our exoskeleton-BMI system 
(NeuroRex), we have applied our neural classification 
methodology for the control of a robotic lower-limb 
exoskeleton (REX, REX Bionics Inc.) [26] for persons 
with paraplegia [15]-[16]. 

B. Information and Control (IC) Module 
The information and control module is the gateway of 

the BMI module to the rehabilitation hardware. This 
module provides input/output capability with high data 
transfer rates, featuring two major functions: driving the 
rehabilitation device’s actuators according to the output of 
the BMI module (decoded neural intent) and sensory data 
logging, transmission and feedback to the BMI module for 
generating smart metrics regarding the rehabilitation and 
tracking patients’ functional improvements and logging 
them for the clinician’s review. This unit will also provide 
a view screen to supply visual feedback to the patient on 
his/her performance for the given tasks in addition to the 
kinesthetic feedback supplied by the usage of 
rehabilitation hardware. The interface will also be used to 
provide patient and rehabilitation session data, necessary 
logs and metrics, as well as tools for comparative analysis 
among subjects and rehabilitation sessions [19]. As new 
subject and new rehabilitation sessions are registered, this 
logging interface will form an invaluable database for 
engineers, clinicians, neuroscientists, physiotherapists and 
other researchers. There is currently no test bed that is 
used for rehabilitation that can provide multimodal data to 
form a database, across sessions and patients.  

 

C. The Single Degree of Freedom Upper Limb 
Rehabilitation Robot 

As a proof-of-principle device, we propose to focus on 
upper extremity rehabilitation with the use of a single 
degree of freedom upper limb rehabilitation robot. The 
system is interchangeable in that the BCI module will be 
able to control any robotic system, given the system’s 
specific I/O protocol is provided. With the current device, 
the patient will be in a seated position (on a 
chair/wheelchair) holding a single handle. This will allow 
us to focus on unilateral synchronized rehabilitation. The 
handle will be sensorized to allow us to measure the 
torque/load applied by the patient’s arm. The overall 
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actuated system will allow us to use the following modes 
of operations; fully assistive: the system moves the arm 
for the patient once the intent is detected; assist as needed: 
the user provides some level of control, the remaining 
assistance to reach the target force, position or velocity 
(clinician prescribed tasks) will be provided by the system 
once the intent is detected, and; resistive: the patient is 
able to apply full input necessary to reach the goal, 
however, the system applies adjustable levels of resistance 
to his/her motion to improve gradually the muscle 
activation levels, once the intent is detected. 

III. TECHNICAL CHALLENGES 

The rationale of choosing the above described main 
components and the overall development strategy is 
closely related to the major technical challenges identified 
towards the meaningful commercialization and wide-scale 
deployment effort of the proposed BMI module (depicted 
in Figure 2).To our knowledge, there is no available FDA-
approved smart neurorehabilitation system in the market. 
The following sections will describe the challenges and 
will present strategies in how to handle each challenge. 

 

 
 

Figure 2: Technical challenges to commercialization (red)  

A. Cost 
Current high quality EEG recording systems, including 

their amplifiers and software, are designed as general 
purpose systems mostly for research purposes. The cost of 
such systems are naturally very high (>$25K), preventing 
them as good fits for commercial BMI modules. These 
systems also have closed/proprietary architectures making 
their integration to custom, small form factor hardware 
increasingly difficult. Therefore, the design of low-cost 
and small form factor EEG amplifiers with high inter-
operability with external robotic-guided rehabilitative 
systems is crucial for both commercial and academic 
research applications. This could be in the form of a 
daughterboard, attached to a credit card sized System of 
Module (SOM) module. SOM’s are a type of embedded 
computer system that would replace the large amount of 
computer hardware typically necessary for real-time 
processing of EEG signals. Additionally, an example 
SOM, such as the National Instrument’s Field 
Programmable Gate Array (FPGA) supported high-

performance SOM, which can cost under $1000, which 
helps to reduce the overall cost. For EEG sensors, 
commercial dry EEG electrodes should be used, 
considering the high development effort and development 
cost of such components. Current dry EEG sensor 
technology can easily be interfaced to our custom 
amplifier hardware with no additional development or 
modification needed. It is also important to minimize 
channel count, in favor of a low-cost personalized 
architecture. As compared to gel-based wet electrodes, dry 
electrodes are typically thought to collect EEG with a 
lower signal quality and susceptible to artifacts. However, 
recent research on complex naturalistic settings with 
freely-behaving individuals suggests the feasibility of 
obtaining high signal quality can be achieved with dry 
electrodes as compared to the wet electrode alternatives 
[20], [21], [24]. 

B. Portability 
The portable nature of any proposed system is vital for 

large-scale deployment for home use, which greatly 
expands the feasibility of home-based data collection, 
diagnostics and therapeutics. Current EEG measurement 
systems and most robotic rehabilitation devices are large 
and costly. Thus, successful BMI-robotics systems must be 
both portable and low-cost to increase the likelihood of 
adoption by end-users. 

C. Interoperability and Usability 
Two identified challenges in the translation of clinical 

BMI systems are lack of interoperability and poor usability 
in the field [25]. The BMI module’s input/output structure 
must be designed to be interoperable (i.e., ‘plug in’) to any 
suitable physical or virtual robotic rehabilitative system. 
Our proposed active upper limb rehabilitation machine I/O 
layer will lay the groundwork for assessment of 
interoperability of our system by other active devices. 
Although the single degree of freedom robotic device is 
focused on the upper-limb, it should be noted that it can be 
modified for upper or lower body interoperability and 
therefore has broad applications for similarly defined BMI 
research in clinical and non-clinical areas. 

System set-up represents an important usability 
challenge as in current noninvasive BMI systems, the EEG 
electrode density and electrode cap set-up require long 
preparation times and can lead to user errors in cap 
placement or signal integrity due to high electrode 
impedance or electrode pop-up [21]. Our group has made 
significant progress on optimizing the most relevant 
electrode spatial locations by choosing the most 
information-rich channels for decoding, for both able-
bodied, and individuals with spinal cord injury (SCI) [18] 
and stroke [22]. This not only reduces the number of 
channels, but also leads to the availability of selective 
channel locations, per subject, depending on their clinical 
condition. We expect that with personalized headsets, 
reduced channel count and the use of dry electrodes will 
lead to reliable quick setup-to-recording time of less than 2 
minutes, without requiring expert input. 
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D. Form factor 
The use of feedback from focus groups on the form of 

the EEG sensor headset/cap for reliable and long-term 
usage can help to address the technical challenge of form 
factor that also affects usability. The selection or design of 
the EEG sensor cap is an iterative process that will likely 
lead to several form factors to accommodate the needs and 
desires of the end-users for wide-scale deployment.3D 
handheld scanners and 3D printed prototyping in 
collaboration with design professionals now allow for the 
design and manufacture of customized electrode holders 
and headsets that could be combined with other wearables 
such as headphones, as an alternative to traditional 
soft/meshed caps or the newer semi- or rigid EEG helmets 
that can be found in the consumer electronics market. We 
have done an extensive comparative effort of the form 
factor and usability of different commercial EEG systems 
[21] that adds to the knowledge base of the long-term 
usability of different designs. 

E. Reliability 
Planned wide-scale deployment of such a system at the 

clinic or at home requires reliable mechanical components 
and electronics systems, especially considering the 
unattended home use. It is important for commercial BMI 
applications to follow accepted standards in compliance 
with the regulatory norms (e.g. FDA and National Institute 
of Standards and Technology –NIST- traceable norms).It 
should be noted that the creation and adoption of standards 
for BMI systems is one of current challenges in the field 
[25]. Further regulatory challenges are discussed in section 
IV. 

F. Denoising algorithms 
A technical challenge in EEG-based BMI systems is 

the presence of physiological and non-physiological 
artifacts that are superimposed onto the neural signals 
measured from the scalp recording areas. Ocular artifacts, 
for example, are present in most EEG recordings, and, due 
to volume conduction, corrupt measurements from all 
electrode locations in changing profiles and amplitude 
distributions. Artifacts are perhaps one of the major factors 
challenging the high accuracy real-time applications of 
these systems. Our laboratory has developed a generalized 
real-time de-noising framework for high performance 
artifact cleaning based on the robust adaptive H∞ filtering 
formulation [13] [24]. We have shown the effectiveness of 
our technique for cleaning eye-blinks, eye-movements, 
signal bias and signal drifts, for60 EEG locations 
simultaneously, in real-time [13], and more recently, 
motion artifacts [24]. One important advantage of our 
method is that it depends on the real-time measurement of 
the noise source. This might seem like a disadvantage at 
first due to its requirement of additional sensory 
measurements, however, compared to other existing 
methods that depend on the definition of clean EEG 
segments, or estimated statistical distributions, it allows us 
to be very selective on what is removed from the EEG 
measurements. Having this capability allows us also to 
identify the possibly time-varying artifactual components 
and recover in real-time the actual EEG data that is 
contaminated by the artifacts. In [13] and [24], we have 

established a scientific premise regarding the motion-
related artifacts and their adverse effects on EEG signal 
processing. It should be noted that the proposed initial 
BMI rehabilitation system is designed to accept the patient 
in a seated position, thus minimizing the presence of 
motion artifacts. Nevertheless, our group has analyzed the 
effects or presence of motion artifacts in treadmill walking 
[12] [24] and found that even in normal walking speeds, 
the motion artifacts were found to be negligible to non-
detectable. 

IV. COMMERCIALIZATION STRATEGY 

A well-defined commercialization strategy will 
significantly increase the ability to overcome the many 
regulatory and commercial challenges in the path towards 
commercialization. Approaches to addressing the 
regulatory and commercial challenges were developed 
through close collaboration with clinicians, patients, and 
business leaders during the Commercializing Innovation 
(C3i) program [22]. Figure 3 presents the 3-phase 
commercialization strategy with each phase lasting 
approximately one year. 

 
 
Figure 3: Commercialization pipeline with intended 
hardware, software, and regulatory milestones highlighted. 
This assumes that intellectual property (IP) has been 
adequately protected. 

A. Regulatory Challenges 
Regulatory approval is one of the challenges that must 

be carefully navigated for timely and cost-effective 
commercialization of the proposed system. To accelerate 
technology transfer, it is imperative to work closely with 
regulatory agencies (e.g., US Food and Drug 
Administration or FDA), and make use of their pre-
submission program, and/or new pathways for innovative 
devices. Proof-of-principle data acquired during early 
feasibility trials could serve as data for regulatory 
purposes. Thus, experimental design and outcome 
variables should be discussed with the FDA to ensure it 
meets their regulatory requirements. 

B. Validation of the Customer Needs and Business Model 
Our initial business plan (one must remain flexible to 

adapt to changing conditions) has been shaped by three 
key components that include 1) our team’s experience 
with the Concept to Clinic: Commercializing Innovation 
(C3i) Program[22], 2) a core set of industry experts in 
rehabilitation robotics and embedded/instrumentation 
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systems with experience in the NSF I-Corps program, and 
3) the benefit of an established business model in the 
market segment of rehabilitation robotics for inpatient 
rehabilitation facilities. The NSF I-Corps program helps 
to prepare scientists who are in the process of moving 
basic-research projects towards commercialization, while 
the C3i program is an industry-recognized approach 
towards biomedical research translation. Experience and 
participation with the these two programs, and with the 
assistance of the University of Houston’s Office of Tech 
Transfer and Innovation, helps to validate the business 
hypotheses regarding commercialization of advanced 
rehabilitation robotics by interviewing potential customers 
and to validate the market opportunity and minimize 
unexpected risk with the mentorship by program 
instructors and successful entrepreneurs within the 
industry. Additionally, focus group feedback to our 
proposed system by physicians, physical therapists, and 
patients began early in the project and will continue to be 
a key factor in maintaining patient-oriented designs and 
maximizing usability. 

C. Optimizing Key Roles and Metrics 
During the multi-year effort towards a proof-of-

principle device development, and beyond, key personnel 
roles will be optimized in accordance with the defined 
metrics, at multiple levels. One of the 1st order project 
metrics can be defined as the pre-defined milestones and 
year-end deliverables. Since the deliverables of a 
commercial BMI module targets multiple users, the 
throughput of per year-end deliverables may be used as an 
additional metric. Proof-of-principle device performance 
on BMI decoder accuracy, subject task completion 
accuracy and time, overall setup-to-usage time of the 
device at each level of development, from all subjects, can 
be logged and used as improvement points for the next 
iteration. Software efficiency metric can be calculated as, 
for example, errors/bugs per 1000 lines of code, and 
adjustments can then be made accordingly. As the 
proposal nears the mid-term of the multi-year timeline, 
2nd order metrics can be employed, such as; device 
delivery to subjects (scheduling time and cost), loss of 
system availability and cost due to maintenance and 
repairs, estimated cost of delivery delays and its reasons, 
and overall project cost for projected future deliveries. 
Finally, in the final stages of the timeline, 3rd order 
metrics can be used to help define the future production 
costs and improvement points, overall weight and form 
factor of the final proof-of-principle device, and measure 
mean time between failures/errors, to gauge the efficiency 
of the device. Additional metrics that spans the full 
duration of the proposal may include: Number of 
customer needs identified (to gauge the effort in 
identifying the future need), number of in-process changes 
(gauging the overall plan effectiveness), assembly 
efficiency (gauging the design -mechanical and electrical- 
efficiency), percent of sub-milestone dates met (gauging 
the team efficiency), and percent of parts used in multiple 
products (to gauge the parts’ generality/effectivity 

towards reducing the future costs). The measured cost, 
development effort and effectiveness metrics can then be 
used towards iterating our design to a Minimum Viable 
Product (MVP). 

D. Envisioned Plan beyond the Project 
The deliverables of this commercialization strategy are 

1) the definition of specific gain creators and pain 
relievers that are based on in-person customer/prospect 
interviews and feedback obtained after demonstrations 
using a minimum viable product (MVP), 2) a definition of 
specific value propositions (VPs), cost structure and 
revenue streams that will help to create a path to 
successful commercialization of the proposed smart co-
robot system, and 3) submission to FDA for regulatory 
review and approval.  

V. CONCLUSION 

The high-cost and expertise required for current state-
of-the-art rehabilitation systems is prohibitive for most 
chronic stroke survivors seeking rehabilitation. Therefore, 
there is a need for reliable neurotechnologies that engage 
the user, are low-cost, and can be deployed at home. The 
commercial and societal impact potential for the proposed 
BMI-based stroke neurorehabilitation is two-fold:  

Innovation ecosystem: An integrated user-centered 
research-driven translational roadmap for accelerating 
innovation, translation, and entrepreneurship of BMI 
systems for therapeutics and diagnostics has been 
presented in this paper. The proposed BMI system will 
benefit students, faculty, industry, and end users. 
Engagement of end users and regulatory agencies early in 
the design process is expected to ensure the system is 
responsive to the needs of the end users and complies with 
regulatory guidelines for safety and efficacy. This should 
ensure faster translation of the system to the end users.  

National Impact: The US market for a smart therapeutic 
system for rehabilitation after stroke is estimated to be 
$1.2B. Moreover, smart neurotechnologies that safely and 
quickly interface non-invasively with the nervous and the 
body represent a major opportunity for innovation in the 
US industry over the next decade. A commercial BMI 
system will also accelerate scientific discovery in human 
and clinical neuroscience; significantly improve national 
health; boost innovation in wearable therapeutic 
neurotechnologies, and empower individuals to gain 
awareness and take control of their own healthcare and 
wellness. 
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