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Abstract. Spectral algorithms, such as principal component analysis and spectral clustering, rely on the extremal
eigenpairs of a matrix A. However, these may be uninformative without preprocessing A with a
proper transformation. The reason is that the spectrum of A may be contaminated by top eigenvalues
resulting from scale variations in the data, such as high-degree nodes. Designing a good ψ and
establishing what good means is often challenging and model dependent. This paper proposes a
simple and generic construction for sparse graphs, ψ(A) = 1((I + A)r ≥ 1), where A denotes the
adjacency matrix, r is an integer, and the indicator function is applied entrywise. We support this
“graph powering” construction with the following regularization properties: (i) if the graph is drawn
from the sparse Erdős–Rényi ensemble, which has no spectral gap, then graph powering produces a
“maximal” spectral gap, comparable to that obtained when powering a random regular graph; (ii) if
the graph is drawn from the sparse stochastic block model, graph powering achieves the fundamental
limit for weak recovery (the Kesten–Stigum threshold), settling at the same time a related conjecture
by Massoulié in 2013; (iii) we also demonstrate that graph powering is significantly more robust to
tangles and cliques than previous spectral algorithms based on self-avoiding or nonbacktracking walk
counts, using a geometric block model as our benchmark and introducing new conjectures for this
model.

Key words. community detection, stochastic block models, random graphs, spectral algorithms, network data
analysis, spectral embeddings
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1. Introduction.

1.1. Spectral data analysis and robustness. A large variety of algorithms exploit the
spectrum of graph operators. This includes most methods of unsupervised learning that rely
on spectral decomposition, e.g., principal component analysis, clustering, or linear embeddings.
The common base of spectral algorithms is to first obtain a Euclidean embedding of the data
(which may a priori have no relation to a metric space) and then use this embedding for further
tasks. Namely, given an n-vertex graph G with adjacency matrix AG,

1. construct an operator MG = ψ(AG), where ψ : R
n\times n \rightarrow R

n\times n is properly chosen;
2. take the top k eigenvectors of MG to create the n\times k matrix Ψk, and use Ψk(i) as the
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GRAPH POWERING AND SPECTRAL ROBUSTNESS 133

k-dimensional embedding for the data point i \in [n].
In clusterings, one typically looks for k much smaller than n, cutting off a potentially significant
matrix norm, and running the k-means algorithm on the embedded points to obtain clusters [45].
In word embeddings, one may preserve almost all the matrix norm in order to approximate
each pair of words’ co-occurrences [44].

Popular choices for MG (depending on applications) are the adjacency matrix A, the
Laplacian D  - A, the normalized Laplacian I  - D - 1/2AD - 1/2 (or the random walk Laplacian
D - 1A), and various regularized versions of the above using trimming/thresholding operations
or smoothing/completion operations. More recently, operators based on self-avoiding or
nonbacktracking walks have become popular in the context of block models [6, 9, 32, 36]; see
further discussion of these below. The function ψ can also take specific forms such as the
log-PMI function in word embeddings that uses both normalization and the application of the
logarithm entrywise [11, 37, 44], or more sophisticated (nonpositive) forms such as in phase
retrieval [34]. A long list of other forms is omitted here.

Why is it important to apply a transformation ψ? Consider graph clustering; if one takes
MG = A directly, the top eigenvector is likely to localize on the largest degree vertex of the
graph, which is not the type of macroscopic structure that clustering aims to extract. This is
a well-known issue, illustrated in Figure 1(a) using the spectral algorithm on A to cluster the
stochastic block model (SBM) in the sparse regime. Moreover, pruning (also called trimming
or thresholding) the largest degree nodes as done in [10, 12, 17, 23, 29, 46] does not get around
this issue in the sparse SBM [25]. Similarly, in word embeddings, without mitigating the most
popular words, such as “the,” the embedding assigns full dimension to these. On the flip
side, if one takes normalized Laplacians for clustering, one may overcorrect the large degree
nodes and output clusters that are now at the periphery of the graph, such as “tails”; see
Figure 1(b) for an example on the SBM. These are discussed in more detail in section SM1
of the supplementary materials, linked from the main article webpage. In particular, neither
the pruned adjacency matrix nor the normalized Laplacian achieves the threshold for weak
recovery in the SBM. In general, transformations ψ crucially serve to “regularize” the graph in
order to obtain useful embeddings that capture “macroscopic” structures.

The robustness of spectral methods and semidefinite programming methods has been
studied in various contexts, mainly for objective-based clustering, using adversarial corruptions
[14, 19, 27], obtaining certificates for balanced cuts of given conductance [39, 41], or studying
noise perturbations [8, 24, 30, 45], among others. The goal of this paper is to formalize the
notion of robustness in the context of community detection/clustering for probabilistic graph
models, and to obtain a transformation ψ for spectral methods that is as simple and as robust
as possible. The derived graph powering transformation can also be viewed as a method to
extract spectral gaps in graphs that have a spectral gap hiding under local irregularities, such
as the Erdős–Rényi (ER) random graph.

A concurrent work [43] analyzes the robustness under adversarial perturbations of clustering
the sparse SBM based on the spectrum of the graph’s distance matrix. The graph distance
matrix is closely related to the graph powering matrix that we analyze in our work.

1.2. Our benchmarks. We refer to the next section for the formal statements and provide
here some informal motivations. Our goal is to find an “optimal” ψ that is efficiently computable
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136 E. ABBE, E. BOIX-ADSERÀ, P. RALLI, AND C. SANDON

\bullet If A denotes the adjacency matrix of G, then the adjacency matrix A(r) of G(r) is
defined by

A(r) = 1((I +A)r \geq 1),(1.1)

where the indicator function is applied entrywise to (I +A)r. Note also that (I +A)r

has the same spectrum as A (up to the transformation t \mapsto \rightarrow (1 + t)r), but the action of
the nonlinearity 1(\cdot \geq 1) gives the key modification to the spectrum.

Definition 1.2. For a graph G, an r-power-cut in G corresponds to a cut in G(r), i.e.,

∂(r)(S) = \{ (u, v) \in S \times Sc : (A(r))u,v = 1\} , S \subseteq V (G).(1.2)

Note that powering is mainly targeted for sparse graphs, and is useful only if the power r
is not too small and not too large. If it is too small, the powered graph may not be sufficiently
different from the underlying graph. If it is too large, say r \geq diameter(G), then powering
turns any graph to a complete graph, which destroys all the information. However, powering
with r less than the diameter but large enough will be effective on the benchmarks (1), (2),
and (3). As a rule of thumb, one may take r =

\sqrt{} 

diam(G). We now discuss the main insights
behind graph powering.

Power-cuts as Bayes-like cuts. The spectral algorithms based on A, L, or Lnorm can be
viewed as relaxations of the MAP estimator, i.e., the min-bisection:

max
x\in \{  - 1,+1\} n, xT 1n=0

xTAx.(1.3)

However, the MAP estimator is the right benchmark only when aiming to maximize the
probability of recovering the entire communities. It is not the right objective in the regime
where one can only partially recover the communities, which is the sparse regime of interest to
us in this paper. We illustrate this distinction on the following example; see also Figure 3.

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Figure 3. In the left graph, assumed to come from SBM(n, 2, 3/n, 2/n), the root vertex is labelled community
1 from the ML estimator given the leaf labels, which corresponds to the min-cut around that vertex. In contrast,
the Bayes optimal estimator puts the root vertex in community 2, as the belief of its right descendent towards
community 2 is much stronger than the belief of its two left descendents towards community 1. This corresponds
in fact to the min-power-cut obtained from the right graph, where 2-power edges are added by graph powering
(note that only a subset of relevant edges are added in the figure).

Imagine that a graph drawn from SBM(n, 2, 3/n, 2/n) contained the following induced
subgraph: v0 is adjacent to v1, v2, and v3; v1 and v2 are each adjacent to two outside vertices
that are known to be in community 1, and v3 is adjacent to a large number of vertices that
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GRAPH POWERING AND SPECTRAL ROBUSTNESS 137

are known to be in community 2. Then the single most likely scenario is that v0, v1, and v2
are in community 1 while v3 is in community 2. This puts v0 in the community that produces
the sparsest cut (one edge in the cut vs. two edges in the other case). However, v3 is almost
certain to be in community 2, while if we disregard any evidence provided by their adjacency
to v0, the vertices v1 and v2 are each only about 69% likely to be in community 1. As a result,
v0 is actually slightly more likely to be in community 2 than it is to be in community 1.

Power-cuts precisely help with getting feedback from vertices that are further away, making
the cuts more “Bayes-like” and less “MAP-like,” as seen in the previous example where v1 is
now assigned to community 2 using 2-power-cuts rather than community 1 using standard cuts.
Note that this is also the case when using self-avoiding or nonbacktracking walk counts, but
these tend to overcount in the presence of small cycles. For example, in the graph of Figure 4,
the count of NB walks is doubled around the 4-cycle; in contrast, graph powering projects the
count back to 1, thanks to the nonlinearity 1(\cdot \geq 1).

(A3)u,v = 2

u v

(A(3))u,v = 1

Figure 4. Classical powering A3 vs. graph powering A(3). In this example, the number of nonbacktracking
walks of length 3 between u and v is 2 and not 1 as for graph powering.

Powering to homogenize the graph. Powering helps to mitigate degree variations, and more
generally density variations in the graph, both with respect to high and low densities. Since
the degree of all vertices is raised with powering, density variations in the regions of the graph
do not contrast as much. Large degree vertices (as in Figure 1(a)) do not stick out as much
and tails (as in Figure 1(b)) are thickened, and the more macroscopic properties of the graph
can prevail.

One could probably look for a nonlinearity function that is “optimal” (say for the agreement
in the SBM) rather than 1(\cdot \geq 1); however, this is likely to be model dependent, while our
choice seems both natural and generic. A downside of powering is that it densifies the graph,
so one would ideally combine graph powering with degree normalizations to reduce the power
or some graph sparsification (such as in [42]).

Note that powering and sparsifying do not counter each other: powering adds edges to
“complete the graph” in sparse regimes where edges should be present, while sparsifying prunes
down the graph by adding weights on representative edges. Finally, one may also peel out
leaves and paths, and use powered Laplacians to further reduce the powering order; see section
SM3 in the supplementary materials for further discussions on the implementations.

2. Main results.

2.1. Overview. We believe that the recent algorithms [6, 9, 32, 36] proved to achieve
objective (2) of clustering sparse SBMs fail on objective (3) of being robust to tangles and
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cliques in the graphs; this is backed in section SM1 of the supplementary materials. While
semidefinite programs are likely to succeed on objective (3)—they were already shown to be
robust to a vanishing fraction of edge perturbations in [35]—they do not achieve objective
(2) [22, 33, 35] and are also more demanding computationally.1 Moreover, it is also unclear
how appropriate the definition of “weak Ramanujan” from [32] for the matrix of self-avoiding
walk counts is; i.e., could the spectral gap be larger for a matrix of self-avoiding walk counts?
Thus objective (1) also remains unsettled in this case.

We achieve all three objectives (1), (2), and (3) via a robust clustering algorithm based
on graph powering. In particular, for (1) we give an upper bound in Theorem 2.12 on the
spectral gap of random regular graphs after powering, which allows us to infer that graph
powering on ER graphs achieves a maximal spectral gap, up to a potential exponent offset
on the logarithmic factor. For (2), we show in Theorem 2.6 that graph powering allows us to
cluster the SBM whenever possible. And for (3), we give evidence in section 2.4 that powering
clusters the GBMs down to the optimal threshold, without providing formal proofs.2 We also
implement the different algorithms and in section 3 compare them on SBMs and GBMs, as
well as hybrid block models (HBMs) that mix SBMs with GBMs.

Finally, in section SM1 of the supplementary materials, we provide a principled derivation
of the graph powering algorithm, starting from the Bayes-optimal estimator and developing
graph powering as a correction to the nonbacktracking linearization of belief propagation (BP).
And in section SM3 of the supplementary materials we discuss details of implementing graph
powering in practice.

We now state the results formally.

2.2. Weak recovery in block models with hidden clusters. We consider different models
of random graphs with planted clusters. In each case, an ensembleM(n) provides a distribution
on a pair of random variables (X,G), where X is an n-dimensional random vector with
i.i.d. components, corresponding to the community labels of the vertices, and G is an n-vertex
random graph, connecting the vertices in V = [n] depending on their community labels. The
goal is to recover X from G, i.e., to reconstruct the communities by observing the connections.
The focus of this paper is on the sparse regime and the weak recovery problem, defined below.

Definition 2.1. In the case of k communities, an algorithm X̂ : 2(
[n]
2 ) \rightarrow [k]n recovers

communities with accuracy f(n) in M(n) if, for (X,G) \sim M(n) and Ωi := \{ v \in [n] : Xv = i\} ,
i \in [k],

P

\Biggl\{ 

max
\pi \in Sk

1

k

k
\sum 

i=1

| \{ v \in Ωi : π(X̂v) = i\} | 
| Ωi| 

\geq f(n)

\Biggr\} 

= 1 - o(1).(2.1)

In the case of roughly equally sized communities, | Ωi| = n/k + o(n), an algorithm solves
weak recovery if it recovers with accuracy 1/k +Ω(1). This will be the case for this paper.

Definition 2.2. Let n be a positive integer (the number of vertices), k be a positive integer (the
number of communities), p = (p1, . . . , pk) be a probability vector on [k] := \{ 1, . . . , k\} (the prior

1It would be interesting to see how the SOS-based algorithm of [20] performs; while its complexity is
superpolynomial for achieving the KS threshold for weak recovery, it should afford some robustness to cliques.

2Formal proofs would require percolation estimates that depart from the focus of the current paper.
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GRAPH POWERING AND SPECTRAL ROBUSTNESS 139

on the k communities), andW be a k\times k symmetric matrix with entries in [0, 1] (the connectivity
probabilities). The pair (X,G) is drawn under SBM(n, p,W ) if X is an n-dimensional random
vector with i.i.d. components distributed under p, and G is an n-vertex simple graph where
vertices i and j are connected with probability WXi,Xj

, independently of other pairs of vertices.
We also define the community sets by Ωi = Ωi(X) := \{ v \in [n] : Xv = i\} , i \in [k].

In this paper, we refer to the above as the “general stochastic block model” and use
“stochastic block model” for the version with two symmetric and sparse communities, as follows.

Definition 2.3. (X,G) is drawn under SBM(n, a, b) if k = 2, if W takes value a/n on the
diagonal and b/n off the diagonal, and if the community prior is p = \{ 1/2, 1/2\} . The ER
random graph ER(n, d) with expected degree d arises as a special case when a = b = d.

We also define a Gaussian-mixture GBM with two hidden clusters.

Definition 2.4. Given a positive integer n and s, t \geq 0, we define GBM(n, s, t) as the
probability distribution over ordered pairs (X,G) as follows. First, each vertex v \in V is
independently assigned a community Xv \in \{  - 1, 1\} with equal probability. Then, each vertex v
is independently assigned a location Uv in R

2 according to \scrN (Xv \cdot s/2, 0), I2). Finally, we add
an edge between every pair of vertices u, v such that \| Uu  - Uv\| \leq t/

\surd 
n.

The parameter s is the separation between the two isotropic Gaussian means, centered at
( - s/2, 0) and (s/2, 0). The scaling t/

\surd 
n gives a sparse graph with one or two giant components

as long as t is a sufficiently large constant [40], which we assume it is.
Note that the expected adjacency matrix of the GBM, conditioned on the vertex labels,

has the same rank-2 block structure as the SBM: it takes value E(Aij | Xi = Xj) for all i, j on
the diagonal blocks and E(Aij | Xi \not = Xj) for all i, j on the off-diagonal block. However, the
sampled realizations are very different for the GBM.

The main point of introducing the GBM is to have a simple model that accounts for
having many more small cycles than the SBM does. The SBM gives a good framework to
understand how to cluster sparse graphs with some degree variations, where “abstract” edges
occur frequently, i.e., when connection is not necessarily based on metric attributes (x can be
friends with y for a certain reason and y can be friends with z for a different reason, while x
and z have nothing in common). These abstract edges turn the SBM into a sparse graph with
small diameter, which is an important feature in various applications, sometimes referred to as
the “small-world” phenomenon. However, the opposite effect also takes place when connections
are based on metric attributes; i.e., if x and y are close, and y and z are close too, then x and
z must also be close to some extent. This creates many more small cycles than in the SBM.

One possible way to study the effect of small cycles is to consider adversaries that can
modify the graph, for example, monotone adversaries that can add edges inside clusters and
remove edges across clusters, or budgeted adversaries that can only alter a certain number of
edges. A drawback of such adversarial models is that they typically ensure robustness to many
fewer cliques than observed in applications, because the possible worst-case obstructions may
not be typical in applications. The goal of the GBM is to have a simple model for geometric
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connections and tangles, albeit with the usual downsides of generative models.3

Note that for both the SBM and the GBM, defining X, X̂ to take values in \{  - 1,+1\} n, we
have that weak recovery is solvable if and only if | \langle X, X̂(G)\rangle | = Ω(n) with high probability.

2.3. Graph powering for SBM clustering. In order to prove that graph powering achieves
weak recovery for the SBM, we will prove that it yields a “spectral separator,” defined below.

Definition 2.5 (r-spectral separator for the SBM). Suppose (X,G) is drawn from SBM(n, a, b)
with (a + b)/2 > 1. We say that a matrix M(G) with eigenvalues | λ1(M)| \geq | λ2(M)| \geq 
\cdot \cdot \cdot \geq | λn(M)| and corresponding eigenvectors φ1(M), . . . , φn(M) is an r-spectral separator for
SBM(n, a, b) if the following hold with high probability:

A. If
\bigl( 

a+b
2

\bigr) 

<
\bigl( 

a - b
2

\bigr) 2
, then

1. λ1(M) \asymp 
\bigl( 

a+b
2

\bigr) r
,

2. λ2(M) \asymp 
\bigl( 

a - b
2

\bigr) r
,

3. | λ3(M)| \leq 
\bigl( 

a+b
2

\bigr) r/2
log(n)O(1).

B. If
\bigl( 

a+b
2

\bigr) 

>
\bigl( 

a - b
2

\bigr) 2
, then

1. λ1(M) \asymp 
\bigl( 

a+b
2

\bigr) r
,

2. | λ2(M)| \leq 
\bigl( 

a+b
2

\bigr) r/2
log(n)O(1).

And rounding φ2(M) by the median, dividing the rows into those with above- and below-median

sums of the entries (similarly to [32]), achieves weak recovery whenever
\bigl( 

a+b
2

\bigr) 

<
\bigl( 

a - b
2

\bigr) 2
, i.e.,

down to the KS threshold.

The following theorem states that graph powering gives a spectral separator and therefore
that rounding its second eigenvector solves weak recovery for the SBM.

Theorem 2.6. Suppose a, b \geq 0 are such that (a+ b)/2 \geq 1, and r = ε log(n) is such that
ε = Ω(1), ε log(a+ b)/2 < 1/4. Let A(r) be the adjacency matrix of the rth graph power of G.
Then A(r) is an r-spectral separator for SBM(n, a, b).

We illustrate Theorem 2.6 in Figure 5, which demonstrates the effect of graph powering on
the spectrum of an SBM for various choices of r.

As a step in our proof, we prove the following conjecture of [32]. A similar proof appears
in the concurrent work [43].

Theorem 2.7 (conjectured in [32]). Suppose a, b \geq 0 are such that (a + b)/2 \geq 1, and
r = ε log(n) is such that ε = Ω(1), ε log(a+ b)/2 < 1/4. Let A[r](G) be the r-distance matrix of

G (A
[r]
ij = 1 if and only if dG(i, j) = r). Then A[r] is an r-spectral separator for SBM(n, a, b).

Note that combining graph powering with cleaning and normalizing, one may also take
smaller values of r than in Theorem 2.6, as long as r = ω(log log(n)) to surpass the effect of
the high degree vertices. We refer the reader to section SM3 of the supplementary materials
for further discussion.

3Note that this version of the GBM is different from the version studied recently in [2]. The model of [2]
introduces the geometry in a different manner: each vertex has a geometric attribute that does not have any
community bias, e.g., a point process on R

2 or points uniformly drawn on the torus, and each vertex has an
independent equiprobable community label; then the probability that two vertices connect is a function of both
their geometric distance and their abstract community labels. In contrast, in our GBM, vertices connect only
based on their locations, and these locations are encoding the communities. This makes the GBM simpler to
analyze than the model of [2].
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Figure 5. Spectrum for the absolute eigenvalues of a two-community SBM with n = 10000, a = 4, b = 0.2 for
r = 1, 2, 3, 10 powers of the graph. For r = 1, 2, the second eigenvector is localized, and the best eigenvector for
community detection (maximizing agreement) is not the second eigenvector but the third and seventh, respectively.
For r = 3 onwards, the second eigenvector is optimal.

2.4. Graph powering for GBM clustering and robustness to tangles. In order to show
that spectral clustering based on graph powering is robust to models with many cliques and
tangles, we provide evidence that graph powering achieves the fundamental limit for weak
recovery in the Gaussian-mixture GBM. We also give a possible proof sketch but leave the
result as a conjecture. First, we conjecture the fundamental limit for weak recovery.

Conjecture 2.8. Let s, t \geq 0 such that GBM(n, s, t) has a giant component. Weak recovery
is efficiently solvable in GBM(n, s, t) if and only if s > 0.

Justification. Obviously, weak recovery is not solvable if s = 0, so the claim follows by
showing that weak recovery is efficiently solvable if s > 0.

The difficult case is if there is a single giant component. In this case, assign uniformly
random labels to nongiant vertices. Then, take a vertex uniformly at random among all n\prime 

vertices of the giant and assign that vertex to community 1; then assign the n\prime /2 closest vertices
in the giant to community 1 and the rest to community 2. With probability 1/2 + Ω(1), this
will already solve weak recovery. To succeed with probability 1 - o(1), one can pick two anchor
vertices in the giant that are at maximal distance, assign each to a different community, and
assign the rest of the vertices to the same community as their closest anchor vertex. As soon
as s > 0, these anchors will not be aligned with the y-axis, giving the result. This requires,
however, concentration theorems (such as those found in [48]) for the graph distances in
random geometric graphs. These techniques are, however, out of scope for the current paper.

We conjecture that graph powering achieves weak recovery on the GBM whenever possible.

Conjecture 2.9. Let s, t \geq 0, and let t be such that GBM(n, s, t) has a giant component.
Taking the second largest eigenvector of the powered adjacency matrix A(r) with r = ε \cdot diam(G),
for ε > 0 small enough, and rounding it by the median (dividing the rows into those with above-
and below-median sums of the entries) solves weak recovery in GBM(n, s, t) whenever possible.

We refer the reader to Figure 6 in section 3 for numerical evidence supporting this conjecture,
to section SM2 in the supplementary materials for a proof plan, and to section SM3 in the
supplementary materials for discussions on how to reduce r, such as to r =

\sqrt{} 

diam(G).

2.5. Alon–Boppana for graph powering. Finally, we investigate the size of the spectral
gap produced by graph powering on ER random graphs. Note first the following statement,
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142 E. ABBE, E. BOIX-ADSERÀ, P. RALLI, AND C. SANDON

which follows from Theorem 2.6 by setting a = b = d.

Corollary 2.10. Let G be drawn from ER(n, d), and let A(r) be the adjacency matrix of the
rth graph power of G and r = ε log(n) with ε > 0, ε log(a + b)/2 < 1/4. Then, with high
probability,

1. λ1(A
(r)) \asymp dr;

2. | λ2(A(r))| \leq 
\surd 
d
r
log(n)O(1).

Let us compare this gap to the one of Ramanujan graphs. Recall first that the Alon–
Boppana result [38] for d-regular graphs gives

1. λ1(A) = d;
2. λ2(A) \geq (1 - odiam(g)(1))2

\surd 
d - 1.

And Ramanujan families of graphs achieve the lower bound of 2
\surd 
d - 1. Their existence is

known from [31], and Friedman [15] proved that random d-regular graphs are almost Ramanujan,
i.e., with high probability their second largest eigenvalue satisfies λ2(A) \leq 2

\surd 
d - 1 + o(1).

To argue that powering turns ER(n, d) into a graph of maximal spectral gap (factoring out
its irregularity), we first need to understand how large of a spectral gap the powering of any
regular graph can have. Powering regular graphs may not necessarily produce regular graphs,
so we cannot apply directly the Alon–Boppana bound. Yet, let us assume for a moment that
the rth power of a d-regular graph is regular with degree dr; then Alon–Boppana would give
that the second largest eigenvalue of an r-powered graph is larger than 2

\surd 
dr  - 1 \sim 2

\surd 
d
r
.

In contrast, our Corollary 2.10 gives that the rth power of ER(n, d) has its second largest
eigenvalue of order

\surd 
d
r
log(n)O(1).

This additional logarithmic factor could suggest that powering may not give a tight
generalization of Ramanujan and, thus, may not be an “optimal graph regularizer.” In [32],
for the r-self-avoiding-walk matrix rather than the r-powered graph, this “slack” is absorbed
in the terminology of “weak” Ramanujan. However, how weak is this exactly? The above
reasoning does not take into account the fact that G(r) is not any regular graph, but a powered
graph (i.e., not any graph is the power of some underlying graph). So it is still possible that
powering must concede more in the spectral gap that the above argument suggests; we next
show that this is indeed the case. In [3], it is shown that in fact powering must concede more
in the spectral gap that the above argument suggests; the statement is as follows.

Theorem 2.11 (see [3]). Let \{ Gn\} n\geq 1 be a sequence of graphs such that diam(Gn) = ω(1),
and let \{ rn\} n\geq 1 be a sequence of positive integers such that rn = ε \cdot diam(Gn). Then,

λ2(G
(rn)
n ) \geq (1 - o\varepsilon (1))(rn + 1)d̂ rn/2

rn (Gn),(2.2)

where

d̂r(G) =

\Biggl( 

1

r + 1

r
\sum 

i=0

\sqrt{} 

δ(i)(G)δ(r - i)(G)

\Biggr) 2/r

,(2.3)

δ(i)(G) = min
(x,y)\in E(G)

| \{ v \in V (G) : dG(x, v) = i, dG(y, v) \geq i\} | .(2.4)

We will use this result to prove a lower bound on the second-largest eigenvalue of random
d-regular graphs after powering.
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Theorem 2.12. Let G be a random d-regular graph (where d = o(n1/10), and let r = ε log(n),
where ε log d < 1/5. Then, with high probability,

λ2(G
(r)) \geq (1 - od(1))ε

\surd 
d
r
log(n).(2.5)

Theorem 2.12 says that even for a random d-regular graph (with large degrees), we could
not hope to get a better spectral gap for its ε log(n)-power than that of an ER random graph
(Corollary 2.10), except for the exponent on the logarithmic factor that we do not investigate.

2.6. Derivation of graph powering as a clique-robust linearization of BP. An important
contribution of the paper is to provide a derivation of graph powering starting from a Bayes
optimal estimator and connecting back to spectral operators. This requires the approximation
of posterior distributions using BP and the nonbacktracking linearization. While the main
ideas for this development already appear in papers such as [28], we provide in section SM1
of the supplementary materials a slightly different and more detailed account, with a formal
description of the symmetry breaking and the influence of nonedges. Having reached the
nonbacktracking spectral operator, we describe its weakness on the GBM, which we introduce
in this paper as a simple test model for testing robustness to cliques. We then provide both
theoretical and experimental evidence for the failure of the spectral nonbacktracking algorithm
on the GBM due to cliques. We then proceed to correcting the linearization of BP in order to
afford such robustness with the graph powering operator.

We also discuss the alternatives of the Laplacians and normalized Laplacians, with theoreti-
cal and experimental evidence for their failures on the SBM. We conclude in section SM3 of the
supplementary materials with a spectral meta-algorithm that mixes powering and normalized
Laplacians to improve the efficiency, and we also give connections to graph sparsification.

3. Comparisons of algorithms. In this section, we give numerical results for some of the
main algorithms for community detection on the SBM and GBM. For the GBM, see Figure 6.
For the SBM, see Figure 7. In both cases, graph powering outperforms the other methods.

We also introduce an HBM, which superposes an SBM and a GBM. The HBM has the
advantage of simultaneously having a short diameter, having abundant tangles, and being
sparse. In Figure 8, we use the HBM to illustrate the fact that graph powering is robust to the
superposition of both types of edges (geometric and abstract edges), while other algorithms
suffer on either of the other types of edges.

Definition 3.1. Suppose we are given a positive integer n and a, b, s, t, h \geq 0; then we define
HBM(n, a, b, s, t, h1, h2) as the probability distribution over ordered pairs (X,G) as follows. Let
(X,G1) \sim SBM(n, a, b), and let G2 be drawn from GBM(n, s, t) with X for the community
labels, such that G1, G2 are independent conditionally on X. For each pair of vertices u, v,
independently keep the edge from G1 with probability h1 and the edge from G2 with probability
h2, and merge the edges if both are kept. Call the resulting graph G.

4. Proof of weak recovery on SBM.

4.1. Proof of Theorem 2.7. Our proof of Theorem 2.7 uses the following theorem of
Massoulié [32], which is analogous to Theorems 2.7 and 2.6, but for the matrix A\{ r\} counting
self-avoiding walks (i.e., paths) of length r. While this matrix does not offer the desired
robustness to cliques, the following result will be used for graph powering in the case of SBMs.
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Figure 6. The truth-agreement values of clusters calculated by different methods on G ∼ GBM(n, s, t) with
n = 1000, t = 10. Each entry is the average agreement over 50 runs. The spectral clustering on the powered
adjacency matrix has powering parameter r = 0.3d, where d is the diameter. “Best possible” indicates the
information-theoretic upper bound for agreement if the locations of the vertices in the plane were known to the
algorithm. Notice that graph powering outperforms all other methods and achieves close-to-optimal community
recovery.

Figure 7. The SBM(n, a, b) parameters are n = 4000, a given by the x-axis, and SNR = (a− b)2/(2(a+ b))
chosen to be very close to 1 (the KS threshold for weak recovery). The graph powering parameter is r = 0.5d,
where d is the diameter. Although the normalized Laplacian and the adjacency matrix seem to cluster the graph
relatively well, when n is increased the performance of these methods drops dramatically. For instance, when
n = 100000, the normalized Laplacian method consistently scores below 0.51 agreement on the parameter ranges
in the above graph. Similarly, for n = 100000, SNR ≈ 1 and a ≤ 3, the adjacency method scores below 0.55
agreement.

Theorem 4.1 (spectral separation for the self-avoiding-walk matrix; proved in [32]). Suppose
a, b \geq 0 are such that (a+b)/2 \geq 1, and r = ε log(n) is such that ε = Ω(1), ε log(a+b)/2 < 1/4.

Let A\{ r\} be the length-r-self-avoiding-walk matrix of G (A
\{ r\} 
ij equals the number of self-avoiding
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Figure 8. Average agreement over 50 trials for HBM(n, a, b, s, t, h1, h2) with parameters n = 4000, s = 1,
t = 10, h1 = h2 = 0.5, a = 2.5, b = 0.187. The graph powering parameter is r = 0.4d, where d is the diameter
of the graph. Since the HBM combines elements of the GBM and SBM models, the adjacency, nonbacktracking,
and Laplacian methods fail to recover the clusters. We conjecture that for higher n, the normalized Laplacian
method fails as well (similarly to the SBM case).

walks of length r between i and j). Then A\{ r\} is an r-spectral separator for SBM(n, a, b) in
the sense of Definition 2.5.

Remark 4.2. Theorem 4.1 does not appear in the above form in [32]. In particular, case B
of the r-spectral separator definition is not addressed in [32], but it can be proved with the
same techniques as case A. The polylogarithmic factors in the bounds of [32] on λ1 and λ2 can
be removed with a more careful analysis, along the lines of the later work [9] on the spectrum
of the nonbacktracking operator. Similarly, the n\epsilon factor in the bound of [32] on λ3 can be
seen to be in fact a (log n)O(1) factor. Finally, the bounds in [32] are stated for A\{ r\} alone,
not for A\{ k\} for all k \in \{ r/2, . . . , r\} . However, the proof of [32] shows that there is a constant
C > 0 such that for each individual k \in \{ r/2, . . . , r\} the bounds on the top eigenvalues of
A\{ k\} hold with probability \geq 1 - C(log n) - 2. A union bound over k \in \{ r/2, . . . , r\} then gives
Theorem 4.1 as stated. (This union bound is needed for the proof of Theorem 2.6 in the next
section but is not needed for the proof of Theorem 2.7.)

We will only prove case A of the spectral separation property for Theorem 2.7, since the
argument for case B is similar and simpler. Writing α := (a+ b)/2 and β := (a - b)/2, the
proof can be broken down into two steps:

1. We show that the distance-r indicator matrix A[r] (defined as A
[r]
ij = 1 if and only

if dG(i, j) = r) is a small perturbation of the length-r-self-avoiding-walk matrix. In
particular, we show that with high probability, the difference B = B(r) := A[r]  - A\{ r\} 

has small spectral norm \| B\| 2 = O(αr/2 log3 n).
2. We use matrix perturbation theory to prove that the top eigenvalues and eigenvectors

of A[r] behave like the top eigenvalues and eigenvectors of A\{ r\} . In the event that the
bounds in Theorem 4.1 and step 1 hold, then we have the following:

(a) \| B\| 2 = o(λ2(A
\{ r\} )), so Weyl’s inequality [47] gives

λ1(A
[r]) \asymp λ1(A

\{ r\} ) \asymp αr,

λ2(A
[r]) \asymp λ2(A

\{ r\} ) \asymp βr,

| λ3(A[r])| \leq | λ3(A\{ r\} )| + \| B\| 2 \leq αr/2(log n)O(1).

(b) \| B\| 2 = o(max\{ λ1(A\{ r\} )  - λ2(A
\{ r\} ), λ2(A

\{ r\} )  - λ3(A
\{ r\} )\} ), so by the Davis–

Kahan theorem [13], φ1(A
[r]) and φ2(A

[r]) are asymptotically aligned with
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φ1(A
\{ r\} ) and φ2(A

\{ r\} ), respectively, which is enough for rounding by the
median, as in [32], to achieve weak recovery. As a reminder, the Davis–Kahan
theorem states the following.

Theorem 4.3 (Davis–Kahan theorem). Suppose that H̄ =
\sum n

j=1 µ̄j ūj ū
T
j and

H = H̄ + E, where µ̄1 \geq \cdot \cdot \cdot \geq µ̄n, \| ūj\| 2 = 1, and E is symmetric. Let uj
be a unit eigenvector of H corresponding to its jth largest eigenvalue, and let
∆j = min\{ µ̄j - 1  - µ̄j , µ̄j  - µ̄j+1\} , where we define µ̄0 = +\infty and µ̄n+1 =  - \infty .
We have

(4.1) min
s=\pm 1

\| suj  - ūj\| 2 \lesssim 
\| E\| 2
∆j

,

where \lesssim only hides an absolute constant.

Therefore, it only remains to prove that \| B\| 2 = O(αr/2 log3 n) with high probability.
To understand the intuition behind our argument, it helps to imagine what would happen

if the underlying graph were a tree instead of an SBM. In the tree case, there would be exactly
one self-avoiding walk between every pair of vertices, and the length of this walk would be
equal to the distance between the two vertices. In other words, in the tree case, the matrices
A\{ r\} and A[r] would be equal.

While the SBM is (with high probability) not a tree, it is with high probability locally
tree-like. This means that for small r, most vertices do not have cycles in their r-neighborhoods.
Therefore, most vertices’ r-neighborhoods are trees, and hence A\{ r\} \approx A[r].

The observation that the SBM is locally tree-like can be formalized.

Lemma 4.4 (e.g., Lemma 4.2 of [32]). Let E1 be the event that no vertex has more than one
cycle in its r-neighborhood. For r = ε log n and ε logα < 1/4, E1 occurs with high probability.

Conditioning on E1, we can define the equivalence relation \sim between vertices so that
v \sim w if and only if there is a cycle in the intersection of the r-neighborhoods of v and w.
This is a well-defined equivalence relation, because every vertex has at most one cycle in its
r-neighborhood. The relation \sim is useful because of item (i) of the following proposition (proof
postponed) connecting \sim to the structure of B.

Proposition 4.5. Condition on E1. Then, for all i, j \in V (G), the following hold:
(i) Bi,j \not = 0 =\Rightarrow i \sim j.
(ii) Bi,j \not = 0 =\Rightarrow there are at least two length-(\leq r) paths from i to j.
(iii) | Bi,j | \leq 1.
(iv) There are at most two length-(\leq r) paths from i to j.

We condition on E1 in the rest of the proof, since it holds with high probability. By item
(i) of Proposition 4.5, B is a block-diagonal matrix, where each block BS\times S corresponds to an
equivalence class S \subseteq [n] of \sim . Therefore, it suffices to separately bound the spectral norm of
each block BS\times S . To do this, we introduce the following event.

Lemma 4.6 (Theorem 2.3 of [32]). Let E2 = E2(C) be the event that for all vertices
i \in V (G), for all t \in [r], the following holds:

(4.2) | \{ j : dG(i, j) \leq t\} | \leq C(log n)2αt.
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There is large enough C that E2(C) holds with high probability.

Informally, E2 is the event that for all t \in [r], each vertex’s t-neighborhood is not much
larger than αt.

From now on, also condition on E2, since it holds with high probability. Suppose S is the
set of vertices in some equivalence class of \sim . Let H \subseteq G be the cycle that is shared by the
r-neighborhoods of the vertices in S. Let e be an edge of H. Then for every i, j \in S such
that there are two length-(\leq r) self-avoiding walks from i to j, at least one of the paths must
contain e. Otherwise, the cycle H is not the only cycle in the r-neighborhood of i. So by item
(ii) of Proposition 4.5,

| \{ \{ i, j\} \in S | Bi,j \not = 0\} | \leq | \{ (\leq r)-length paths P \subseteq G | e \in E(P )\} | .

For any t \in [r],
| \{ t-length paths P \subseteq G | e = (u, v) \in E(P )\} | 

\leq 
r
\sum 

l=0

| \{ l-length paths P \subseteq G | u \in V (P )\} | \cdot | \{ (t - l  - 1)-length paths P \subseteq G | v \in V (P )\} | .

By item (iv) of Proposition 4.5 and by E2, for any u \in V (G), l \in [r],

| \{ l-length paths P \subseteq G | u \in V (P )\} | \leq 2C(log n)2αl,

so
| \{ \{ i, j\} \in S | Bi,j \not = 0\} | \leq r(2C(log n)2)2αr - 1 = O(αr log5 n).

Therefore, by item (iii) of Proposition 4.5,

\| BS\times S\| 2 \leq \| BS\times S\| F = O(αr/2 log5/2 n),

as desired. (\| \cdot \| F denotes the Frobenius norm.)

Proof of Proposition 4.5. Suppose Bi,j \not = 0. Since every vertex has at most one cycle in
its r-neighborhood, there are at most 2 length-(\leq r) paths between every pair of vertices (item

(iv)), so A
\{ r\} 
i,j \in \{ 0, 1, 2\} . Also, since A[r]

i,j \in \{ 0, 1\} , the possible cases are the following:

1. A
[r]
i,j = 0:

(a) A
\{ r\} 
i,j = 1. There is a path of length < r between i and j, because otherwise

dG(i, j) = r. So there are two paths of length \leq r between i and j.

(b) A
\{ r\} 
i,j = 2. This case is impossible. There is no path of length < r between

i and j, because there are at most two paths of length \leq r between i and j,

and A
\{ r\} 
i,j = 2 tells us that there are two paths of length r between i and j.

Therefore, dG(i, j) = r, so A
[r]
i,j = 1.

2. A
[r]
i,j = 1:

(a) A
\{ r\} 
i,j = 0. This case is impossible. The distance between i and j is r, so there

should be a path of length r between them.

(b) A
\{ r\} 
i,j = 2. There are two paths of length r between i and j.
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So if Bi,j \not = 0, then | Bi,j | = 1, and there are exactly two (\leq r)-length paths between i and j.
This case analysis proves items (ii) and (iii) of the claim.

The union of the two paths from i to j contains a simple cycle which is contained in the
r-neighborhoods of both i and j. Therefore, i \sim j, proving item (i) of the claim.

4.2. Proof of Theorem 2.6. Recall the definitions A
(r)
ij = 1(dG(i, j) \leq r) and A

[r]
ij =

1(dG(i, j) = r). The key to proving Theorem 2.6 is the identity

A(r) =

r
\sum 

k=0

A[k],

which is just another way to write 1(dG(i, j) \leq r) =
\sum r

k=0 1(dG(i, j) = k).
Informally, we know from Theorem 2.7 that the top eigenvalues of the A[k] matrices have

the desired separation properties. So if we can prove that the top eigenvectors of the A[k]

matrices are all roughly equal, then they will be roughly equal to the top eigenvectors of A(r),
essentially proving Theorem 2.6.

Keeping this intuition in mind, our first step is to reduce the problem of analyzing A(r) to
the problem of analyzing a slightly simpler matrix D:

D = D(r) :=

r
\sum 

k=r/2

A\{ k\} ; equivalently, A(r) = D +A(r/2 - 1)  - 
r
\sum 

k=r/2

(A\{ k\}  - A[k]),

where A
\{ r\} 
ij counts the number of self-avoiding walks of length r between i and j. By the proof

of Theorem 2.6, we know that conditioned on E1 \cap E2 (and so with high probability),

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

A[k]  - A\{ k\} 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\leq 
r
\sum 

k=0

\| A[k]  - A\{ k\} \| 2 = O(αr/2(log n)4).

And since by Lemma 4.6 the neighborhoods of vertices do not grow too quickly, with high
probability, A(r/2 - 1) is the adjacency matrix of a graph with maximum degree O(αr/2(log n)2).
Under this event, we also get the following bound:

\| A(r/2 - 1)\| 2 = O(αr/2(log n)2).

We can conclude by the triangle inequality that \| A(r)  - D\| 2 = O(αr/2(log n)4). Therefore,
by the matrix perturbation arguments (Weyl’s inequality and the Davis–Kahan inequality)
used to prove Theorem 2.7, it suffices to prove that the matrix D has the spectral properties
that we desire for A(r). Theorem 2.6 will follow. We will now show that D has a “weak
Ramanujan property”, similar to Theorem 2.4 of [32].

Lemma 4.7. With high probability, D satisfies the following weak Ramanujan property:

sup
\| u\| 2=1,uTA\{ r\} 1=uTA\{ r\} X=0

\| Du\| 2 = αr/2(log n)O(1),

where 1 is the all-ones vector and X \in \{  - 1,+1\} n is the community label vector.
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We will also need the following two lemmas. The first lemma tells us that the top
eigenvectors of the A\{ k\} matrices are pretty well aligned with the top eigenvectors of A\{ r\} .

Lemma 4.8. There are c0, δ > 0 such that with high probability, for all k \in \{ r/2, . . . , r\} ,
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

A\{ r\} 1

\| A\{ r\} 1\| 2
 - A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\leq c0n
 - \delta ,

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

A\{ r\} X

\| A\{ r\} X\| 2
 - A\{ k\} X

\| A\{ k\} X\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\leq c0n
 - \delta .

Lemma 4.9 (from [32], with minor modification as in Remark 4.2). There are c1, c2 > 0 and
g = o(1) such that with high probability, for all k \in \{ r/2, . . . , r\} , the following hold:

(i) c1α
k < \| A\{ k\} \| 2 < c2α

k.

(ii) A\{ k\} A\{ k\} 1 = \| A\{ k\} A\{ k\} 1\| 2
\Bigl( 

A\{ k\} 1
\| A\{ k\} 1\| 2

+ hk

\Bigr) 

for a vector hk s.t. \| hk\| 2 < g = o(1).

(iii) A\{ k\} A\{ k\} X = \| A\{ k\} A\{ k\} X\| 2
\Bigl( 

A\{ k\} X
\| A\{ k\} X\| 2

+ h\prime k

\Bigr) 

for a vector h\prime k s.t. \| h\prime k\| 2 < g = o(1).

We now show that Lemmas 4.7, 4.8, and 4.9 imply Theorem 2.6.
Following the argument of Theorem 4.1 of [32], it suffices to show that with high probability,

\| DA\{ r\} 1\| 2 = Θ(αr\| A\{ r\} 1\| 2),(4.3)

\| DA\{ r\} X\| 2 = Θ(βr\| A\{ r\} X\| 2).(4.4)

Since A\{ r\} 1 and A\{ r\} X are asymptotically orthogonal (by Lemma 4.4 of [32]), and since D has
the weak Ramanujan property of Lemma 4.7, the variational definition of eigenvalues yields
that the top two eigenvectors of D will be asymptotically in the span of A\{ r\} 1 and A\{ r\} X.4 By
the lower bound of (4.3) and the upper bound of (4.4), the top eigenvalue of D will be Θ(αr),
with eigenvector asymptotically parallel to A\{ r\} 1. Since A\{ r\} X is asymptotically orthogonal
to A\{ r\} 1, the second eigenvalue of D will be Θ(βr), with eigenvector asymptotically parallel
to A\{ r\} X. This proves the theorem, since by Massoulié [32] A\{ r\} 1 and A\{ r\} X are in fact
asymptotically parallel to the top two eigenvectors of A\{ r\} .

The inequalities in (4.3) hold because with high probability,

\| DA\{ r\} 1\| 2
\| A\{ r\} 1\| 2

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

A\{ k\} A\{ r\} 1

\| A\{ r\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

(4.5)

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

A\{ k\} A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

+O

\left( 

 

r
\sum 

k=r/2

\| A\{ k\} \| 2
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

A\{ r\} 1

\| A\{ r\} 1\| 2
 - A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\right) 

 (4.6)

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

A\{ k\} A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

+O

\Biggl( 

r
\sum 

k=0

αkn - \delta 

\Biggr) 

(4.7)

4Here we assume we are in the case β2 > α of Theorem 2.6, since the other case is similar.
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=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

A\{ k\} A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

+O(αrn - \delta )(4.8)

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

\biggl( 

A\{ k\} 1

\| A\{ k\} 1\| 2
+ hk

\biggr) \| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

+O(αrn - \delta ) for \| hk\| 2 = o(1)(4.9)

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

\biggl( 

A\{ r\} 1

\| A\{ r\} 1\| 2
+ hk

\biggr) \| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

(4.10)

+O

\left( 

 

r
\sum 

k=r/2

\| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

A\{ r\} 1

\| A\{ r\} 1\| 2
 - A\{ k\} 1

\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

\right) 

 +O(αrn - \delta )

=

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

r
\sum 

k=r/2

\biggl( 

A\{ r\} 1

\| A\{ r\} 1\| 2
+ hk

\biggr) \| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

+O(αrn - \delta )(4.11)

=

\left( 

 

r
\sum 

k=r/2

\| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

\right) 

 (1 + o(1)) +O(αrn - \delta ).(4.12)

Equations (4.6) and (4.10) are derived by the triangle inequality. Equations (4.7) and (4.11)
are consequences of Lemma 4.8. Equation (4.9) follows by Lemma 4.9. Plugging in the bound

on \| A\{ k\} A\{ k\} 1\| 2
\| A\{ k\} 1\| 2

from item (i) of Lemma 4.9 gives

\| DA\{ r\} 1\| 2 = Θ(\| A\{ r\} 1\| 2),

proving (4.3). A similar argument proves (4.4). We conclude by proving the auxiliary lemmas.

Proof of Lemma 4.7. Let δ > 0. By the triangle inequality and the definition D =
\sum r

k=r/2A
\{ k\} , it suffices to prove that for all k \in \{ r/2, . . . , r\} ,

sup
\| u\| 2=1,uTA\{ r\} 1=uTA\{ r\} X=0

\| A\{ k\} u\| 2 \leq (log n)O(1)αr/2,

where the bound is uniform over k. This follows from a union bound over Theorem 2.4 in [32]
(the weak Ramanujan property for A\{ r\} ).

Proof of Lemma 4.8. Let \scrB \subset V (G) denote the set of vertices v such that there is a cycle
in the r-neighborhood of v. Lemma 4.3 of [32] gives us the following bounds on entries of
A\{ k\} 1, A\{ k\} X for all k \in [r]:

(4.13) v \not \in \scrB =\Rightarrow (A\{ k\} 1)v = αk - r(A\{ r\} 1)v +O(log n) +O

\biggl( 

\sqrt{} 

log(n)αk

\biggr) 

,

(4.14) v \not \in \scrB =\Rightarrow (A\{ k\} X)v = βk - r(A\{ r\} X)v +O(log n) +O

\biggl( 

\sqrt{} 

log(n)αk

\biggr) 

,
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(4.15) v \in \scrB =\Rightarrow \| (A\{ k\} 1)v\| 2 = O(αk log(n)),

(4.16) v \in \scrB =\Rightarrow \| (A\{ k\} X)v\| 2 = O(βk log(n)).

By Lemma 4.2 of [32], | \scrB | = O(α2r log4 n) with high probability, so by (4.14) and (4.16),

\langle A\{ r\} X,A\{ k\} X\rangle =

\left( 

 

\sum 

v \not \in \scrB 

(A\{ r\} X)2
v
βk - r + (A\{ r\} X)v(O(log n+

\sqrt{} 

αk log n))

\right) 

 +
\sum 

v\in \scrB 

O(βk+r log n)

= βk - r\| A\{ r\} X\| 22 +O(nβr
\surd 
αk log2 n) +O(α2rβk+r log4 n).

Noting that β2 > α, and that \| A\{ r\} X\| 22 = Θ(nβ2r) up to a factor of log2 n, there is δ > 0
such that

\langle A\{ r\} X,A\{ k\} X\rangle = βk - r\| A\{ r\} X\| 22(1 + o(n - \delta )).(4.17)

Similarly, we can show that \| A\{ k\} X\| 2 = βk - r\| A\{ r\} X\| 2(1 + o(n - \delta )). This implies that

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

A\{ r\} X

\| A\{ r\} X\| 2
 - A\{ k\} X

\| A\{ k\} X\| 2

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

2

= 2 - 2
\langle A\{ r\} X,A\{ k\} X\rangle 

\| A\{ k\} X\| 2\| A\{ r\} X\| 2
= 2 - 2(1 + o(n - \delta \prime )) = o(n - \delta \prime )

for some δ\prime > 0. Similar arguments, using (4.13) and (4.15), prove the analogous result for
\langle A\{ k\} 1, A\{ r\} 1\rangle .

Proof of Lemma 4.9. Item (i) is the statement from Theorem 4.1 that λ1(A
\{ k\} ) = Θ(αk),

with the additional subtlety that we can choose uniform constants in the Θ notation for
k \in \{ r/2, . . . , r\} . Items (ii) and (iii) are equivalent to stating that for all k \in \{ l/2, . . . , l\} ,
A\{ k\} A\{ k\} 1 is asymptotically in the same direction as A\{ k\} 1, and A\{ k\} A\{ k\} X is asymptotically
in the same direction as A\{ k\} X. A union bound over Theorem 4.1 of [32] implies this is true
for all k \in \{ r/2, . . . , r\} .

5. Justification for weak recovery on GBM. We now provide justification for Conjecture
2.9, that rounding the second eigenvector of A(r) for r = ε \cdot diam(G) for ε > 0 small enough
solves weak recovery for G \sim GBM(n, s, t) whenever possible. Let κ := diam(G).

Justification. If graphs drawn from GBM(n, s, t) have no giant component with high
probability, then recovering communities on GBM(n, s, t) with accuracy greater than 1/2 is
impossible, so the algorithm trivially recovers communities with optimal accuracy. If graphs
drawn from GBM(n, s, t) typically have two giant components, then the two eigenvectors of
A(\varepsilon \kappa ) with the largest eigenvalues will be the ones that have positive entries for every vertex in
one giant component and all other entries set to 0. So, the algorithm will assign all vertices in
one giant component to one community, which attains optimal accuracy. That leaves the case
where graphs drawn from GBM(n, s, t) have a single giant component with high probability.
For the rest of this argument, assume that we are in this case. Any small component of
the graph will have o(n) vertices, so any eigenvector with nonzero entries corresponding to
vertices in such a component must have an eigenvalue of o(n). There are multiple cliques of
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size Ω(n) in the giant component that do not have any edges between them, so the second
largest eigenvalue of A(\varepsilon \kappa ) is Ω(n). Therefore, the eigenvector of A(\varepsilon \kappa ) with the second largest
eigenvalue will have all of its entries corresponding to vertices outside the giant component set
to 0. From now on, ignore all vertices outside of the giant component of the graph.

Let w be the unit eigenvector of A(\varepsilon \kappa ) with the largest eigenvalue. Every entry in A(\varepsilon \kappa )

is nonnegative, so w has all nonnegative entries. Furthermore, there is a path between any
two vertices of a graph drawn from GBM(n, s, t), so every entry in [A(\varepsilon \kappa )]n is positive, which
means every entry in w is positive. Now, let λ be the eigenvalue corresponding to w and let w\prime 

be a unit vector. Also, let E(\varepsilon \kappa ) be the set of all pairs of vertices that have a path of length εκ
or less between them. Then it must be the case that

λ =
\sum 

v

λ(w\prime 
v)

2

=
\sum 

v

λ(w\prime 
v)

2
\sum 

v\prime :(v,v\prime )\in E(εκ)

wv\prime /(λwv)

=
\sum 

(v,v\prime )\in E(εκ)

(w\prime 
v)

2wv\prime 

wv
.

This means that

w\prime \cdot A(\varepsilon \kappa )w\prime =
\sum 

(v,v\prime )\in E(εκ)

w\prime 
vw

\prime 
v\prime 

= λ+
\sum 

(v,v\prime )\in E(εκ)

w\prime 
vw

\prime 
v\prime  - 

wv\prime 

2wv
(w\prime 

v)
2  - wv

2wv\prime 
(w\prime 

v\prime )
2

= λ - 
\sum 

(v,v\prime )\in E(εκ)

wvwv\prime 

2

\biggl( 

w\prime 
v

wv
 - w\prime 

v\prime 

wv\prime 

\biggr) 2

.

If w\prime is the eigenvector of second greatest eigenvalue, then it must be orthogonal to w, and
for any other unit vector w\prime \prime that is orthogonal to w, it must be the case that

\sum 

(v,v\prime )\in E(εκ)

wvwv\prime 

2

\biggl( 

w\prime 
v

wv
 - w\prime 

v\prime 

wv\prime 

\biggr) 2

\leq 
\sum 

(v,v\prime )\in E(εκ)

wvwv\prime 

2

\biggl( 

w\prime \prime 
v

wv
 - w\prime \prime 

v\prime 

wv\prime 

\biggr) 2

.

On another note, the orthogonality of w and w\prime implies that w\prime must have both positive and
negative entries. Also, since w \cdot w = w\prime \cdot w\prime , there must exist v such that | w\prime 

v/wv| \geq 1. So,

there must be a significant amount of variation in the value of w\prime 
v

wv
, but the values of w\prime 

v

wv
must

tend to be similar for nearby vertices. Also, vertices that are particularly close to each other
geometrically will have mostly the same neighbors in terms of E(\varepsilon \kappa ), which will result in them
having similar values. So, we would expect that w\prime 

v/wv would be strongly positive on one
side of the graph, that it would be strongly negative on the other, and that it would shift
gradually between these extremes as one moved from one side to the other. Geometrically, the
x-direction is the direction the giant component extends the farthest in, so we would expect
that these sides would be defined in terms of x-coordinates.
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Intuitively, it seems like the entries of w\prime would switch signs halfway between these sides,
which means at the y-axis. However, we need to consider the possibility that random variation
in vertices would disrupt the symmetry in a way that prevents this from happening. Given a
vertex v at a given geometric location that gives it a nonvanishing probability of being in the
giant component, for r\prime < εκ the expected number of vertices exactly r\prime edges away from v in
G is Θ(r\prime ), and the expected number of vertices within εκ edges of v is Θ(n). Now, consider
the effects of deleting a random vertex v\prime on the set W of vertices within εκ edges of v. It is
possible that deleting v\prime disconnects v from the giant component entirely, in which case its
deletion removes nearly the entire set.

Now, assume that this does not happen. Some of the edges of v\prime might be cut edges,
but the components their removal cuts off from the giant component will typically have O(1)
vertices. We would expect that any two edges of v\prime other than cut edges would be contained
in some cycle. Furthermore, due to the abundance of small cycles in the GBM, we would
generally expect that there exists some m such that every such pair of edges is contained in a
cycle of length at most m and E[m2] = O(1). That means that for any v\prime \prime that is still in the
giant component, the length of the shortest path from v to v\prime \prime will be at most m  - 4 edges
longer than it was before v\prime was deleted. So, only vertices that were more than εκ - (m - 4)
edges away from v are in danger of being removed from W . Furthermore, a minimum length
path from v to v\prime \prime will only pass through one vertex that is r\prime edges away from v for each
r\prime . So, if v\prime was r\prime edges away from v, there is only an O(1/r\prime ) chance that the length of the
shortest path from v to v\prime \prime is even affected by the deletion of v\prime . That means that given that
v\prime is r\prime edges away from v, and deleting it does not remove v from the giant component, the
expected number of vertices removed from W by deleting it is O(

\surd 
n/r\prime ). A random vertex is

r\prime edges away from v with probability Θ(r\prime /n). So, the expected value of the square of the
number of vertices removed from W by deleting v\prime is O

\bigl( 
\sum \varepsilon \kappa 

r\prime =1(r
\prime /n) \cdot (\surd n/r\prime )2

\bigr) 

= O(log(n)).
By the same token, the expected value of the square of the number of vertices added to W
by adding one new vertex at random is O(log(n)). That means that if we add (n  - 1) new
vertices to the graph and delete all old vertices other than v, the variance in the size of W
conditioned on v still being in the giant component will be O(n log(n)). So, heuristically the
variance of the size of W conditioned on the geometric location of v and the assumption that
v is in the giant component is O(n log(n)).

That means that the standard deviation of the size of this set, and the size of the
subset restricted to a given geometric region, is much smaller than the expected size of the
set. Furthermore, all entries of (A(\varepsilon \kappa ))\lceil 1/\varepsilon \rceil are positive, and we would expect that a power
iteration method on (A(\varepsilon \kappa )) would only need a constant number of steps to obtain a reasonable
approximation of w\prime . So, random variation in vertex placement has little effect on the behavior
of (A(\varepsilon \kappa )) and we expect that the signs of the entries of w\prime have 1  - o(1) correlation with
the signs of the corresponding vertices’ x-coordinates. So, this algorithm would essentially
assign the vertices with positive x-coordinates to one community and the vertices with negative
x-coordinates to the other. That is the best one can do to classify vertices in the GBM, so we
believe this algorithm will classify vertices with optimal accuracy.

6. Proof of maximality of spectral gap on ER.

Proof of Theorem 2.12. Let G be a random d-regular graph on n vertices. Let r be a
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positive integer with r < log(n)
5 log(d) , and let x \in V . We will first compute a probabilistic bound

on the modified minimum degree δ(r), as defined in the statement of Theorem 2.11.
We want to bound the probability of the event E that there exists a vertex x for which

Br(x) contains two different cycles. A cycle in Br(x) occurs when two vertices in Si(x) (for
1 \leq i \leq r) are adjacent or when a vertex in Si(x) (for 2 \leq i \leq r) has two neighbors in
Si - 1. If Br(x) contains two cycles, taking the described edge in Br(x) and the shortest paths
from those vertices to x, we find those cycles are part a subgraph of Br(x) of one of the
following descriptions: (i) a c1-cycle and a c2-cycle joined by an l-path, where ci \leq 2r + 1
and l + \lfloor c1/2\rfloor + \lfloor c2/2\rfloor \leq 2r, or (ii) a c1-cycle and a c2-cycle sharing a path of l vertices,
where ci \leq 2r + 1 and l \leq r. Observe that the total number of such subgraphs up to
isomorphism is Θ(r3) and that every such subgraph H = (VH , EH) has | EH | \leq 4r + 2 and
| VH | = | EH |  - 1. A standard result (see [26, Corollary 2.2]) of random regular graphs tells
us that the expected number of instances of any such graph H in a random regular graph
is E[#H] = Θ(d| EH | /n); it follows from taking a union bound that P (E) \leq Θ(d4r+2r3/n).
Because r < logn

5 log d , P (E) =\leq Θ(d2r3/n1/5) = on(1), so with high probability no ball Br(x)
around any vertex x contains two cycles.

In the high probability case E, we can tightly bound δ(r). The assumption that Br(x)
contains at most one cycle means that it closely resembles a tree; this makes the following
computation of δ(r) straightforward.

Let x \in V . There are d(d - 1)r - 1 nonbacktracking walks of length r starting at x. For any
y \sim x, exactly (d - 1)r - 1 of those walks start x, y, . . . . Because a vertex at distance r from x
and r  - 1 from y must be the endpoint of such a walk, there are at most (d - 1)r - 1 of those
vertices. A cycle can occur in Br(x) in one of two ways.

First, an even cycle means that there is some unique vertex z in the cycle that maximizes
dG(x, z). There are exactly two nonbacktracking walks of length dG(x, z) from x to z, and these
walks have different second-last vertices. Let i = dG(x, z); there are (d - 2)(d - 1)r - i - 1 ways to
extend those paths to length r so that the endpoint is in Sr(x). For any of the d(d - 1)i - 1 - 2 other
nonbacktracking walks of length i, there are (d - 1)r - i ways to extend them to distance r, each
corresponding to a unique vertex in Sr(x). In total we find | Sr(x)| = d(d - 1)r - 1 - d(d - 1)r - i - 1.
Because i \geq 2, | Sr(x)| \geq d(d - 1)r - 1  - d(d - 1)r - 3 if there is an even cycle.

Second, an odd cycle means that there is a unique pair of two adjacent vertices z1, z2
with j = dG(x, z1) = dG(x, z2). Each of those vertices can be extended to a nonbacktracking
walk ending in a unique vertex of Sr(x) in (d - 2)(d - 1)r - j - 1 different ways. For any of the
d(d - 1)j - 1  - 2 other nonbacktracking walks of length j, there are (d - 1)r - j ways to extend
them to distance r, each corresponding to a unique vertex in Sr(x). In total we have | Sr(x)| =
d(d - 1)r - 1  - 2(d - 1)r - j - 1. Because j \geq 1, it follows that | Sr(x)| \geq d(d - 1)r - 1  - 2(d - 1)r - 2.

As there is at most one cycle which is either odd or even, we find the overall bound
| Sr(x)| \geq d(d - 1)r - 1  - 2(d - 1)r - 2. Because there are at most (d - 1)r - 1 vertices in Sr(x) at
distance r  - 1 from y, we are left with δ(r) \geq (d - 1)r  - 2(d - 1)r - 2. It is clearly the case that
δ(r) \leq (d - 1)r, so with high probability δ(r) = (1 + od(1)) (d - 1)r.

Now, we need to complete the proof by citing Theorem 2.11 with this bound for δ(r).
Observe that in the high probability case, for all 0 \leq i \leq r, δ(i)δ(r - i) = (1 + od(1))(d  - 1)r.
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The statement of Theorem 2.11 is that in that case,

λ2(G
(r)) \geq (1 - od(1))(r + 1)

\surd 
d
r
.(6.1)

The final result follows from the choice of r = ε log(n).

7. Powering weighted graphs. In this paper, we assumed that our original graph is
unweighted. It is a natural question to investigate how to generalize graph powering to
weighted graphs. We make here a few remarks.

To use our algorithms to recover communities on a weighted graph, we would first have to
consider what the weights mean. The simplest possibility would be that the degree of evidence
that an edge provides that its vertices are in the same community is proportional to its weight.
Assume for simplicity that the weights are positive and have this property. Powering would
need to assign weights to the edges it is adding based on the weights of the edges in the
path. To the degree that our goal in powering is to account for indirect evidence between
communities while avoiding doublecounting and feedback, we may want to set the weight of
the edge powering puts between two vertices equal to the weight of the strongest path between
them. Generally, the degree of evidence a path provides that the vertices on either end are in
the same community should be proportional to the product of the weights of its edges. As
such, we may consider a path as having a weight equal to the product of the weights of its
edges times some function of the path’s length. The obvious choice there would be a function
that is exponential in the length of the path. If it grows too slowly with length, we would
only assign significant weights to short paths, in which case powering the graph would have
little effect on it, and the problems that it was added to fix might prevent the algorithm from
working. If the function grows too quickly with length, then the algorithm would essentially
ignore short paths, which would be suboptimal, although it could still provide meaningful
reconstructions. We refer the reader to [3] for further discussions on this.
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[43] L. Stephan and L. Massoulié, Robustness of Spectral Methods for Community Detection, preprint,
https://arxiv.org/abs/1811.05808, 2018.

[44] P. D. Turney and P. Pantel, From frequency to meaning: Vector space models of semantics, J. Artificial
Intelligence Res., 37 (2010), pp. 141–188.

[45] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), pp. 395–416, https:
//doi.org/10.1007/s11222-007-9033-z.

[46] V. Vu, A simple SVD algorithm for finding hidden partitions, Combin. Probab. Comput., 27 (2018),
pp. 124–140.

[47] H. Weyl, Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen
(mit einer anwendung auf die theorie der hohlraumstrahlung), Math. Ann., 71 (1912), pp. 441–479.

[48] C.-L. Yao, G. Chen, and T.-D. Guo, Large deviations for the graph distance in supercritical continuum
percolation, J. Appl. Probab., 48 (2011), pp. 154–172.

D
o
w

n
lo

ad
ed

 0
8
/2

6
/2

0
 t

o
 9

8
.1

1
0
.4

3
.1

4
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h

t;
 s

ee
 h

tt
p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p


	Introduction
	Spectral data analysis and robustness
	Our benchmarks
	Graph powering

	Main results
	Overview
	Weak recovery in block models with hidden clusters
	Graph powering for SBM clustering
	Graph powering for GBM clustering and robustness to tangles
	Alon–Boppana for graph powering
	Derivation of graph powering as a clique-robust linearization of BP

	Comparisons of algorithms
	Proof of weak recovery on SBM
	Proof of Theorem 2.7
	Proof of Theorem 2.6

	Justification for weak recovery on GBM
	Proof of maximality of spectral gap on ER
	Powering weighted graphs

