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Abstract—The extraction of common and distinct biomedical
signatures among different populations allows for a more detailed
study of the group-specific as well as distinct information of
different populations. A number of subspace analysis algorithms
have been developed and successfully applied to data fusion,
however they are limited to joint analysis of only a couple of
datasets. Since subspace analysis is very promising for analysis
of multi-subject medical imaging data as well, we focus on this
problem and propose a new method based on independent vector
analysis (IVA) for common subspace extraction (IVA-CS) for
multi-subject data analysis. IVA-CS leverages the strength of
IVA in identification of a complete subspace structure across
multiple datasets along with an efficient solution that uses only
second-order statistics. We propose a subset analysis approach
within IVA-CS to mitigate issues in estimation in IVA due to
high dimensionality, both in terms of components estimated and
the number of datasets. We introduce a scheme to determine
a desirable size for the subset that is high enough to exploit
the dependence across datasets and is not affected by the high
dimensionality issue. We demonstrate the success of IVA-CS in
extracting complex subset structures and apply the method to
analysis of functional magnetic resonance imaging data from
179 subjects and show that it successfully identifies shared and
complementary brain patterns from patients with schizophrenia
(SZ) and healthy controls group. Two components with linked
resting-state networks are identified to be unique to the SZ group
providing evidence of functional dysconnectivity. IVA-CS also
identifies subgroups of SZs that show significant differences in
terms of their brain networks and clinical symptoms.

Index Terms—Independent vector analysis, subspace analysis,
multi-subject medical imaging data, functional magnetic reso-
nance imaging, heterogeneity of schizophrenia

I. INTRODUCTION

The study of neuroimaging data from patients and healthy
controls is prevalent in the neuroimaging field with a goal
to identify differences in the brain function of these two
groups ( [1]-[3]) and data-driven techniques based on matrix
decompositions are being increasingly used for the task ( [4],
[5]). Identification of common and distinct subspaces from
multiple datasets transforms the high dimensional datasets into
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lower dimensional joint and disjoint subspaces, and allows
for a more detailed analysis of the group-specific as well as
distinct information. In these models, the assumption is that
each observed dataset is explained by a sum of linearly mixed
latent variable models. The common subspace is defined as
a subset of latent variables that are highly correlated across
the given datasets. The distinct subspace is a subset of latent
variables that have very low correlation to each other. The
joint subspaces bring the datasets to a common ground, thus
allowing for a fair and reliable comparison among different
population groups. Meanwhile the distinct components can
be used to study individual differences such as the unique
connection pattern of a patient with mental disease.

Along with identifying a common subspace comprised of
components correlated across all subjects, the extraction of
common components across a subgroup of subjects is also
of interest. Clinical heterogeneity of patients with mental
disorders, especially in schizophrenia has been recognized (
[6]-[8]), and there has been significant interest in studying
their subtypes ( [9]-[11]). The study of subtypes can be
made possible by identifying subgroups of patients that share
specific common information and can help better understand
the uncertainty in the need of precision medicine ( [12]) during
clinical diagnosis and treatment. Subtypes of schizophrenia
have been well studied using genetic information ( [9], [11])
but not yet using other neuroimaging modalities such as
functional magnetic resonance imaging (fMRI) data, which
has been successfully used in the study of schizophrenia (
[10], [13], [14]). The common subspace analysis motivates us
to find a way to identify subgroups of patients with subtypes
of schizophrenia by summarizing their shared information.

Given the importance of common and distinct subspace
analysis in medical image analysis, a number of recent studies
had a focus on this aspect, in particular for fusion of different
modalities such as fMRI, structural MRI and electroencephalo-
graph, or of fMRI data from different tasks ( [15]-[22]).
However these cases have only been demonstrated for joint
decomposition of a small number of datasets. As we have dis-
cussed, distinct and common subspace analysis also promises
to be attractive for multi-subject analyses. The models used
for identification of common and distinct subspaces in fusion
study have not been well-studied in the context of the joint
analysis of more than a couple of datasets. Multi-subject data
analysis involves joint analysis of at least tens, or more typi-
cally hundreds of subjects. A recently proposed method Shared
and Subject-Specific Dictionary Learning (ShSSDL) ( [23])
targets multi-subject task fMRI analysis and identifies shared
components across subjects as well as subject-specific com-



ponents. However, ShSSDL assumes common time courses
across datasets and is not able to identify components that
are common across subgroups of subjects. Another ICA-based
algorithm, hierarchical ICA ( [24]), simultaneously estimates
the population-level and subject-specific sources. However, the
complexity of the density model used in hierarchical ICA
grows when the number of datasets increases and it does not
account for the dependence structure of these sources.

In this work, we propose a new method, which we call, in-
dependent vector analysis (IVA) for common subspace extrac-
tion (IVA-CS) to extract subspaces from large-scale datasets
and demonstrate its successful application to the analysis of
fMRI data collected from 179 subjects. IVA ( [25], [26])
has been successfully used for multi-subject medical imaging
data analysis such as fMRI data ( [27]-[29]) and has been
shown to effectively capture subject variability compared to
the group independent component analysis (ICA) approach (
[30], [31]). IVA extends ICA to multiple datasets and makes
effective use of the dependence across the datasets through
the definition of a source component vector (SCV), making
it an attractive choice for subspace analysis. Through the
selection of an effective density model for the SCV, with IVA,
one can model and estimate the statistical dependence across
datasets. Additionally, the strong identification condition of
IVA—i.e., the ability to uniquely identify the underlying latent
variables—enables the preservation of subspace structure even
using only second-order statistics (SOS) as we demonstrate
by simulation results in Section IV. IVA with multivariate
Gaussian distribution (IVA-G) ( [32]) is an IVA algorithm that
takes only SOS into consideration by assuming a multivariate
Gaussian distribution for each SCV and provides efficient
estimation with reliable convergence due to its desirable
analytical properties. We show that IVA-CS using IVA-G
(IVA-G-CS) is powerful in discovering the subspace structure
and estimating the subspaces through a careful study of the
correlation structure of SCVs.

Furthermore, IVA-CS helps mitigate the high dimensionality
issue of IVA and enables a reliable estimation of the latent
sources from multi-subject data. The curse of dimensionality
of IVA notes that the performance of IVA degrades with
increase in the number of sources, i.e., the IVA model order,
and datasets for a fixed number of samples ( [33]). Hence for a
high model order and relatively large number of datasets, IVA
requires a proportionally large number of data samples for
efficient estimation of the demixing matrices. However, the
number of samples is fixed in many real-world applications
such as fMRI data analysis since the resolution of the data is
predetermined. On the other hand, the dependent information
across datasets is not sufficient for IVA to exploit in the case
with a relatively small number of datasets. Thus, in order to
reliably estimate the sources with a given number of samples,
we need to determine the desirable number of datasets that is
high enough to exploit the dependence across datasets and is
not affected by issues regarding high dimensionality. For the
purpose of finding the optimal number of datasets to be used
in a single IVA decomposition, we estimate and fix the model
order for the data, and explore for the number of datasets,
i.e., number of subjects. We then divide the entire data into

subsets of subjects and perform IVA on each subset to identify
common subspace. This defines the first stage of IVA-CS,
subset analysis. The common components from each subset are
further compared to find the consistent common components
for all subjects as well as subgroups of subjects in a group,
which then defines the second stage of IVA-CS, i.e., common
subspace identification.

We study the ability of IVA to preserve the subspace
structure using simulated data and demonstrate that IVA iden-
tification condition enables successful recovery of the structure
of all subspaces using only SOS. We compare the results
to the commonly used multiset canonical correlation analysis
(MCCA) ( [34]) for joint data analysis that also uses SOS (
[35], [36]). Then, we apply IVA-CS to real fMRI data collected
from 88 patients with schizophrenia (SZ) and 91 healthy
controls (HC) and show that IVA-CS extracts interpretable
common components for the SZ and HC groups separately.
These common components are typical resting-state network
(RSN) components such as sensorimotor, frontoparietal and
default mode network, which are also found in previous studies
( [37], [38]). The results show that two components unique to
the SZ group include two different interesting RSNs. The first
one merges the motor cortex (precentral and postcentral gyrus)
and the auditory cortex (superior temporal gyrus) and the other
one merges the precuneus gyrus and the right frontoparietal
network. Analysis of the correlation matrices of group-specific
components helps us identify a number of subgroups of
patients that show significant difference in terms of spatial
activation of different brain networks such as cingulate gyrus,
secondary visual gyrus, primary somatosensory and motor cor-
tex, and inferior frontal gyrus. This provides neurobiological
support for the heterogeneity of schizophrenia. The subgroups
also demonstrate significant differences in clinical symptoms
that are measured by the positive and negative syndrome scale
(PANSS) scores ( [39]) and possess unique dominant and
absent symptoms. PANSS scores are analyzed synthetically,
rather than individually since the self-reported symptom scores
are, in general, subjective and noisy, and hence not effective in
terms of categorization of disease. These findings emphasize
the importance of interpreting subtypes of schizophrenia in
terms of both the neuroimaging data analysis and the clinically
diagnostic data.

The rest of the paper is organized as follows. Section II
presents the background of IVA. Section III introduces the
details of the subset analysis and common subspace identi-
fication of the proposed IVA-CS method. Section IV-A and
Section IV-B show the simulated results and the application
to real fMRI data analysis separately. Section VI summarizes
the work and points out future directions.

II. BACKGROUND
A. Independent Vector Analysis

In most real-world applications the observed data consists
of multiple datasets such as the fMRI data that is collected
from multiple subjects. Enabling an analysis of multiset data
to leverage its rich information especially across the datasets
is important. ICA is a data-driven blind source separation



technique that is designed for a single dataset with the
assumption that the observed data is a linear mixture of
latent (statistically) independent sources ( [40]). It has proven
powerful in recovering the independent brain networks from
fMRI data ( [41]-[43]). IVA extends ICA to the joint analysis
of multiple datasets by additionally taking into account the
dependence across datasets ( [25], [26], [41]).

Suppose there are K datasets collected from K subjects
each containing V' samples. IVA assumes that each dataset is
a linear mixture of /N independent sources,

x[k](v) = A[k]s[k](v), 1<k<K, 1<v<V, (D
where  X[¥] = [x[¥1(1),x[¥1(2), ... xF(V)] €
RN*V, glk] _ [s[k](l),s[k](Q), oo

sf(V)] € RN*V and AlFl ¢ RV*N denote the observed
dataset, the set of independent sources, and the invertible
mixing matrix respectively. A general model of IVA is shown
in Figure 1. In addition to the assumption of independence
among sources within a dataset, IVA makes effective use of
dependence across multiple datasets by defining an SCV as
$n(0) = [sh)(v), sit) (v), -+, sh ()T € REX1 1 <n < N,
by collecting corresponding components, where s[ I e rVx1
is the nth source from the kth dataset. ICA can be achieved
by minimizing the mutual information among the individual
latent sources. After extending to multiple datasets, an IVA
solution finds K demixing matrices by minimizing the mutual
information among the SCVs, which results in the following
cost function

K
- Z log|detW ¥l

k=1

N
CIVA(W) = Z H(y
n=1

N K
- Z E{logpn (Yn)} - Z 10g|detw[k] | (2)
n=1 k=1

such that the estimated sources of each dataset are obtained
as yHl(v) = WHxF () for k = 1,--- | K, where W =
(Wi Wbl ... 'WIKIY denotes the demixing matrices, y,,
denotes the estimated SCV, and #(-) denotes the (differential)
entropy. Minimization of (2) is equivalent to maximization
of likelihood through the general asymptotic equipartition
property ( [41])

N K

LaW) = log(pn(Yn)) + V'Y logldetW |, (3)
n=1 k=1

where Y,, = [yn(1),y.(2), - ,yn(V)], and p,(-) denotes

the multivariate probability distribution of n™ SCV. In both (2)
and (3) the term that is constant with respect to W associated
with the observed data X is ignored. For simplicity, in the
rest of the paper we consider the simpler independent and
identical distribution case and do not take sample dependence
into account.

B. Identification Condition for IVA

Identification condition of IVA is studied by analyzing the
Fisher information matrix of the objective function (3) with
respect to the demixing matrices VW ( [41], [44]). Compared
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Fig. 1: IVA model and an example of two unseparable a-SCVs

with the identification condition of ICA that is associated with
two individual sources, the identification condition of IVA
is introduced for two SCVs. It is shown that the identifica-
tion condition of IVA depends on the second-order statistics
(SOS) of subsets of sources in an SCV. If the SOS defined
through covariance matrices provide the required diversity
across SCVs, the SCVs are separable even when they are
multivariate Gaussian distributed since their SOS can be
accurately captured by any type of multivariate distribution
prior. We define an a-SCV as an SCV with a particular subset
of source components that are K,-dimensional multivariate
distributed and independent from the complementing subset
in the same SCV. Note that all sources are assumed to have
unit variance and zero mean for simplicity. Let a € N¥« be a
subset of source indices within an SCV, where 0 < K, < K.
The complementing subset of « in 1,2,--- , K is denoted
as a¢ € NE¥—Ka In two arbitrary a-SCVs, the subsets of
sources, S, o € RE«xV and Sm,a € RE«*V  cannot be
identified if and only if there exists a full rank diagonal matrix
D € REaxEa guch that

Rm,a = DRn,aDa (4)
where Ry,.o £ E{S, oS} .} € RFe*Re refers to the corre-
lation matrix of the subset of sources ( [44]). This suggests
that the correlation matrices of the subsets of sources in two
unseparable a-SCVs have the same structure but different
scaling. If an IVA algorithm only takes SOS into consideration,
any subset of sources within an SCV that possess this property
will not be separated into individual ones. An example of two
unseparable a-SCVs is shown in Figure 1. The change in
value of K, indicates that two SCVs can be unseparable either
in whole or in subsets of components. However, this is no
longer a problem when other types of diversity, such as higher
than second-order statistics (HOS) and sample dependence, of
the data are taken into consideration.

The most commonly used blind source separation algorithm
for multiple datasets is multiset canonical correlation analysis
(MCCA) ( [34], [35]) which is based on SOS only. Five cost
functions, i.e., GENVAR, MINVAR, MAXVAR, SUMVAR,
and SSQCOR, are introduced in ( [34]) for maximizing corre-
lation among linearly transformed multiple datasets, which in
IVA formulation are the SCVs. MCCA adopts a deflationary
approach to estimate one SCV at each time hence its cost
function is associated with the correlation matrix of a single
SCV. Since the correlation among the sources within each
SCV is maximized, the goal for each cost—mostly ad-hoc
in nature—is trying to make the correlation matrix as ill-
conditioned as possible. MCCA with GENVAR cost function
(MCCA-GENVAR) can be shown to have the same cost
function as IVA-G ( [32]) if the demixing matrices are assumed



to be orthogonal ( [41]). Both MCCA and IVA-G make use
of only the SOS of the data. The identification condition for
MCCA is given by pairwise correlation values

Yk, e {12, KL £ il 1< m<n< N, (5)

where r,[cng is the element of R,, ( [35]). Hence MCCA
cannot preserve the structure of SCVs. In contrast, IVA-G
has a more general identification condition given in (4) that
is synchronized for all SCVs, which enables one to discover
subspace structures as we demonstrate by simulation results
in Section IV-A.

C. IVA Algorithms

To maximize the likelihood, besides W, we need to estimate
the multivariate density function of SCV. The selection of
the multivariate distribution, p,,(y. ), determines whether SOS
and/or HOS of the data are taken into consideration. IVA-G
assumes that the sources in an SCV are multivariate Gaussian
distributed and only takes SOS into consideration ( [32]). This
assumption guarantees a positive definite Hessian matrix of the
cost at the global optimum hence providing a reliable estima-
tion by using second-order optimization techniques such as us-
ing Newton updates. IVA with multivariate Laplacian distribu-
tion (IVA-L) assumes each SCV is modeled by the multivariate
Laplacian distribution ( [25], [26]). The assumption is that
the correlation matrix of an SCV is identity thus taking only
HOS into consideration. IVA with multivariate generalized
Gaussian distribution (IVA-MGGD) on the other hand assumes
that an SCV is multivariate generalized Gaussian distributed
( [44]-[46]). IVA-MGGD calculates the whole correlation
matrix and estimates the shape parameter of the MGGD that
models each SCV, making it possible to take both SOS and
HOS into consideration. As a consequence, this algorithm
is computationally complex but provides good performance.
IVA-L with SOS (IVA-L-SOS) ( [33]) calculates the whole
correlation matrix of each SCV as in IVA-MGGD but fixes
the shape parameter to 0.5 to model a multivariate Laplacian
distribution which is a good match for fMRI sources. Hence it
takes both SOS and HOS into consideration and simplifies the
computational complexity compared with IVA-MGGD. Both
IVA-G and IVA-L-SOS have proven powerful in extracting
interpretable source components when applied to medical
imaging data analysis ( [16], [32], [33]).

III. TVA FOR SUBSPACE ANALYSIS

Common and distinct subspace analysis has proven useful
in identifying distinct biomedical signatures of different pop-
ulations in order to better understand the unique features of
different brain disorders. Most subspace analysis algorithms
introduced to date that have shown superior performance are
designed specially for fusion study where only a few datasets
are analyzed ( [15]-[20]). However, these models become
extraordinarily complex as the data size increases to tens or
even hundreds of datasets. Most medical imaging data like
fMRI data is collected from tens or hundreds of subjects and
a joint analysis of the multiset data enables one to leverage its
rich information especially across the datasets. This motivates

the exploration of an algorithm which can identify common
and distinct subspaces from relatively large-scale datasets.

We assume that the source space of the observed data
consists of three sets of SCVs. The first set of SCVs,
{Yer, = [y[cljl, ,y[ci,i]]T},l < n < Nc, define the
common subspace where the sources within each SCV are
highly correlated (across all datasets) and the third set of
SCVs, {Yp, = [ygjl,--- ,ygfl]]T},l < n < Np, consist
of low correlated sources (correlation values less than U?) as
shown in Figure 2(a). Another set of group-specific SCVs,
{Yon = [ygr]b, ,ygfb]]T},l < n < Ng, can be used
to determine subgroups of subjects that have more highly
correlated RSNs in an unsupervised manner. Therefore, the
observed dataset for the kth subject is a mixture of three types
of sources:

XK = Alkly (]
NN O RN L
= AMYH L Ay ¢ ARy
Y
= (AL AF AR (YD k=120 K0 ©
k
Yl
where Agc ], Ag }, and A][f ] are corresponding estimated mix-
; : (I ) I (I ¥
ing matrices of the common sources Y = [y, , Yol s
the sources Y = [yl ... ,ygc}VG]T that compose the
group-specific SCVs, and the distinct sources Y][)k ) = [y][fl]7
. »yg}vD]T’ respectively.

In this work, we propose a new method called IVA-CS
that is able to extract subspaces from at least couple of
hundreds of datasets. IVA-CS leverages the strength of IVA
that its identification condition enables successful preservation
of the SCV structure, which makes it highly effective for
subspace analysis. However, IVA suffers from the curse of
dimensionality when applied to real-world applications with
a high number, e.g., hundreds, of datasets such as in multi-
subject fMRI data analysis. In this scenario since the number
of samples (voxels) is fixed, as the number of datasets and the
number of sources increases, it does not guarantee an accurate
estimation of the demixing matrices VW and calculation of
SCV correlation matrices any more. Therefore, our IVA-
CS method is composed of two stages, (i) subset analysis
and (ii) common subspace identification. The subset analysis
stage overcomes the challenge of dimensionality issue by first
performing multiple individual IVA decompositions on subsets
of subjects that are randomly sampled from the population.
The exploration of subset size, K, will be introduced in
detail in Section IV-B2. The common subspace identification
stage determines a consistent common subspace for the whole
population as well as a set of the group-specific SCVs. The
details of IVA-CS method are given next.

A. IVA-CS: Subset Analysis

The flowchart of IVA-CS is shown in Figure 2(b). In subset
analysis, R subsets of K subjects are randomly selected from
all subjects of a group. IVA is performed on each subset
yielding N SCVs. We define the whole signal space as )
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Fig. 2: The definition of common subspace and other two sets of SCVs in signal space (a) and the subset analysis and common
subspace identification of IVA-CS (b). The number of SCVs in each of the three sets in (a) are denoted by N¢, Ng and Np

separately.

that includes all N estimated sources, where yli“ | denotes
the nth source of the kth dataset. For each subset, its signal
space is denoted as ),.,1 < r < R. Note that all source
components are normalized to have unit variance and zero
mean hence their covariance values and correlation values co-
incide. For each SCV we compute a K x K correlation matrix
with K x (K — 1)/2 distinct correlation values. Using these
correlation values, we can study how close these components
are to each other and determine whether the corresponding
source component is common across all the datasets or not.
For an SCV corresponding to the common component, we
expect that all the correlation values are significantly high.
We measure the “commonality” of an SCV by computing the
ratio of the number of correlation values that are greater than
atz, an empirically determined threshold, to the total number
of correlation values for each SCV as follows,

N,

7" (7)
K(K-1)/2

where N2 denotes the number of correlation values that are
greater than o7 in the correlation matrix of an SCV. An SCV
corresponding to a common component is expected to have
high commonality hence the value of ¢ is close to 1. Another

q:

relevant metric is “dissimilarity” which is defined as the ratio
of the number of low correlation values to the number of high
correlation values

K(K -1)/2— N,

q= N, : ®)

The dissimilarity, the value of ¢, for a common SCV is
expected to be close to 0.

For each subset r,» = 1,---, R, N SCVs are sorted
in descending order by the mean value of the correlation,
which roughly arranges the SCVs from those with high source
correlation to those with low source correlation. The number
of common SCVs in each subset, M,., is determined as the
largest number that allows for most of the first M, SCVs
having ¢ > §; and ¢ < J2. Here not all the M, SCVs are
required to satisfy the criteria, seeking to allow flexibility for
a further examination of the commonness of these components.
After determining the first subspace ), that is spanned by the
M, common SCVs for each subset, P percent of the remaining
SCVs that have a mix of both high and low correlation values
forms the second subspace ),;;. The other SCVs form the



third subspace ), y1, which is the distinct subspace.

B. IVA-CS: Common Subspace Identification

The second stage, common subspace identification has the
goal to find a consistent common subspace )¢ for all subjects
of a group. To enable a comprehensive comparison across R
subsets, we adjust the number of components in the subspace
V,1 to be common as M across all subsets. The M SCVs are
candidates for the common subspace identification. The value
of M is determined as the largest value of M,, seeking to
select as many candidates as possible. The mean component,
Ymrsm=1,---  M,r=1,---, R, is calculated by averaging
the K components in the mth SCV for each subset r. The
cross-correlation of each mean component is defined as the
average correlation with its corresponding components in the
other R — 1 subsets:

1
Pmr = ﬁ ; ‘pm'rl|a (9)

where ppr,1 < I < R,l # r is the Pearson correlation
coefficient between the mean components y,,, and y,,;. For
each subset, its cross-correlation is defined as the average
cross-correlation of its M mean components

Pr = % mer

The subset o with the most consistent components is selected
as the one with the largest cross-correlation p, and is used
to identify the common subspace for all the subjects. The
identified common components should be not only common
across the subjects within subset 7 but also consistent across
all subsets. To achieve this goal, we use a data-driven decision
tree to determine whether a component is common or not
as shown in Figure 2(b). A threshold ¢ is determined from
the M (R — 1) cross-correlation values. For each candidate,
if more than a given percentage of its cross-correlation values
are higher than ¢, it is determined to be a common component.
First, the determined common component comes from the first
subspace of subset 7y which means it is common across all
the subjects within subset ry. Second, this decision tree en-
sures that this component is correlated with its corresponding
components from most of all the subsets hence it is consistent
across subsets. The identified common subspace of all subjects
therefore consists of all the determined common components.
The components that are filtered out as not common are
merged with subspace )y to form a new set of SCVs to
identify subgroups of datasets that have more highly interfered
components through an unsupervised analysis.

(10)

C. Data and Code Availability

The data that supports the findings of this study is openly
available on the collaborative informatics and neuroimaging
suite (COINS) data exchange repository
(https://coins.trendscenter.org/). The codes used in this work
are available upon direct request from the corresponding
author. The data and code sharing adopted by the authors
comply with the requirements of the funding bodies.

IV. RESULTS AND DISCUSSION
A. Simulations

We use IVA-G with a block Newton update that provides
desirable convergence properties ( [32]), and in what follows,
demonstrate its effectiveness in subspace extraction.

1) Simulation Setup: To study the ability of IVA to maintain
the structure of SCVs to effectively identify the subspaces,
we design a set of simulations. Our application is fMRI
data analysis and the latent fMRI sources are likely to be
super-Gaussian distributed ( [47]). Therefore, all the SCVs
are generated from an MGGD with the shape parameter 3
randomly selected from the interval [0.1, 0.8], which generates
super-Gaussian marginals. The SCVs are mixed by randomly
generated mixing matrices, Al from a standard uniform
distribution to form the datasets using (1). A total of N = 30
SCVs are generated with V' = 10000 voxels and K = 20
datasets. Note that all the MGGD sources are normalized to
zero mean and unit variance hence the covariance values and
correlation (coefficients) coincide. These SCVs are grouped to
imitate three subspaces and the details are as follows:

e The first group of 14 SCVs are simulated as common
sources with high correlation value p.. The correlation
matrix of a common SCV is shown in Figure 3(a).

e The second group of 6 SCVs have structured correlation
matrices with some higher value of p. and some lower
value of pg. This indicates that the sources with higher
correlation values are common within a subgroup of
datasets. The structured correlation matrices are shown
in Figure 3(b)-(g).

e The last group of 10 SCVs are simulated as distinct
sources with low correlation value pq. Figure 3(h) shows
the correlation matrix of a distinct SCV.

Different cases are studied in the simulation with different
values of p. and p4: Case 1, p. = 0.9,p4 = 0.1, Case 2,
pe = 0.8,p4 = 0.2, Case 3, p. = 0.7, pq4 = 0.3, and Case 4,
pe =0.6,p4 = 0.4.

2) Simulation Results: Figure 3 shows the correlation
matrices of the true SCVs and the estimated SCVs for a
random run for Case 1. To demonstrate that IVA identification
condition enables preserving the structure of SCVs compared
to MCCA due to its identification condition, we perform
IVA-G and three versions of MCCA, i.e., MCCA-GENVAR,
MCCA with MAXVAR cost function (MCCA-MAXVAR),
and MCCA with SSQCOR cost function (MCCA-SSQCOR),
on the mixtures of sources, X. MCCA-MAXVAR and MCCA-
SSQCOR behave similar to MCCA-GENVAR and Figure 3
shows the results of IVA-G and MCCA-GENVAR. Both IVA-
G and MCCA-GENVAR successfully extract the common
subspace spanned by SCVs 1-14. But for the SCVs 15-20,
as we can see there are only a subset of components highly
correlated with each other. It is possible for some components
in one SCV to have a certain level of correlation with the
components in another SCV. MCCA-GENVAR estimates one
SCV by maximizing the correlation among the sources across
datasets. MCCA tends to group as many correlated sources as
possible in the SCVs that are estimated first, due to its defla-
tionary nature. Hence we observe some SCVs that are merged
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together, as shown in Figure 3(r)—(u), and that the SCV15
and SCV16 contain more correlated sources than SCV17 and
SCV18. This breaks the structure of true SCVs and makes it
impossible to identify the subgroups of sources within an SCV,
i.e., to identify subspaces. As a result, MCCA yields fewer
SCVs with structured correlation matrix and more distinct
SCVs compared with the ground truth. In contrast, IVA-G
successfully preserves the structure of all SCVs. Note that
these SCVs are estimated subject to permutation ambiguity
due to the nature of all blind source separation algorithms.
This illustrates the desirable use of IVA-G to extract subspaces
to identify subgroups.

3) IVA-G and IVA-L-SOS: lIdentification condition of IVA-
G implies that IVA-G is not able to separate a-SCVs that have
proportional correlation matrices no matter which distribution
the latent sources are drawn from. The unseparable sources can
be the whole SCVs or a subset of sources in the SCVs since
0 < K, < K. In our simulation SCVs 1-14 have the same
correlation matrix hence IVA-G identifies the whole subspace
successfully while not the individual SCVs. The same situation
for SCVs 21-30. As noted in Section II-B, an IVA algorithm
that takes both SOS and HOS into consideration like IVA-
L-SOS can solve this problem. We can either perform IVA-
L-SOS on the original datasets or perform a secondary IVA-
L-SOS decomposition on the subspace identified by IVA-G.
Reliably identifying subspaces of interest by IVA-G followed
by a secondary decomposition of an IVA algorithm that
takes both SOS and HOS (and hence is computationally
more complex) into consideration on the subspaces helps
save considerable computation time. This two-step procedure
guarantees better performance by first identifying a desirable
starting point. This strategy is favorable in the applications of
blind source separation and is the core in the common practice
of performing principal component analysis first to provide an
orthogonal initialization for an ICA decomposition.

The correlation between the estimates and the ground
truth is calculated to evaluate the performance. IVA-G yields
good estimation of SCV15-20 and their average correlation is
0.996 + 0.014 across all four cases. To explore the ability
of IVA-L-SOS to separate «-SCVs with proportional cor-
relation matrices, a secondary IVA-L-SOS decomposition is
performed on the common and distinct subspace separately.
The common and distinct subspaces are constructed separately
by multiplying the common and distinct SCVs from IVA-G
with their associated mixing matrices calculated as the inverse
of the estimated demixing matrices. Figure 4 shows that IVA-G
yields common components that are not highly correlated with
the ground truth. However, these components are very reliably



estimated by the secondary IVA-L-SOS with correlation values
close to 1. This verifies that the identification issue of IVA is
not a problem anymore when HOS is taken into consideration.

B. Application to Multi-subject Resting State fMRI Data

1) Data Acquisition and Preprocessing: The data used in
this study is a resting state fMRI data from the Center of
Biomedical Research Excellence (COBRE), which is available
on the collaborative informatics and neuroimaging suite data
exchange repository (https://coins.trendscenter.org/) ( [48]-
[50]). The data includes 88 SZs (average age: 37 £ 14) and
91 HCs (average age: 38+ 12). For this study, the participants
were asked to keep their eyes open during the entire scanning
period. All images were collected on a single 3-Tesla Siemens
Trio scanner with a 12-channel radio frequency coil using the
following parameters: TE = 29 ms, TR = 2 s, flip angle =
75°, slice thickness = 3.5 mm, slice gap = 1.05 mm, voxel
size 3.75 x 3.75 x 4.55 mm?®. Participants were instructed to
keep their eyes open during the scan and stare passively at a
central fixation cross. Each resting state scan consists of 150
volumes. To eliminate the T1-related signal fluctuations (T1
effect) ( [51]), the first 6 volumes are removed in this study,
thus 144 volumes remain for each subject. The fMRI data
are realigned with INRIalign algorithm ( [52]), slice-timing
correction is applied using the middle slice as the reference
frame in the functional data pipeline and spatially normalized
to the standard Montreal Neurologic Institute (MNI) space (
[53]) and resampled to 3 x 3 x 3 mm?, resulting in 53 X 63 x 46
voxels. Afterwards, the fMRI data are smoothed using a
Gaussian kernel with a full-width at half-maximum of 5 mm.

2) Parameter Selection: TVA procedure we employ does not
require the selection of any parameter except the model order,
i.e., the dimension of signal space N. However, for fMRI data,
classical order estimation techniques based on information the-
oretic criteria may overestimate the order due to the inherent
sample dependence of fMRI data ( [54], [55]). A common way
to overcome this issue is by using downsampling to obtain
effectively independent and identically distributed samples (
[54], [55]). However, methods based on downsampling suffer
from a loss of information associated with it. More recently,
two entropy rate (ER)-based order estimation techniques are
proposed that account for sample dependence without the use
of downsampling: ER using a finite memory length model
(ER-FM) and ER using an autoregressive model (ER-AR)
( [56]). Since the sample correlation structure in ER-FM is
a better match to that in fMRI data due to the finite span
of correlation in the point spread function, ER-FM is used
in this paper to estimate the order of signal space for each
subject. The final value of N is selected as the mean plus
one standard deviation of the orders computed across all the
subjects and is fixed for the IVA decompositions on R subsets.
The mean and standard deviation of the order across subjects
are 72.86 + 10.40. We use an order equal to the mean plus
one standard deviation, which is rounded up to 85 to retain
a significant level of the variability across multiple subjects
while introducing minimal noise. The use of this high model
order is also well motivated in the literature for achieving a
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Fig. 5: Plot of joint-ISI as a function of the number of subjects
when performing IVA-G on the hybrid data. The mean and
standard deviation calculated from the results of 20 runs are
shown.

more useful functional segmentation of the brain, see e.g., (
[37], [38]). The dimension of each dataset is reduced to 85 by
performing a principal component analysis.

To achieve a reliable IVA decomposition, we need sufficient
number of samples per estimated parameter so that IVA
can effectively take dataset dependence into account. The
performance of IVA degrades as the number of datasets, K,
or the number of sources, N, increases beyond a certain
point, when number of samples, V/, is fixed. The estimation of
the source covariance matrix that determines the multivariate
Gaussian distribution of each SCV is required in IVA-G for
each update of demixing matrices W, which in turn is used to
estimate the SCVs. The total number of samples in a dataset is
NV x K. The number of free parameters to be estimated in the
covariance matrix for each of K SCVs is =1 Hence the

number of samples per free parameter is % = ;—Yl,
< K(E-T)

which is inversely proportional to K. When ilpdating the
demixing matrices Wy, there are K N2 free parameters hence
the number of samples per free parameter is NI‘(/ Z\szK = %
which is inversely proportional to N. To explore the optimal
value of K that balances the effect of high dimensionality
and maximal subject information when the N is fixed—i.e.,
determined using a data-driven approach—we design a hybrid
simulation. The estimated 85 COBRE sources as presented in
our previous study ( [57]) are used as the sources and mixed
by the randomly generated mixing matrices to produce the
hybrid data. With a fixed model order and a fixed number
of voxels, the number of subjects K is changed from 30 to
80 with increments of 10. The performance is measured by
joint-IST which is defined as

K
1
1 gl ... gkl 2 L (k]
ISIne(G, GRL .. G )151( k§_1|G ) (11)
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where
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and G/l = W A%l with elements denoted as gy, ( [58]).
A¥l is the true mixing matrix and WI*! is the estimated
demixing matrix. If W is perfectly estimated, G is
identity subject to permutation and scaling ambiguities, thus
yielding zero ISI that indicates a perfect separation. Therefore,
the smaller the joint-ISI, the closer the estimates are to the
ground truth.

From Figure 5 we see that the performance of IVA-G
improves with increase in the number of datasets until a
certain value of K, after which the performance degrades. This
illustrates that when the number of datasets used in an IVA
decomposition is too small, the interaction information across
datasets is not sufficient for an accurate estimation of the
sources. Hence the performance improves with more number
of datasets. However, for a larger number of datasets, IVA suf-
fers from the curse of dimensionality. Thus, the performance
degrades. The experimental results show that there indeed
exists an optimal value of the number of datasets for an IVA
decomposition that balances the requirement of interaction
information and the dimensionality issue. The optimal number
of subjects in this application is determined as K = 50, where
IVA yields the best performance, i.e., the lowest joint-ISI as
shown in Figure 5. This value is then used as the subset size
in subset analysis of IVA-G-CS. We randomly selected five
subsets of subjects for each group to ensure that each subject is
included at least once in the decompositions. Note that in this
work the values of all dimension parameters are determined

in a data-driven manner.
3) Common Subspace Identification Using IVA-G-CS:

IVA-G-CS is applied to SZ group and HC group separately
to identify their subspaces. Five subsets of 50 subjects are
randomly selected for each group and 85 SCVs are estimated
from each subset. The value at each voxel of the estimated
source is transformed into Z-scores before any calculation
of metrics hence the covariance and correlation coincide.
For each SCV, there are 50 x (50 — 1)/2 = 1225 distinct
correlation values. The smoothed distribution of correlation
values is plotted as a function of the index of SCVs for
the fifth subset of SZs and the second subset of HCs as
shown in Figure 6. The similar plots of the other subsets are
provided as supplementary materials. The SCVs are sorted
by the mean value of correlation to roughly order them from
high correlation to low correlation. From Figure 6(a) we
can see there is a group of SCVs with all their correlation
values higher than 0.2. Using 07 = 0.2, the commonality ¢
and dissimilarity ¢ are calculated and plotted in yellow and
purple, respectively. In the application to this dataset, we
chose 4; = 0.98 and d5 = 0.02. More than 90% of the first
28 SCVs have ¢ > 0.98 and ¢ < 0.02 in the fifth subset of
SZs. This suggests that the first 28 SCVs are common across
the subjects in this subset. Finally, the numbers of common

SCVs M, for all five subsets of SZ group are determined as
23, 30, 33, 35, 28, respectively. For HC group, the numbers
are 31, 32, 28, 34, 34, respectively. The number of candidates,
M, in the subspace ), is determined as 35, which is the
largest one among the ten values. The 25th percentile of
the cross-correlation values of the M candidates is used as
threshold ¢ for the identification of common components.
Each identified common component is consistently estimated
in at least 80% of the subsets. Note that the values of af, 01,
and &y are selected such that the average correlation values
in the subspaces are as different as possible. Determining
the value of M as the largest one across multiple subsets
mitigates the sensitivity of the choice of parameters by
allowing more candidates available for common component
identification.

a) Artifact Removal: Using the common component
identification method presented in Section III-B, 25 and 24
common components are determined for SZ and HC groups
separately. Among the determined common components, some
of them have high ventricle effects and hence should be
removed from further analysis. We utilize the grey matter
(GM) and cerebrospinal fluid (CSF) MNI templates included
in SPM 12 to distinguish the components ( [59], [60]). The
correlation between the common components and the two
templates, Cgy and Ccsp, are calculated. Each component is
normalized to Z-score and thresholded by Z = 2 which means
that the voxels with Z < 2 are set to zero. The components
are divided into two groups with respect to the median value
of Cgm — Ccsr. The components in the first group are with
Com — Ccsr higher than the median hence they are more likely
to be RSNs and those in the second group are more likely to
be ventricle effects. To ensure all the RSNs are retained and
the ventricle effects are removed, we further do a visual check.
The grouping by the correlation reduces the burden of a visual
check. The median value of Coyv — Cesr is 0.18 for SZs and
0.22 for HCs. Finally, 14 common RSNs are obtained for SZs
and 16 for HCs after artifact removal. The average correlation
values of the 14 common RSNs of SZs is 0.66 +0.15 and that
of the 16 common RSNs of HCs is 0.68 £ 0.10.

The identified common components of each group are
typical RSN components like those found in previous studies
( [37], [38]). They are grouped into six domains, motor,
cognitive control (COG), default mode (DM), auditory
(AUD), visual (VIS) and cerebellum (CB), according to their
anatomical and presumed functional properties as in ( [38]).
Figure 7 shows the composite spatial maps for each cluster.
The results show that two common components of SZs
include two different interesting RSNs, the first one merges
the motor cortex (precentral and postcentral gyrus) and the
auditory cortex (superior temporal gyrus) and the other one
merges the precuneus gyrus and the right frontoparietal
network. The merging of two different RSNs into a single
source component does not occur in the HC group. This
observation suggests a high correlation between these RSN
pairs might result from decreases in connectivity in the brain
of individuals with schizophrenia ( [61]-[63]) hence more
networks are involved in its functioning.
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are used for a comparison of the three groups of SCVs.

4) Analysis of Group-specific SCVs: From the violin
plots in Figure 6, we can identify two more subspaces, Vi
and Vi (distinct subspace). The subspace )y has a mix of
both high and low correlation values and Yy has very low
correlation values. The value of P that is used to determine
the subspace ) is set as 40. Further analysis of these two
groups is of interest as well. The SCVs in subspace Yy
are called group-specific SCVs since they suggest that the
components from some subgroups of subjects have higher
correlation hence can be used to identify those subgroups.
As we know that the brain functions differently in patients of
schizophrenia compared with HCs. Using the group-specific
SCVs, we seek to identify subgroups of patients that have
RSNs with significant correlation which may result from
similar functional patterns. The results indeed show that

the subgroups identified using group-specific SCVs reflect
similarity within each subgroup and significant differences
across subgroups in terms of the spatial activation patterns
of their RSNs. We also conduct statistic test on their clinical
symptoms that are scored by PANSS and discover differences
with certain significance level.

From the distribution plots of correlation values shown in
Figure 6(a), the subspace )y is determined as that located
within two vertical red lines. Meanwhile, those SCVs that are
filtered out by common subspace identification are treated as
group-specific SCVs as well. Consequently, Ng = 30 group-
specific SCVs are identified for SZs. A k-means clustering
is performed on the correlation matrices of the group-specific
SCVs to find out clusters that have similar correlation matrices
to help identify source components that are common within
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the same subgroup of subjects. The mean correlation matrix
of a cluster is used to identify the subgroups of subjects. As
shown in Figure 8(c) and (d), the mean correlation matrix is
rearranged to assemble the subgroup modules by maximizing
the modularity of the matrix, which is called modularization.
Modularity is a measure that quantifies the community struc-
ture of a network that is summarized in a matrix ( [64]). As
shown in Figure 8(c), two clusters with higher modularity,
0.39 and 0.21, each yields three separate clear subgroups.
There is no significant difference associated with age among
the subgroups (p > 0.1541).

To compare the spatial activation patterns of the RSNs
across subgroups in each cluster, we perform a two-sample
t-test on the activation value at each voxel of the spatial map
across the subjects within each subgroup. False discovery rate
(FDR) correction is conducted throughout all comparisons
and the associated confidence interval after FDR correction
is reported. Cluster I includes three components and two of
them show significant differences in spatial activation patterns,
as shown in Figure 8(d). Subgroup 1 yields higher activation
in the posterior cingulate gyrus and Brodmann area (BA) 31,
and lower activation in the secondary visual cortex compared
with subgroups 2 and 3. Subgroup 2 has lower activation than
the other two subgroups in the anterior and posterior cingulate
gyrus. Cluster II includes five components and three of them
show significant differences in spatial activation patterns, as
shown in Figure 8(e). Subgroup 3 has lower activation in the

primary somatosensory and motor cortex, and higher activation
in the secondary visual cortex. Subgroup 2 has lower activation
in angular gyrus and higher activation in the inferior frontal
gyrus. A particular case is the very small area of activation in
BA30 that shows significant differences with 100% confidence
interval after FDR correction between subgroups 1 and 3.

A multivariate analysis of variance (MANOVA) is con-
ducted on five statistics—mean, standard deviation, median,
minimum, and maximum—of all the thirty PANSS scores (
[39]) including seven positive, seven negative, and sixteen
general scales. The MANOVA yields in F-score=3.978 (p =
6.816 x 10~°) that demonstrates significant differences across
the three subgroups in Cluster I (Cluster II was not significant).
Figure 9 summarizes the dominant and absent symptoms
of each subgroup. The dominant symptoms of a subgroup
refer to those that have median value greater than 2 or the
median value is 2 for one subgroup while is 1 (which means
absent) for the other two subgroups. In Cluster I, as shown
in Figure 9(b), subgroup 3 has more dominant symptoms,
subgroup 2 has more absent symptoms, and subgroup 1 has
obvious broader range for a number of symptoms such as
delusions, tension, lack of judgment and insight, and active
social avoidance. In Cluster II, as shown in Figure 9(d), all
three subgroups have several dominant symptoms. Subgroup
2 has more absent symptoms and subgroup 3 has broader
range for symptoms such as stereotyped thinking, anxiety,
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and tension. All subgroups possess their unique dominant and
absent symptoms. We also conduct a MANOVA on the symp-
toms present in all three subgroups. The MANOVA detects
significant differences among the subgroups in Cluster I with
F-score=4.1367 (p = 8.302 x 107%). In Cluster II, only the
standard deviation demonstrates significant differences among
subgroups with F-score=3.3846 (p = 0.0404).

V. DISCUSSION

Through the investigation of spatial activation patterns of
the networks across subgroups, we find several interesting net-
works that show significant subgroup differences. Most of the
networks such as the cingulate gyrus ( [65]), somatosensory
and motor cortex ( [66]), angular gyrus , inferior frontal gyrus
( [67]), and secondary visual cortex ( [68]) are reported to be
related to schizophrenia ( [69], [70]). One particular case is
the third component in Cluster II because the activated region
that shows significant differences between two subgroups is
very small yet very interesting. This network is BA30 which
does not have a specific name and only the function of its left

part, where the activation pattern shows significant subgroup
differences, is reported in ( [71], [72]). Its function is related to
attending to speech and listening to sentences. Hearing voices
is the most common type of hallucination—one of the typical
symptoms—in people with schizophrenia.

In addition to studying the differences across the identified
subgroups using the spatial maps of the networks extracted
from fMRI data, we also investigate the differences in terms of
their clinical data—PANSS scores. PANSS scores—1 means
absent and 7 means extreme—are medical scales used for
measuring symptom severity of patients with schizophrenia
( [39]). The self-reported symptom scores are, in general,
subjective and noisy, and hence not effective in terms of
categorization of disease. Focusing the analysis on individual
PANSS scores is not sufficient to describe the subgroups. By
investigating the PANSS scores via a MANOVA, we find sig-
nificant differences across the subgroups and identify unique
dominant and absent symptoms for each subgroup. The high
significance level provides more confidence in the identified
subgroups in Cluster I. Extracting reliable information of the
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subgroups of schizophrenia from both the neuroimaging data
and clinically diagnostic data can potentially lead to a better
understanding of the underlying heterogeneity of the disorder
and in the future may lead to improved categorization and
treatment strategies.

Along with the model order and the number of datasets to
be used in a single IVA decomposition, which are determined
in a data-driven manner, there are other parameters in the
proposed procedure that are practically determined. However,
these parameters are easy to determine and can be categorized
into two classes. The first class includes the thresholds, the
correlation threshold ¢ and 7. These can vary across different
datasets but are easy to determine. For the value of ¢ the sug-
gestion is to use a simple statistic, such as the 25th percentile
used in this work, of all the correlation values. Two examples
of the correlation structure analysis are shown in Figure 6,
where we clearly see the three distinguishable subspaces. This
demonstrates the strength of IVA-CS to identify subspaces.
Hence in cases where there are distinguishable subspaces
the threshold o? needed for further division is also easy to
determine. Thresholding method might not be effective in
cases where the subspaces are not clearly delineated. A better
choice of the division of subspaces in these scenarios can
be achieved by using additional meaningful prior information
such as sparsity that is used in ( [73]). However, in most
cases, the groups are heterogeneous and we would expect
to see such subspace clusters. The other class of parameters
includes parameters such as, 80% of the subsets, d1, d2, and the
percentage of group-specified components, P. These are ratios
that are practically determined to be large or small enough to

avoid missing useful information or including unreliable, noisy
information. Their determination depends on users’ choice.
Small changes in these ratios are not expected to change
the conclusions. Furthermore, the parameters included in the
second stage and post analysis do not influence the use of
IVA-CS for subspace analysis in other applications since the
proposed flexible framework allows researchers to design their
own way of extracting information from the subspaces. Hence
the parameters can be either accordingly reserved for easy
selection or fully omitted due to the design of experiment.

VI. CONCLUSION AND FUTURE DIRECTIONS

Given the importance of common and distinct subspace
analysis in medical imaging data analysis, a number of recent
studies had a focus on this aspect, in particular for fusion of
different modalities or tasks where only a couple of datasets
are jointly analyzed. However, joint analysis of large-scale
medical imaging data such as multi-subject fMRI data col-
lected from tens, or typically hundreds of subjects enables one
to leverage the rich information across the datasets. Here, we
introduced a new method called IVA-CS to extract subspaces
from at least a hundred of datasets by leveraging the strength
of IVA in identification through successful preservation of the
complete SCV structure. This allows for efficient identifica-
tion and estimation of subspaces by carefully studying the
dependence structure of SCVs. IVA-CS also mitigates the high
dimensionality issue of IVA by introducing subset analysis to
determine a desirable number of datasets that is high enough
to exploit the dependence across datasets and is not affected
by issues regarding high dimensionality. The simulation study



verifies the ability of IVA to preserve subspace structure and
its application to real fMRI data demonstrates its effectiveness.
The identified common components with two linked networks
provide evidence of the functional dysconnectivity in the brain
of SZs. A subspace of group-specific SCVs is identified by
IVA-CS for the SZ group as well. The subgroups of SZ
recognized using the group-specific SCVs exhibit significant
differences in terms of their brain networks as well as their
clinical symptoms that are measured by PANSS. These find-
ings emphasize the importance of interpreting subtypes of
schizophrenia in terms of both the neuroimaging data analysis
and the clinically diagnostic data. A better understanding of
the underlying heterogeneity of the disorder in the future may
lead to improved categorization and treatment strategies.
IVA-CS successfully identifies subspaces for the COBRE
dataset where we demonstrated its robustness through a subset
analysis. It will be desirable to apply IVA-CS to different
datasets to provide further evidence that the proposed frame-
work is useful. Other interesting future directions include
the use of common components estimated by IVA-CS. They
represent the global information of the population of a group
hence allowing for the identification of more reliable and
robust brain patterns of the patients with mental disorder. In
the application to the analysis of fMRI data that is collected
from at least a hundred of subjects, we demonstrate that IVA-
G—an IVA algorithm that uses only SOS—reliably extracts
interpretable common RSNs that are consistent with previous
work. In this work, we use subset analysis to mitigate the high
dimensionality issue. As discussed in [33], another way to deal
with the high dimensionality issue of IVA is to use constrained
IVA ( [74])—a semi-blind source separation technique—to
shrink the solution space. The common components from IVA-
G-CS hence can be used as constraints to mitigate the high
dimensionality issue and to guide the analysis with an IVA
algorithm that uses both SOS and HOS. One other possible
future application is the dynamics study of brain function using
fMRI data, where each dataset is further divided into multiple
datasets thus resulting in hundreds even thousands of datasets.
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