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A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains

a strong quasistatic azimuthal magnetic field. The laser field efficiently accelerates electrons in such a field that

confines the transverse motion and deflects the electrons in the forward direction. Its advantage is a threshold

rather than resonant behavior, accelerating electrons to high energies for sufficiently strong laser-driven currents.

We study the electron dynamics via a test-electron model, specifically deriving the corresponding critical current

density. We confirm the model’s predictions by numerical simulations, indicating energy gains two orders of

magnitude higher than achievable without the magnetic field.
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I. INTRODUCTION

Recent advancements in high-power laser technology [1,2]

have paved the way for multidisciplinary applications by

enabling compact plasma-based sources of energetic particles

(electrons [3], ions [4–6], positrons [7–10], and neutrons

[11]) and radiation [12,13]. The energy transfer from the

laser pulse to the plasma electrons is critically important for

these applications, since energetic electrons are required to

drive secondary particle and radiation sources. The applica-

tions that prioritize the monoenergetic feature of the electron

spectrum tend to rely on the laser-wakefield acceleration

[14–16], whereas the applications that prioritize the electron

charge tend to rely on the direct laser acceleration regime

[17,18]. The latter include bright, short-pulsed gamma-ray

sources [19–31] that are necessary for advanced nuclear and

radiological detection systems [32,33].

The essence of the direct laser acceleration is the energy

transfer from the laser electric field directly to the electrons.

This can take place in a dense plasma without stringent den-

sity limitations [34,35], which allows the laser to accelerate

a large electron population. The regime can even be used to

accelerate electrons in optically opaque plasmas if the laser is

sufficiently intense to induce relativistic transparency [36,37].

Typically, the electrons accelerated by the laser beam are

pulled into the beam from the surrounding plasma, so they

acquire an initially transverse momentum, pi, prior to the ac-

celeration. The presence of this momentum can severely limit

the electron energy gain. For example, if the initial momentum

is relativistic, pi � mec, then the energy gain of an electron in
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a plane electromagnetic wave with the normalized amplitude

a0 � pi/mec is inversely proportional to pi [38]:

ε0 = γ0mec2 ≈
a2

0

2

mec

pi

mec2, (1)

where me is the electron mass, c is the speed of light, and

γ0 ≈
a2

0

2

mec

pi

. (2)

The normalized amplitude for a wave with intensity I0 and

wavelength λ0 is a0 ≈ 0.85I0[1018 W/cm2]1/2λ0[μm]. The

observed suppression, γ0 ∝ 1/pi, is due to the electron de-

phasing from the laser pulse [39].

Significant research has been dedicated to mitigating the

negative impact of the dephasing in order to increase the

electron energy gain [38,40–44]. The quasistatic electric fields

caused by charge separation have been shown to alter the

dephasing, which leads to an enhanced energy exchange

between the electrons and the laser [45]. However, the mech-

anisms that involve the quasistatic plasma electric field imply

that the corresponding force on the electrons is much stronger

than the force generated by plasma magnetic fields.

In this paper, we consider a regime where plasma magnetic

rather than electric field determines the dynamics of laser-

accelerated electrons. This regime is naturally realized in

laser-plasma interactions with a characteristic ion response

time, 1/ωpi, shorter or comparable to the duration of the

laser pulse. The ions then have sufficient time to move and

reduce the electric field, negating its impact. The regime

with a dominant magnetic field can come into play as we

either increase the laser pulse duration or increase the plasma

density. An example of the latter would be the experiments
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at ultrahigh laser intensities with solid density targets that

become transparent as a result of the interaction. These ex-

periments are projected to take place at the next generation

laser facilities, such as ELI [46], Apollon [47], and XCELS

[48], where the necessary intensities will become accessible.

Our goal is to find the conditions for effective electron

acceleration by an intense laser pulse in the presence of a

laser-driven quasistatic magnetic field. The magnetic field

in this configuration is azimuthal. Intense laser beams drive

longitudinal electron currents through the plasma, inducing

such fields [49–53]. In contrast to the electric fields, azimuthal

magnetic fields are robust with respect to the ion motion and

can be sustained at ultrahigh intensities over the laser pulse

duration.

We show that direct laser acceleration of electrons assisted

by a strong plasma magnetic field can lead to a significant

energy gain, provided that the plasma current density is

sufficiently high. Using a test-electron model, we find that

the corresponding critical current density scales linearly with

a0. The effect is confirmed using two- and three-dimensional

particle-in-cell simulations (2D and 3D PIC) with detailed

electron tracking. The advantage of the considered regime

is that it can be employed to generate large numbers of

high-energy electrons in an overdense plasma irradiated by an

ultraintense laser. Such dense energetic bunches are the key to

driving bright gamma-ray sources [26,54,55].

The rest of the paper consists of four sections. In Sec. II,

we present a 3D particle-in-cell (PIC) simulation where a

high-intensity laser pulse propagating through a dense plasma

generates a strong quasistatic azimuthlal magnetic field. In

Sec. III, we develop a test-electron model that elucidates the

mechanism of direct laser acceleration of electrons assisted

by the azimuthal magnetic field. In Sec. IV, we compare

the results of the test-particle model with the results of PIC

simulations, confirming that the model of Sec. III captures

the key features of the electron dynamics. In Sec. V, we

summarize our results.

II. LASER-DRIVEN MAGNETIC FIELD

In this section, we use fully relativistic kinetic three-

dimensional (3D) PIC simulations to demonstrate that a high

intensity laser pulse propagating through a dense plasma

establishes a quasistatic configuration with a dominant az-

imuthal magnetic field.

The key aspect of the regime of interest is the propagation

of a high-intensity laser pulse through a classically overdense

plasma. In the case of a linear electromagnetic wave propa-

gating through a cold plasma there exists an electron density

cutoff, ne = nc, where nc only depends on the wave frequency.

However, the cutoff density can be increased if the electron

motion in the plasma becomes relativistic. In the case of a

high-intensity laser pulse, the relativistic motion is induced

by the laser field itself. As a result, the cutoff frequency

becomes dependent on the laser amplitude, so that a plasma

with ne � a0nc is very transparent to the laser pulse even if

the plasma is classically overdense (ne � nc) [56]. This effect

is often referred to as the relativistically induced transparency.

The relativistically induced transparency removes an up-

per limit on the electron density and opens up a possibility

of driving strong currents and strong magnetic fields by a

propagating laser beam. Indeed, the electron current density

in a classically transparent plasma is limited by j ≈ |e|nev <

|e|ncc, where v is the directed electron velocity and e is the

electron charge. The limiting factor is the electron density

if the laser is able to accelerate electrons to ultrarelativistic

velocities. By increasing the laser amplitude a0 (to achieve

the transparency) and the plasma density, one can potentially

achieve current densities approximately given by

j ≈
ne

nc

0.05

(λ0[μm])2
MA/μm2, (3)

where

λ0 ≡ 2πc/ω0 (4)

is the vacuum wavelength of the laser (ω0 is the laser fre-

quency) and

nc =
meπc2

λ2
0e2

≈
1.1 × 1021 cm−3

(λ0[μm])2
(5)

is the corresponding critical density.

It has been confirmed using simulations that an intense

laser beam indeed generates and sustains a strong azimuthal

magnetic field [49,50,57] by driving a strong longitudinal cur-

rent while propagating through a plasma. Additional studies

have revealed that the laser propagation can become unstable

in a dense relativistically transparent target [58], which makes

the direction of the laser beam propagation unpredictable. The

instability negatively impacts the performance of secondary

sources that rely on the laser propagation, e.g., generation of

gamma-ray beams [26].

One way to suppress the instability while retaining the

advantages of laser propagation through a dense plasma is to

use structured targets that provide optical guiding to the laser

pulse. Here we consider the design where the target consists of

a cylindrical channel that is filled with a material that becomes

more transparent than the bulk to the laser pulse. The channel

effectively serves as an optical waveguide to the laser pulse

that is focused at the channel entrance. Structured targets with

an initially empty channel have already been used experimen-

tally to achieve greater control over laser interactions with

solid-density targets [59–61]. Advanced target manufacturing

facilities are also able to produce solid targets of variable

density using the in situ polymerization technique [62]. The

pore and thread structures are submicron, so a relatively

homogeneous plasma with ne > 0.9nc has been achieved in

experiments with high-intensity lasers [35]. It is challenging

but feasible to manufacture targets with prefilled channels that

we consider in our simulations [63], with the effort being

justified by the improved control over laser propagation.

Figure 1 presents results of a 3D PIC simulation that

illustrates three main features: laser propagation via relativis-

tically induced transparency, generation of a strong longi-

tudinal current, and the ability of the plasma to sustain an

extreme volumetric quasistatic magnetic field. The simulation

is performed using PIC code EPOCH [64]. The setup of the

simulation is detailed in the Appendix.

The laser propagation through the classically overdense

plasma in the channel is seen in Fig. 1(a). The peak laser
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FIG. 1. 3D PIC simulation of a structured target irradiated by a high-intensity laser pulse with a0 = 50. The plots are cross sections in the

(x, y) plane for z = 0 at t = 160 fs and at t = −20 fs. (a) Ey plotted on top of the electron density ne, with the color saturated for ne > 20nc.

(b) Electron density ne, with color saturated for ne > 6nc. (c) Time-averaged current density jx . (d) Cell-averaged relativistic γ factor γav . (e),

(f) Time-averaged magnetic and electric fields, with the overline denoting time averaging over four laser periods. t = 0 fs is the time when the

laser reaches its peak intensity in the focal plane at x = 0 μm.

intensity in the absence of the target corresponds to a0 = 50.

Such a strong laser electric field energizes target electrons

and increases the characteristic γ factor, shown in Fig. 1(d)

as a cell-averaged quantity γav . This changes the optical

properties of the material by increasing the effective critical

density to approximately γavnc. For our set of target and

laser parameters, the channel becomes very transparent, while

the bulk of the target remains opaque, creating an optical

waveguide for the laser beam. As a result, the laser pulse

maintains a relatively high amplitude over tens of microns,

which is significantly longer than the Rayleigh range for this

beam. The target structure suppresses the hosing instability

that would develop in a uniform target [58]. Simulations for

a uniform target with ne = 1.5nc confirm that the laser pulse

experiences a significant deviation from its original direction

after propagating just tens of microns into the target.

As shown in Fig. 1(c), the channel sustains a strong laser-

driven electron current density. The transverse laser electric

field continuously reinjects electrons from the channel walls

and keeps the channel filled with electrons for hundreds of

femtoseconds, as seen in Fig. 1(b). The density in the channel

remains well above ne = nc, as evident from the position

of the corresponding contour line in Fig. 1(a) that remains

effectively unchanged. The overline indicates time averaging

over four laser periods. The longitudinal electron current ex-

ceeds the nonrelativistic Alfvén current [65], JA = mec3/|e| ≈
17 kA, by two orders of magnitude. The current density

driven by the laser remains mostly uncompensated, because

the return current is localized at the periphery of the laser

beam [66,67]. In our case, most of the return current flows

at the edge of the channel. Figure 8(a) shows the total electron

current, J0, obtained by integrating the longitudinal electron

current density jx over the area with r < 2.5 μm. This current

exceeds J0 ≈ 100JA ≈ 1.7 MA. It must be pointed out that the

current limit for a beam of relativistic electrons is γ JA [68,69],

where γ is the relativistic factor associated with the directed

motion. In our simulation, there are electrons with γ > 100

[see Fig. 1(d)] needed to satisfy the criterion J0 < γ JA.

Consistent with our expectations, the longitudinal electron

current generates and sustains a strong quasistatic azimuthal

magnetic field [see Fig. 1(e)]. The color in Fig. 1(e) represents

Bz in the (x, y) plane at z = 0, where the overline again

stands for time averaging. The field strength is consistent

with a magnetostatic calculation that assumes a cylindrically

symmetric and uniform current density, j0, represented by a

dimensionless parameter

α ≡
λ2

0

r2

J0

JA

=
πλ2

0 j0

JA

, (6)

such that

B ≈ 2α
r

λ0

mec2

|e|λ0

, (7)

where λ0 is the vacuum wavelength of the laser. Note that

B is independent of λ0 which is simply used to make α

dimensionless. It is convenient to rewrite Eq. (7) as

B [kT] ≈ 3.4αr [μm]λ−2
0 [μm]. (8)

As already stated, the total current through a cross section

with r � 2.5 μm is J0 ≈ 1.7 MA. We then find from Eq. (6)
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that α ≈ 16, where we set λ0 = 1 μm. Equation (8) yields

B ≈ 0.14 MT at r = 2.5 μm, which is comparable to the

result of the 3D simulation.

The laser beam also generates a transverse quasistatic

electric field whose profile is shown in Fig. 1(f). The color

is the amplitude normalized the same way as the amplitude of

the azimuthal magnetic field. We arrive at an important con-

clusion, by comparing Figs. 1(e) and 1(f), that the quasistatic

electric field is weak compared to the magentic field. The

discussed electron injection into the channel prevents the laser

beam from maintaining significant charge separation, which

weakens the transverse electric field. At the same time, this

is the mechanism that maintains the strong current and the

resulting azimuthal magnetic field.

The configuration where the quasistatic azimuthal mag-

netic field is much stronger than the quasistatic transverse

electric field is rather generic at high laser intensities, i.e.,

a0 � 1. The ion mobility provides an additional mechanism

preventing a prolonged existence of strong transverse electric

fields. For example, we found that the described configuration

arises even in an initially empty channel [70]. The charge of

the injected electrons creates a radially inward electric field

that drags ions from the channel walls, causing the channel

interior to fill up. The characteristic time for this process

scales as a
−1/2
0 [70]. It would take less than 50 fs for the

channel to fill up and for the transverse electric field to be

essentially eliminated for our laser parameters and an initially

empty channel.

III. MECHANISM FOR ENHANCED ENERGY GAIN

In Sec. II, we showed that a laser pulse creates a quasistatic

field configuration with a dominant azimuthal magnetic field.

In what follows, we formulate a test-electron model that

enables us to find the conditions for an enhanced electron

energy gain from the laser pulse.

The presented simulation results demonstrate that (1) a

strong current with J0 � JA can be driven by the laser,

(2) the current density is nearly constant inside the channel,

and (3) radial plasma electric fields are much weaker than the

azimuthal magnetic field sustained by the current. This moti-

vates us to consider a homogeneous current J0 characterized

by the dimensionless parameter α defined by Eq. (6). In order

to further simplify our analysis, we approximate the laser

pulse by a plane electromagnetic wave with a superliminal

phase velocity vph. The superluminal phase velocity is an

input parameter that accounts for the presence of the plasma

in the channel. It can also be used to take into account the

width of the laser beam in the simulation even though we

approximate it as a plane wave. Under these assumptions,

the laser-driven electron acceleration in the channel can be

considered as the dynamics of a test electron with a given

initial transverse momentum pi inside a prescribed combina-

tion of a plane electromagnetic wave and a static azimuthal

magnetic field generated by a homogeneous current J0. This

test-electron model is illustrated in Fig. 2.

We neglect the radiation reaction [71–80] and QED effects

[81–86], so that the electron dynamics is described by the

FIG. 2. Schematic diagram, where the laser propagation along x

defines the forward sliding direction. The laser E field is polarized

along the y axis. An electron trajectory is schematically shown with

an oscillating curve.

following equations:

d p

dt
= −|e|E −

|e|
γ mec

[p × B], (9)

dr

dt
=

c

γ

p

mec
, (10)

where the electric and magnetic fields (E and B) are given.

Here γ =
√

1 + p2/m2
ec2 is the relativistic γ factor, r and p

are the electron position and momentum, and t is the time.

In the regime under consideration, E = Ewave is just the laser

electric field, whereas B = Bwave + Bchannel is a superposition

of the magnetic fields of the wave and the channel.

Without any loss of generality, we consider a linearly

polarized wave propagating in the positive direction along the

x axis with

Ewave = eyE0 cos(ξ ), (11)

Bwave = ez

c

vph

E0 cos(ξ ), (12)

where E0 is the wave amplitude and

ξ = ω0t − ω0x/vph (13)

is the phase variable. Note that the normalized wave ampli-

tude is given by a0 = |e|E0/mecω. The magnetic field of the

channel is given by

Bchannel =
mec2

|e|
∇ × achannel, (14)

where

achannel = exα(y2 + z2)/λ2
0. (15)

It can be directly verified using the equations of motion that

there exists a constant of motion:

γ −
vph

c

px

mec
+

vph

c
achannel = C1. (16)

We are going to consider a relativistic electron that is starting

its motion on axis while moving in transverse direction. We

specifically set

py = −pi, (17)

pz = 0 (18)
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FIG. 3. Three representative electron trajectories in (x, y) space

[panel (a)] and (ξ, y) space [panel (b)]. The azimuthal magnetic

field corresponds to α = 1, defined by Eq. (6). The initial values of

the transverse momentum are pi/mec = 7, 25, and 50. The dotted

lines show the corresponding location of the magnetic boundary

denoted as r1,2,3
MB , respectively. The color along each trajectory shows

the relativistic γ factor. The key laser parameters are a0 = 50 and

vph = c.

at ξ = 0 to mimic the electron injection observed in kinetic

simulations [26]. The constant of motion for this electron is

its initial γ factor γi:

C1 = γi ≡
√

1 + p2
i /m2

ec2. (19)

One can use Eqs. (16) and (19) to show that the am-

plitude of transverse electron displacements in the channel

r ≡
√

y2 + z2 is limited by

r � rMB ≡
λ0√
αu

[γi + (u − 1)γ ]1/2, (20)

where we introduced

u ≡ vph/c (21)

for compactness. In what follows, we refer to rMB as the

magnetic boundary. Figure 3 shows the location of the mag-

netic boundary for three different values of pi at a0 = 50 and

u = vph/c = 1.

The magnetic field of the channel causes each of the

electrons to return to the axis after initially traveling outwards

to the magnetic boundary. The electrons then cross the axis

and move upward in the domain with y > 0. The trajectory at

y > 0 has a similar pattern, with the electrons sliding in the

positive direction along the x axis in the channel magnetic

field that has an opposite sign. We start our analysis by

focusing on the electron trajectories at y � 0, i.e., a single half

bounce across the channel shown in Fig. 3.

A. Half bounce across the channel

One common feature of all half bounce trajectories is that

they have a turning point (see Fig. 3). We mark all quantities

at the turning point with a subscript ∗. By definition of the

turning point, we have py = 0 (no transverse momentum)

and |y∗| = max |y|. It has been shown in Ref. [87] that the

value of the longitudinal momentum at the turning point has

a profound impact on the electron energy exchange with the

laser field.

Electron energy gain from the laser pulse is closely con-

nected to the dephasing,

R ≡
γ

ω0

dξ

dt
= γ −

c

vph

px

mec
, (22)

that determines how quickly the electron slips with respect

to the wave fronts in an instantaneous rest frame. We have

R = 1 for an electron that is initially at rest. It is instructive to

consider three limiting cases at vph = c to illustrate the impact

of the electron momentum on the dephasing: (1) py � mec

and px = 0; (2) px < 0, |px| � mec, and py = 0; (3) px > 0,

|px| � mec, and py = 0. It follows from Eq. (22) that R �
1 in the first two cases. In contrast to that, R � 1 in the

third cases correspond to an ultrarelativistic electron moving

in the same direction as the laser pulse. Rapid changes in

phase associated with strong dephasing prevent electrons with

pi/mec = 25 and 50 in Fig. 3 from gaining significant energy

during their motion away from the axis.

The electron motion away from the axis reduces the de-

phasing. This can be easily shown for vph = c. It follows from

Eq. (16) that R = γi − achannel = γi − αy2/λ2
0. This relation

shows that the dephasing decreases with the increase of |y|.
We conclude that R reaches its smallest value, R = R∗, at the

turning point, y = y∗. Since the electron has no transverse

momentum at the turning point, the value of R∗ is exclusively

determined by the longitudinal momentum px at y = y∗. If

px at the turning point is positive and relativistic, then the

dephasing rate can drop well below R = 1. However, the

dephasing remains strong if px is negative.

One of the key results of Ref. [87] is that the value of

R∗ determines the energy exchange between the electron and

the laser electric field during the electron return to the axis

of the channel. The energy gain from the laser increases

considerably along this part of the trajectory if R∗ � 1. The

electron trajectories shown in Fig. 3 are in good agreement

with this result. For pi/mec = 50, we have R∗ ≈ 4 × 10−3 and

the electron experiences an enhanced energy gain, returning

to the axis with γ ≈ 654. For pi/mec = 25, we have R∗ ≈ 11

and the electron energy remains essentially the same. We find
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FIG. 4. Scan over transverse initial momentum pi for a laser-

irradiated electron in an azimuthal magnetic field corresponding to

α = 1 [see Eq. (6)]. (a) Electron dephasing at the turning point.

(b) Laser phase at the turning point. The color in (a) and (b) is the

relativistic γ factor. The laser parameters are a0 = 50 and vph = c.

The circles show boundaries of regions with different values of full

oscillations N by the laser field witnessed by the electron during its

motion from the axis to the turning point.

that max(γ ) ≈ 128 both along the trajectory prior to reaching

the turning point and during the return to the axis.

In order to find a correlation between pi and the energy

gain, we have performed a parameter scan shown in Fig. 4.

Figure 4(a) shows the dephasing R∗ at the turning point. The

color is the maximum relativistic γ factor along the entire

trajectory. The figure confirms that the energy increase is

connected to R∗. Figure 4(b) shows the phase of the laser field

at the turning point. The electron typically reaches its turning

point in a negative field. This leads to the discontinuities

marked with circles. Each discontinuity corresponds to an

increase of

N =
1

2π
[ξ∗ − (ξ∗ mod 2π )] (23)

by one, where N is the number of full oscillations by the laser

field witnessed by the electron during its motion from the axis

to the turning point. In Fig. 4(a), the numbers next to each

segment of the curve indicate the corresponding value of N .

FIG. 5. Parameter scan over the initial transverse momentum pi

and normalized current density α defined by Eq. (6). The color is the

maximum γ factor reached by the electron with the corresponding

pi over a single half-bounce across the channel. The dotted curves

separate the regions with different values of N [see Eq. (23)], where

N is the number of full oscillations by the laser field witnessed by

the electron during its motion from the axis to the turning point. The

scan result has been verified for a0 = 10, 15, 25, 50, and 75 with

vph = c.

In the presented scan, the electrons achieve R∗ � 1 and

subsequently increase their energy in two cases: (1) at low

values of pi corresponding to N = 0 and (2) at large values

of pi that exceed a0mec. Intermediate values of pi result in

no substantial energy gain. The scan suggests that we can

increase the range of pi corresponding to the energy increase

by adjusting the current density sustaining the magnetic field.

By increasing α, we can reduce the time that the electron

travels to the turning point, so a higher value of pi is needed

to achieve N = 1. This observation is confirmed by the scan

over pi and α shown in Fig. 5. For example, at α = 6, most of

the initial transverse momenta between mec and 70mec lead

to a significant energy enhancement over the considered half

bounce.

B. Similarity of solutions with different a0

We have so far examined electron acceleration over the

first half bounce across the channel for a0 = 50. We have

repeated the scan over pi and α for a0 = 10, 15, 25, and 75.

The results look indistinguishable from the scan shown in

Fig. 5. Therefore, there is a similarity between solutions with

different a0. Specifically, we find that the value of max(γ )/a0

remains the same for the same values of pi/a0mec and α/a0.

This is true for a scan at higher values of α shown in Fig. 7(a).

The observed similarity enables us to formulate a universal

condition on the current density that ensures an energy in-

crease for a wide range of pi. We define a critical value of α,

denoted as αDLA, by the condition 10α/a0 = 1, which yields

αDLA = a0/10. (24)

As seen in Fig. 5, all of the regions defined by a corresponding

value of N have a significant energy increase for α > αDLA.
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It follows from Eq. (6) that the corresponding critical

current density is

jDLA =
a0

10

JA

πλ2
0

. (25)

It is convenient to reformulate this condition in terms of the

electron density in the plasma. The maximum current density

that a plasma with a given electron density ne can sustain

is je = |e|nec. Using this expression in Eq. (25) for jDLA,

we obtain the lowest electron density that can sustain the

described critical current density:

ne = nDLA ≡ a0nc/10π2 ≈ 10−2a0nc. (26)

The key conclusion is that ne has to exceed nDLA in order to

have favorable conditions for the electron energy increase.

The determined similarity applies not only to max(γ ), but

also to the distance that the electron travels to reach this γ .

Figure 7(c) shows x/λ0 at the location where the electron

reaches max(γ ). We find that the scans for a0 = 10, 15, 25,

50, and 75 are indistinguishable when plotting x/λ0 at max(γ )

for the same values of pi/a0mec and α/a0. An important

finding is that the distance remains independent of a0. We can

formulate this result by stating that, at α = αDLA, the energy

gain over a single half-bounce increases linearly with a0 for a

given pi/a0mec, while the required longitudinal displacement

remains the same.

C. Multiple bounces across the channel

After completing the first half bounce and returning to the

axis, the electron performs a similar motion pattern at y > 0,

i.e., another half bounce. We find that the energy gain can

continue during the second half bounce for the electron that

experiences an energy increase during the first half bounce.

This is because the dephasing on axis is reduced due to

the increase in the longitudinal momentum, as evident from

Fig. 3.

Those electrons that experience no energy increase during

the first half bounce can still undergo an energy gain during

subsequent bounces due to differences in the laser phase and

the electron momentum during the axis crossing. In order

to explore this scenario, we have performed another scan

where the electrons are tracked over two full bounces across

the channel. The result shown in Fig. 6(a) confirms that the

conditions required for the energy increase can indeed be

achieved over multiple bounces even if the first half bounce

shows no energy increase.

The effect of multiple bounces becomes evident when

examining regions in the (pi, α) space defined by a given

N , which is the number of full laser field oscillations to

the turning point during the first half bounce. These regions

are shown in Fig. 6(a) using the dotted curves that match

those shown in Fig. 5. We observe that the areas with the

increased energy expand within each region. However, each

region remains well defined by a visible reduction in max(γ )

at its boundary. This feature is responsible for the low energy

at 10α/a0 = 0.2 in the regions with N = 1, 2, and 3 even after

two full bounces.

The electrons travel along the axis of the channel while

performing the transverse bounces. The traveled distance

FIG. 6. Parameter scan over the initial transverse momentum pi

and normalized current density α defined by Eq. (6). (a) Maximum

γ factor reached by an electron over two full bounces across the

channel. (b) The location where the electron reaches its maximum

γ . The dotted curves are the same as in Fig. 5 to aid the comparison.

The laser parameters are a0 = 50 and vph = c.

increases with each bounce, so it might be impractical to

rely on having many bounces to achieve a significant energy

gain. As shown in Fig. 6(b), even two bounces can require

a longitudinal displacement exceeding 100λ0. We thus limit

our consideration to just two bounces across the channel. One

important observation that follows from Fig. 6(b) is that the

longitudinal travel distance decreases with the increase of α.

The underlying reason is that an electron with the same pi

samples a stronger magnetic field at higher α, which reduces

the radius of curvature of the electron trajectory and makes

the distance associated with each half bounce shorter [88].

The energy gain becomes more effective with the increase

of α. Figure 7(a) shows a scan for 1 � 10α/a0 � 4, where

the electron is tracked over the first half bounce. At such a

high current density, the electron at most experiences two full

oscillations of the laser pulse for pi < a0mec. Most of the pa-

rameter space shown in the plots corresponds to considerable

energy gain, which agrees with the conclusion at the end of

Sec. III A. This energy gain is achieved over a relatively short

distance, as evident from Fig. 7(c). This is another advantage

of having a high current density, i.e., large α.
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FIG. 7. Two scans over the initial transverse momentum pi and normalized current density α: (a) and (c) are for one half bounce; (b) and

(d) are for two bounces. Panels (a) and (b) are the maximum γ achieved by an electron. Panels (c) and (d) are the corresponding location. The

dotted curves in (a) and (c) separate the regions with different values of N [see Eq. (23)], where N is the number of full oscillations by the

laser field witnessed by the electron during its motion from the axis to the turning point. The dotted curves in (b) and (d) are the same as in

(a) and (c) to aid the comparison between the two scans. The laser parameters are a0 = 50 and vph = c. Panels (a) and (c) also represent scans

for a0 = 10, 15, 25, and 75 with vph = c.

The energy gain for this range of α also increases over

multiple bounces across the channel. The result of a scan for

two bounces is shown in Fig. 7(b). The typical maximum γ is

only slightly reduced compared to the scan shown in Fig. 6(a)

(0.2 � 10α/a0 � 1.2). However, the distance traveled by the

electron to reach the maximum γ is reduced considerably

[compare Figs. 7(d) and 6(b)]. For example, at a0 = 50, an

electron with pi = 40mec reaches max(γ ) ≈ 1800 already at

x ≈ 51λ0 in a magnetic field corresponding to α = 15.

Based on the presented scans, we conclude that a strong

static azimuthal magnetic field can facilitate a rapid energy

transfer from the laser pulse to an accelerated electron via

transverse deflections.

IV. ENERGY GAIN IN PIC SIMULATIONS

It is shown in Sec. III using a test-electron model that

a strong azimuthal magnetic field sustained by a uniform

longitudinal current density can assist direct laser acceleration

of electrons. In what follows, we examine results of PIC

simulations and compare them to the predictions of the model

from Sec. III.

We start by revisiting the 3D simulation discussed in

Sec. II. In this simulation, an intense laser beam creates a

magnetic field configuration similar to that used in the test-

electron model. The current J0 obtained by integrating the

longitudinal current density over a cylinder whose radius is

2.5 μm is shown in Fig. 8(a). According to Eq. (6), α = 15

corresponds to |J0| ≈ 94JA. We can then use this value of

α to make a comparison with the scans performed for the

test-electron model.

In the simulation, the peak laser amplitude (without the

target) is a0 = 50. It follows from Eq. (24) that αDLA = 5 for

this a0. The value of α = 15 that we observe in the simulation

exceeds αDLA, so we should expect a significant energy gain

for most of the electrons injected into the channel, i.e., max(γ )

between 1000 and 2000 based on Fig. 7(b). The distance

that the electron would need to travel along the channel to

reach these values of γ is roughly 60λ0 [see Fig. 7(d)]. We

use Eq. (20) to estimate that the magnetic boundary for the

electrons with pi � 94mec is located inside the considered

cylinder with radius of 2.5 μm. For simplicity, we neglect

the boundary widening due to the superluminosity by setting

u = 1 in Eq. (20). The aspect of widening is addressed later
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FIG. 8. Results of a 3D PIC simulation: (a) laser driven current,

(b) electron energy spectra, and (c) angular and (d) spatial distri-

butions of energetic electrons. The total current J0 is the integral

of jx over an area with r < 2.5 μm at t = 160 fs. Panel (c) shows

the electron energy dIe associated with a solid angle in momentum

space (a detailed description is given in the text). Panel (d) shows the

electron energy density we.

in this section once the phase velocity is determined from the

simulations.

Figure 8 shows three snapshots of the electron energy

spectrum in the considered 3D PIC simulation. In good agree-

ment with the test-electron model, the electron energies are

increasing over time. Here t = 0 fs is the time when the laser

reaches its peak intensity in the focal plane located at the

channel entrance. The cutoff energy reaches 800 MeV at t =
240 fs, which corresponds to γ ≈ 1570. This value is within

the range predicted by the test-electron model. A snapshot

of the electron energy density we at t = 240 fs is shown in

Fig. 8(d). Most of the energetic electrons are concentrated

between 55 and 70 μm. This scale again agrees with the

prediction of the test-electron model (most of the electrons

are injected near the channel opening). The important point

here is that an extended propagation distance is not required

to achieve γ ≈ 1500.

One of the assumptions in our model is that the electron

trajectory remains flat. The 3D simulation allows us to exam-

ine and confirm the validity of this assumption. Figure 8(c)

represents an angular distribution of energetic electrons in

momentum space (px, py, pz ), where φ = arctan(pz/py) is

the azimuthal angle and θ = arctan [(p2
y + p2

z )
1/2

/px] is the

polar angle. In order to aid the visualization, we have plotted

dIe/d�, where dIe is the electron energy associated with

a solid angle d� = sin θ dθ dφ in momentum space. The

momentum of an electron oscillating in the (x, y) plane at

z = 0 is shown with a white dotted line. For all three snapshots

in Fig. 8(c), most of the energy is concentrated near this line.

These snapshots correspond to the energy spectra shown in

Fig. 8(b). We can thus conclude that the laser-accelerated

electrons indeed tend to move along flat trajectories.

The localization of energetic electrons in the (x, y) plane

is further confirmed by the snapshot of the electron energy

density we shown in Fig. 8(d). It is worth emphasizing that

this is the polarization plane of the laser electric field. The

transverse displacement of the energetic electrons in this

plane is constrained to |y| < 2 μm, which is smaller than

the channel radius, R = 3.2 μm. This confirms the transverse

electron confinement by the azimuthal magnetic field in the

region with a nearly uniform current density.

In order to obtain further details regarding the electron

acceleration process, we perform particle tracking. Frequent

data outputs for the electric field components, electron mo-

menta, and electron locations are required. We achieve the

desired time resolution by tracking the electrons in a 2D

simulation with a setup similar to that used for the 3D

simulation. The setup of the simulation is detailed in the

Appendix. The 3D simulation has confirmed that the energetic

electrons roughly stay in the (x, y) plane. That is why the 2D

simulation with a laser electric field polarized in the plane of

the simulation is a qualitatively reasonable approximation in

terms of capturing the key physics, while it is also affordable

in terms of postprocessing.

We have analyzed 5% of the electrons that are randomly

picked from the tail of the electron energy distribution (εe >

650 MeV) at t = 200 fs and we have found that the energy

enhancement process and the electron trajectories have key

similarities to the regime described by the test-electron model.

For example, trajectories of 20 tracked electrons are shown

in Fig. 9(f). The dotted black lines mark the boundary of

the bulk material. We find that the electrons are injected into

the channel from its periphery close to the channel entrance.

The electrons are being clearly confined in the transverse

direction by the azimuthal magnetic field as they move along

the channel and gain energy (the color indicates their γ

factor). Indeed, their transverse displacement, |y| < 1.6 μm,

is significantly less than the transverse size of the channel,

|y| < 3.2 μm.

The details of the acceleration process are shown in

Figs. 9(a)–9(e) for a single electron from the tracked pop-

ulation. It is evident from the time evolution of the work

done by transverse and longitudinal electric fields [Wy and

Wx in Fig. 9(a)] that the electron energy is predominantly

contributed by the transverse laser electric field Ey. Electron

oscillations with respect to this field are shown in Fig. 9(c),

where the background color is the instantaneous electric field

Ey exerted on the electron. The azimuthal magnetic field

changes the orientation of the transverse electron velocity and

allows the velocity to remain antiparallel to Ey over extended

segments of the electron trajectory (marked using the green

outline). The electron gains energy while moving along these

segments, as shown in Fig. 9(b) where the plotted quantity

is dWy/dt = −(py/γ )Ey. In agreement with our model, the

electron energy is accumulated over multiple oscillations in

the laser pulse. The trajectory of the considered electron in

momentum space is shown in Fig. 9(e).

Figure 9(d) shows the electron trajectory relative to the

wave fronts of the laser pulse in a window moving along the

axis of the channel with the speed of light. Specifically, we

define the coordinate in the moving window as � = x − ct ,

whereas the background color is Ey(y = 0), which is the
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FIG. 9. Particle tracking from the 2D PIC simulation. (a) Work by transverse and longitudinal electric fields. (b) The rate of the energy

transfer by Ey to the accelerated electron. (c) Transverse oscillations with respect to the wave fronts of Ey. (d) Electron trajectory in a window

moving with the speed of light. The background color is Ey at y = 0 and the vertical coordinate is � = x − ct . (e) Electron trajectory in the

momentum space (px, py ). (f) Trajectories for 20 electrons whose energy exceeds 650 MeV at t = 200 fs. Note that the thick part of the curves

in panels (a)–(d) (highlighted with green) indicates the part of the trajectory where the electron is gaining energy from Ey.

transverse laser electric field at the central axis. The moving

window makes it easy to distinguish between superluminal

and subluminal velocities. As one would expect, the wave

fronts have a positive slope, representing a superluminal phase

velocity vph. We find that vph − c ≈ 6.6 × 10−3c. This result

quantifies the impact of the relativistically induced trans-

parency on the laser propagation through the channel whose

electron density is above nc. The trajectory of the accelerated

electron has a negative slope because the accelerated electron

is moving slower than the speed of light. We find that c − vx ≈
1.2 × 10−2c. In this case, the dephasing between the electron

and the wave fronts is primarily influenced by vx rather than

by vph, since c − vx > vph − c [39]. One can then simplify

the analysis of the electron dynamics by setting vph ≈ c, as

is done in the parameter scans presented in Sec. III. Ad-

ditional parameter scans with u − 1 = (vph − c)/c ≈ 6.6 ×
10−3 yield results that are similar to those shown in Fig. 7,

which further supports the presented argument.

To conclude this section, we use the obtained phase ve-

locity to assess the electron trajectory widening during the

observed energy increase. According to the expression for

the location of the magnetic boundary given by Eq. (20), the

trajectory widening becomes appreciable only after (u − 1)γ

becomes comparable to γi. Taking into account that the ob-

served cutoff is at γ ≈ 1500 [see Fig. 8(b)], we conclude that

the trajectory widening is relatively unimportant for γi > 10.

At γi � 10, the widening must be considered, but the electron

energy gain is greatly suppressed [e.g., see Fig. 7(b)]. More-

over, even if an electron with γi = 10 manages to achieve

γ ≈ 1500, the location of the magnetic boundary would only

increase from 0.82 μm to 1.15 μm. The conclusions of our

analysis strongly depend on the radius of the channel and on

the level of the relativistically induced transparency. Both of

these aspects influence the value of u − 1 and their impact on

the electron dynamics must be checked for a given setup.

V. SUMMARY

We have identified and characterized a mechanism of direct

laser acceleration assisted by a strong laser-driven azimuthal

magnetic field. We have demonstrated using kinetic simula-

tions of a laser-irradiated structured target with a relativisti-

cally transparent channel that (1) a strong current with J0 �
JA can be driven by the laser, (2) the current density is nearly

constant inside the channel, and (3) radial plasma electric

fields are much weaker than the azimuthal magnetic field sus-

tained by the current. We used these observations to formulate

a test-electron model. The key result of the model is a signifi-

cant energy increase over a relatively short displacement along

the laser propagation. We found a similarity between solutions

with different a0: the value of max(γ )/a0 remains the same

for the same values of pi/a0mec and α/a0. The observed

similarity enabled us to formulate a universal condition on

the current density that ensures an energy increase for a wide

range of initial momenta:

jDLA =
a0

10

JA

πλ2
0

. (27)

The lowest electron density that can sustain the described

critical current density is

ne = nDLA ≡ a0nc/10π2 ≈ 10−2a0nc. (28)
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The key conclusion is that ne has to exceed nDLA in order to

have favorable conditions for the electron energy increase. We

have confirmed the key features of the model using 3D and 2D

PIC simulations.

One advantage of the described regime is that it relies on

laser interaction with a large number of electrons. The elec-

tron density in the channel is 1.5nc in the presented 3D PIC

simulation. As a result, the considered 160 fs laser pulse can

generate 2.2 nC of electrons whose energies exceed 400 MeV.

This indicates that the electron acceleration assisted by the

plasma magnetic field mechanism can facilitate gamma-ray

emission [19–21,23,24,26,27,29,89].

Another important distinction of the discussed acceleration

regime is that it requires a relatively short propagation

distance by the electrons along the axis of the channel. For

example, at the critical current density jDLA, the energy gain

over a single half-bounce across the channel increases linearly

with a0 for a given pi/a0mec, while the required longitudinal

displacement remarkably remains the same. This trend can

be advantageous when implementing this regime at the next

generation laser facilities, such as ELI [46], Apollon [47], and

XCELS [48], that are expected to achieve unprecedented laser

intensities [86]. Furthermore, the radiation reaction that will

become important at these intensities can be beneficial in the

considered setup even though it is an energy loss mechanism

[90].
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APPENDIX: PARTICLE-IN-CELL SIMULATION SETUP

All of the simulations in the paper were performed using

PIC code EPOCH [64]. In our 3D PIC simulation, a laser

pulse irradiates a uniform target with a prefilled cylindri-

cal channel. The central axis of the laser pulse is aligned

with the central axis of the channel that is also the x axis

of the Cartesian system of coordinates used in our simu-

lation [see Fig. 1(a)]. The laser pulse is incident from the

left and it is focused at the channel entrance located at

x = 0 μm.

In the absence of the target, the laser pulse has a Gaussian

focal spot of 4.7 μm (full width at half maximum for the

laser intensity), with a peak intensity of 3.4 × 1021 W/cm2

and a normalized laser amplitude of a0 ≈ 50. It is linearly

polarized with a wavelength of λ0 = 1 μm. The laser electric

field in the focal plane is directed along the y axis, while the

magnetic field is directed along the z axis. The time profile of

the electric field at x = y = z = 0 μm is |Ey| = E0 cos(πt/τ )

for |t | < τ/2 and it is |Ey| = 0 for |t | > τ/2, where E0 is the

maximum field amplitude, τ = 160 fs is the pulse duration,

and t = 0 fs is the time when the laser reaches its peak

intensity in the focal plane. We choose this time profile in

order to make our 3D simulation computationally affordable.

The important physics takes place inside the laser pulse, so

the laser pulse duration is more important in the context of

our problem than the rise time.

The target is initialized as fully ionized carbon, which is a

good approximation for plastic targets. The electron density

in the bulk is set at ne = 25nc, where nc is the critical density

that determines the electron density cutoff for linear electro-

magnetic waves with λ0 = 1 μm. The target has a cylindrical

channel with radius R = 3.2 μm. The initial electron density

inside the channel is set at ne = 1.5nc, so that it is opaque at

laser amplitudes below 1018 W/cm2. We represent electrons

by 20 macroparticles per cell, while the ions are represented

by 10 macroparticles per cell. No ionization takes place during

our simulation, which significantly reduces computational

costs. This approach is justified by performing additional

simulations with field ionization. These simulations show that

the leading edge of the considered laser pulse can fully ionize

carbon well before the intensity reaches its peak value.

In order to achieve a significant electron energy gain in

our simulation, we use a target that is 75 μm long. The

electrons are accelerated as they move forward with the laser

pulse, which is the reason why an extended target is required.

The size of our simulation domain in the (x, y, z) space is

80 μm × 24 μm × 24 μm and the cell size is (1/20) μm ×
(1/15) μm × (1/15) μm.

A well-resolved particle tracking procedure requires fre-

quent outputs of particle data and electric field components.

We achieve this by performing a 2D simulation with a setup

similar to that used in 3D. In the (x, y) space, the domain

has the same size, but the cell size is smaller [(1/50) μm ×
(1/30) μm]. We use 40 macroparticles per cell for the elec-

trons and 20 macroparticles per cell for ions. To track the

electron dynamics, we output the simulation data ten times per

laser period. The electrons are tracked over 400 fs. We have

repeated the 2D simulation after doubling the spatial resolu-

tion. The energetic part of the resulting electron spectrum has

remained unchanged, which confirms that our results are not

sensitive to the resolution used for electron tracking.
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