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Adaptive constrained independent vector analysis:
An effective solution for analysis of large-scale

medical imaging data
Suchita Bhinge, Qunfang Long, Vince D. Calhoun, and Tülay Adalı

Abstract—There is a growing need for flexible methods for
the analysis of large-scale functional magnetic resonance imag-
ing (fMRI) data for the estimation of global signatures that
summarize the population while preserving individual-specific
traits. Independent vector analysis (IVA) is a data-driven method
that jointly estimates global spatio-temporal patterns from multi-
subject fMRI data, and effectively preserves subject variability.
However, as we show, IVA performance is negatively affected
when the number of datasets and components increases especially
when there is low component correlation across the datasets.
We study the problem and its relationship with respect to
correlation across the datasets, and propose an effective method
for addressing the issue by incorporating reference information
of the estimation patterns into the formulation, as a guidance
in high dimensional scenarios. Constrained IVA (cIVA) provides
an efficient framework for incorporating references, however its
performance depends on a user-defined constraint parameter,
which enforces the association between the reference signals and
estimation patterns to a fixed level. We propose adaptive cIVA
(acIVA) that tunes the constraint parameter to allow flexible
associations between the references and estimation patterns,
and enables incorporating multiple reference signals, without
enforcing inaccurate conditions. Our results indicate that acIVA
can reliably estimate high-dimensional multivariate sources from
large-scale simulated datasets, when compared with standard
IVA. It also successfully extracts meaningful functional networks
from a large-scale fMRI dataset for which standard IVA did not
converge. The method also efficiently captures subject-specific
information, which is demonstrated through observed gender
differences in spectral power, higher spectral power in males
at low frequencies and in females at high frequencies, within the
motor, attention, visual and default mode networks.

Index Terms—Blind source separation, fMRI analysis, high
dimensional, semi-blind

I. INTRODUCTION

NEUROIMAGING analysis has allowed for the identifica-
tion of distinguishing characteristics of the human brain

including gender [1], age [1], [2], addiction, and different
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brain disorders [3], [4], [5], [6], [7]. There is an increasing
availability of data which provides additional power to help
identify global signatures for a given population and patterns
specific to each individual, group, condition, or modality [8].
With the increasing availability of data, there is a growing
need of flexible methods that efficiently capture the global
patterns while still preserving the subject-specific information
from the large-scale datasets. Common approaches for fMRI
analysis involve extraction of per subject features summarizing
the overall temporal activity as in [9], [10], transformation of
high-dimensional datasets to a lower dimensional feature space
such as in group independent component analysis (GICA) [11],
[12], multisubject dictionary learning [13], tensor decompo-
sitions [14], or using prior information such as regions-of-
interest (ROI) or a task paradigm in a regression type analysis
to analyze a single subject at a time. Some methods adopt a
divide-and-conquer approach that divide the high dimensional
problem into a series of smaller dimensional problems and
combines the results [15], [16]. Although these approaches
have successfully identified relevant biomarkers, they may not
take advantage of all available information, are sensitive to
ROI selection and do not exploit the complementary informa-
tion across multiple subjects.

Independent component analysis (ICA) is a popular data-
driven approach used to extract subject-specific time courses
and spatial maps under the assumption of statistical inde-
pendence, however it is limited to the analysis of a single
dataset. GICA jointly analyzes the data from multiple subjects
and estimates a common, global representation of the func-
tional networks across subjects, however it might be limited
in preserving subject variability. Independent vector analysis
(IVA) is an extension of ICA to multiple datasets that jointly
decomposes the multisubject data into subject-specific time
courses and spatial maps. It has been shown in various studies
that IVA is better in capturing the subject variability [17],
[18], [19] compared with GICA and provides automatic source
alignment across subjects by exploiting the source dependence
across datasets. It presents a wide range of algorithms de-
pending on the assumption of the latent multivariate source
distribution and provides general identification conditions that
allow for flexibility in the estimation of the underlying sources
[19].

Although IVA provides a general framework for the analysis
of multi-subject fMRI data, its performance depends on a
number of factors such as number of samples [20], number of
datasets [21], number of sources, and the level of correlation
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between the marginals of the multivariate sources. In this
paper, we first study how these factors affect the performance
of IVA through simulations, and in particular, highlight an
important point that has not been addressed before, the role
of the level of correlation across the datasets, and discuss
the strengths and weaknesses of IVA in detail. We analyze
the effect of number of datasets and the level of correlation
between the marginals of the multivariate sources on standard
IVA through simulations, and show that the performance of
IVA is largely affected when the sources have low to moderate
levels of correlation when dimensionality increases. We link
those to efficiency considerations in maximum likelihood esti-
mation. In the analysis of fMRI data, the multivariate sources
corresponding to spatial components that are typically super-
Gaussian distributed [22] commonly exhibit low to moderate
correlation across subjects, see supplementary material-S1. We
identify this as a main concern for the limited nature of the
adoption of IVA for the analysis of large-scale fMRI data,
which has been unfortunate given its particular strengths for
preserving subject variability.

Due to the increasing availability of large-scale fMRI
datasets, the need for a method that can effectively estimate
meaningful global functional networks, and simultaneously
capture the individual-specific traits from those, is highly
desirable. This is also one of the key steps that will enable
precision medicine that needs to fully account for individual
variability. In this work, we introduce an effective method for
addressing the high dimensionality issue of IVA by incorporat-
ing reference information of the functional networks into the
IVA framework, as a guidance in high-dimensional scenarios.
Constrained IVA is an effective method that incorporates prior
information regarding the sources or the columns of the mixing
matrix into the IVA cost function [23], [24]. It relaxes the inde-
pendence assumption by enabling a desirable balance between
data-driven and model driven methods, and provides a model
match through the use of accurate constraints. However, cIVA
makes use of a user-defined constraint parameter that controls
the degree of correspondence between reference signal and the
estimated component. The successful performance of cIVA
depends on the selection of prior information and the user-
defined constraint parameter, i.e., when the prior information
is incorrect a lower constraint parameter must be used such
that the prior information is not enforced on the decomposition
[21], [23]. On the other hand, when the prior information
is correct, a higher constraint parameter must be used such
that the components are deterred from effect of noise and
artifacts. However, in most practical applications, the selection
of a constraint parameter becomes difficult since it is unknown
whether the prior information is accurate, and becomes more
complicated when prior information regarding multiple signals
need to be incorporated.

We propose the adaptive cIVA (acIVA) method that adap-
tively controls the association between the reference signal
and estimation patterns, and enables efficient incorporation
of multiple reference signals into the IVA framework. The
acIVA technique ensures that the prior information is used
to guide the solution and does not enforce inaccurate con-
straints. In this paper, we study the performance of acIVA

on simulated high dimensional datasets in terms of estimating
the underlying dataset-specific sources, and demonstrate its
successful performance to overcome a major weakness of
standard IVA. We also apply acIVA to large-scale fMRI data
acquired from 327 subjects and show that acIVA successfully
preserves subject-variability compared to gICA, and identifies
functionally relevant resting-state networks in a data-driven
manner, whereas standard IVA did not converge on this
dataset. The acIVA technique also captures gender differences
in spectral power, where higher spectral power is observed
in males at low frequencies (< 0.05 Hz), and higher spectral
power is observed in females at high frequencies (0.05 to 0.15
Hz).

The remainder of the paper is organized as follows. Section
II introduces the IVA and acIVA models. Section III discusses
the aspects of IVA that affect its performance and demonstrates
the effect of high dimensionality on IVA. Section IV demon-
strates the use of acIVA on high dimensional datasets using
simulated datasets and Section V shows results from applying
acIVA to a large-scale fMRI dataset. Section VI discusses the
results and Section VII concludes the paper.

II. BACKGROUND

A. Independent vector analysis

IVA extends ICA to multiple datasets to jointly estimate
components that are independent within each dataset and
dependent across datasets. Given K datasets, each comprised
of N components, x[k] ∈ RN , k = 1, . . . ,K , we have,
x[k] = A[k]s[k], k = 1, . . . ,K , where A[k] ∈ RN×N is the
mixing matrix. IVA estimates K demixing matrices, W[k], to
compute the source estimates, ŝ[k] = W[k]x[k], by maximizing
the likelihood function or equivalently minimizing the mutual
information based cost function given as [19], [25],

JIVA =
N∑

n=1

[
K∑

k=1

H
(
ŝ[k]n

)
− I (ŝn)

]
−

K∑

k=1

log
∣∣∣det W[k]

∣∣∣ ,

(1)
where H

(
ŝ
[k]
n

)
denotes the entropy of the nth source estimate

for the kth dataset, and I (sn) denotes the mutual information
among sources within the nth source component vector (SCV),
ŝTn =

[
ŝ
[1]
n , . . . , ŝ

[K]
n

]
. The covariance matrix of the nth SCV,

Σn ∈ RK×K , is a positive definite matrix. The minimization
of the cost function simultaneously weighs the independence
within the dataset through the entropy term along with the log
determinant term and dependence across the datasets through
the mutual information term. SCV takes into account the
dependence across the datasets and the nth SCV is formed
by concatenating the nth component from all the K datasets
as shown in Fig. 1. For a given set of observations, the IVA
model can be written as X[k] = A[k]S[k] ∈ RN×V , where

S[k] =
[
s
[k]
1 , . . . , s

[k]
N

]T
, s

[k]
n ∈ RV , n = 1, . . . , N are latent

sources and V is the number of samples. The estimated sources
are obtained using Ŝ[k] = W[k]X[k] and the nth SCV is

defined as sn =
[
s
[1]
n , . . . , s

[K]
n

]T
∈ RK×V .
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1 p P

Subject k

Subject k + 1 p(Ci) Ktrain ⇥M

Y[m,k]/

Ā[m,k]

1

⇣
X[1]

⌘T ⇣
X[K]

⌘T
X[k] X̄[1] X̄[K] Ā[1] Ā[K] Y[1] Y[K]
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1 p P

Subject k

Subject k + 1 p(Ci) Ktrain ⇥M

Y[m,k]/
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bA[1] bA[K] ym y
[K]
m
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ŷ = arg max
g={HC,SZ}

p(g)

CY

i=1

[pg (Ci)]
ni

g(x) f(x) g1(x) g2(x)

W [M ] W [m] A[k,1] A[k,M] A[k+1,1] A[k+1,M]

bS[k,1] bS[k,M] bS[k+1,1] bS[k+1,M]

R[1,k] R[M,k] 1 2 m M
1 p P
Subject 1

Subject K
Subject k
Subject k + 1 For kth subject p(Ci) Ktrain ⇥M Ktest ⇥M

1

�
X [1]

�T �
X [K]

�T
X [k] X̄ [1] X̄ [K] Ā[1] Ā[K] Y [1] Y [K]
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ŷ = arg max
g={HC,SZ}

p(g)

CY

i=1

[pg (Ci)]
ni

g(x) f(x) g1(x) g2(x)

W [M ] W [m] A[k,1] A[k,M] A[k+1,1] A[k+1,M]

bS[k,1] bS[k,M] bS[k+1,1] bS[k+1,M]

R[1,k] R[M,k] 1 2 m M
1 p P
Subject 1

Subject K
Subject k
Subject k + 1 For kth subject p(Ci) Ktrain ⇥M Ktest ⇥M

1

Fig. 1. Given a set of observations, the IVA model is given as X[k] =
A[k]S[k], k = 1, . . . ,K, where A[k] is the mixing matrix and the rows
in S[k], are the latent sources that are dependent across datasets. The nth
SCV is formed by grouping the corresponding nth source from each dataset
together.

B. Constrained IVA

Constrained IVA (cIVA) is a semi-blind source separation
(BSS) algorithm that incorporates prior information regarding
the sources or the columns of the mixing matrix into the IVA
cost function, and helps relax the independence assumption
which at times might not be well satisfied [23]. The cIVA
method relaxes the independence assumption of IVA and
provides a desirable balance between data-driven techniques
that minimize the assumptions placed on the data, and model-
driven techniques that make use of prior information, which
if correct yield them robust to noise and artifacts. Let dl, l =
1, . . . , L, denote the lth reference sample belonging to a known
vector dl and L denote the number of references. The cIVA
algorithm directs the estimation of the sources towards the
reference signals through an additional constraint term, hence
the IVA cost function is now given as,

J = JIVA −
L∑

l=1

1

2γl
(2)

K∑

k=1

{[
max{0, µ[k]

l + γlg(ŝ
[k]
l , dl)}

]2
− (µ

[k]
l )2

}
,

where γl is the penalty parameter, µ
[k]
l is the Lagrange

multiplier and g(ŝ
[k]
l , dl) is the inequality constraint function

given as,
g(ŝ

[k]
l , dl) = ρl − ε(ŝ[k]l , dl) ≤ 0, (3)

where ŝ[k]l =
(
w

[k]
l

)T
x[k] is the estimated component, ε(·, ·)

is a function that defines the measure of similarity between the
estimated source and reference sample, and ρl is the constraint
parameter. Note that the number of constraints, L, is less
than or equal to N , and the indices n and l can be used
interchangeably for constrained sources or mixing vectors. In
the following text we will use index l to refer to constrained
sources and n to refer to the unconstrained sources. The
definition of the constraint function as in (3) allows for the use
of different distance functions such as the Euclidean distance,
square error and mutual information.

For a given set of observations with V samples, the IVA
model can be written as, X[k] = A[k]S[k], k = 1, . . . ,K ,
where X, S ∈ RN×V , the constraint function is given by

g(ŝ
[k]
l ,dl) = ρl− ε(ŝ[k]l ,dl) ≤ 0 and dl ∈ RV is the reference

signal. In this work, we define ε(ŝ[k]l ,dl) as the absolute value
of the Pearson’s correlation coefficient between the reference
signal and the estimated source, hence 0 ≤ ε(ŝ

[k]
l ,dl) ≤ 1.

The constraint parameter, ρl, acts as a lower bound for
correlation between the reference signal, dl, and the estimated
source to control the degree of correspondence between the
two. A higher value of ρl enforces the estimated source to
be exactly similar to the reference signal, not allowing the
reference component to vary across datasets, whereas a lower
value results in the estimated component to deviate from the
reference signal making it to be prone to noise and other
artifacts. Hence, the selection of ρl plays a crucial role in
the performance of the cIVA algorithm. In Section III-A, we
discuss an adaptive technique, namely, acIVA, that efficiently
incorporates reference signals into the IVA cost function by
tuning the constraint parameter, and its extension to multiple
reference signals.

III. KEY ASPECTS OF IVA
Although IVA preserves the variability across datasets by

estimating dataset-specific mixing matrix and sources, its
performance depends on a number of factors such as number
of samples [20], number of datasets [21] and sources. In
this section, we study through simulations the role of these
factors and potential strengths and weaknesses of IVA. The
effect of sample size on IVA is studied in several studies
such as in [20], [25], [26]. As with maximum likelihood based
estimators, the performance of IVA improves when the sample
size increases. On the other hand, with more datasets available
to exploit the dependence structure in IVA, the performance
of IVA improves with an increase in the number of datasets,
due to the availability of more cross-dataset information [25].
For an infinite number of samples, the performance of IVA
will keep on improving. However, in real world applications,
there is a limitation to the number of available samples. Due
to the limited number of samples available, IVA experiences
a performance drop with increase in number of sources or
datasets for a fixed number of samples [21]. In this paper,
we note that this trade-off between the dimensionality and
utilization of maximal information content also depends on
the level of correlation among the SCVs and the number of
sources, an important point that has not been addressed before
to the best of our knowledge. In this section, we study the
effect of level of correlation level on IVA and the effect of
number of sources is studied in Section IV.

In order to demonstrate the effect of the number of datasets
and the level of correlation on IVA, for fixed V and N , we
generate K datasets, x[k] ∈ RN , such that x[k] = A[k]s[k].
The elements in the mixing matrices, A[k], k = 1, . . . ,K are
randomly generated from a uniform distribution. The N SCVs
are generated from a K-dimensional multivariate Laplacian
distribution with a covariance structure Σn = QQT , where
Q ∈ RK×K is a randomly generated matrix. We vary the
level of correlation within an SCV through the generation
of the matrix Q, where the elements in Q denoted as qij ,
are generated randomly from a normal distribution, N (0, 1)
for Case 1, N (0.1, 0.3) for Case 2, a uniform distribution,
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U (−0.2, 0.8) for Case 3, U (0, 1) for Case 4, and U (0.1, 0.3)
for Case 5. The resulting distribution of correlation values in
Σn for K = 10 is shown in Fig. 2(a). We can see that the
correlation values demonstrate an increasing trend from Case 1
to Case 5 corresponding to increase in the level of correlation
within an SCV.

After obtaining the SCVs, the sources for the kth dataset
are obtained by grouping together the kth row from all the
N SCVs, s[k] =

[
s
[k]
1 , . . . , s

[k]
N

]
. We generate V = 1000

samples and vary the number of datasets from 2 to 40. We
obtain three independent observation sets of the datasets, X[k],
by randomly generating the mixing matrices and sources for
each set. IVA using the IVA-L-SOS algorithm is performed for
five runs on each set, and the performance of both methods
is measured in terms of joint inter-symbol interference (jISI)
[25]. The jISI metric measures the performance of the methods
in terms of its ability to separate the sources (0 ≤ jISI ≤ 1),
where 0 indicates better separation of underlying SCVs, i.e.,
W[k]A[k] = I, ∀k ∈ {1, . . . ,K}. IVA-L-SOS simultaneously
accounts for second and higher order statistics, and assumes
the sources are correlated multivariate Laplacian distributed
[21]. This assumption is a good model match for fMRI
analysis since the sources tend to have a super-Gaussian
distribution with correlation across subjects [12], [22]. The
average of the jISI metric across all converged runs for IVA
is shown in Fig. 2(b).

When there are sufficient samples available, the advantage
of exploiting source dependence across datasets in IVA is
observed in Fig. 2(b), as the performance improves with
increase in number of datasets for a fixed number of sources
and samples. However, this increasing trend is observed upto
a certain limit, after which IVA is affected by the curse
of dimensionality. The limit varies based on the level of
correlation. The effect of dimensionality in IVA is observed
when there is insufficient statistical power to provide reliable
and meaningful estimates of the high dimensional multivariate
probability distribution functions, due to the availability of lim-
ited samples. The high dimensional effect is more prominent
in Cases 1 and 2. The low correlation structure of the SCVs
for these cases have higher distances between the marginals
resulting in the data points to be sparsely located in the
multidimensional space, hence the estimation of such SCVs
becomes even more difficult in high dimensional scenarios. For
highly correlated SCVs, as in Case 5, the marginals are more
densely located, which aids the estimation of these sources and
yields a more efficient estimator in the maximum likelihood
sense.

One of the discussion items for IVA has been its requirement
for the sources to be highly dependent across datasets, affect-
ing its ability to capture subject-specific information. However,
note that for Cases 1 and 2, which have a low to moderate
correlation structure, the jISI is similar to that of Cases 3
to 5 for lower number of datasets, which indicates that IVA
does not require or enforce the sources across datasets to be
highly correlated. In the analysis of fMRI datasets, the nth
SCV typically corresponds to a functional network activated
across multiple subjects. The structure of the multivariate

distributions of these SCVs show high activations in a smaller
group of voxels and lower activation values for a larger group
of voxels. This results in fMRI sources to have low correlations
across datasets, see supplementary material-S1, affecting their
estimation significantly in high dimensional scenarios. This
issue can be addressed by using references to estimate the
SCVs. In the next section, we describe the general acIVA
method to incorporate multiple reference signals into the IVA
cost function.

A. Adaptive constrained IVA (acIVA)

The use of reference signals provides an effective way to
relax the independence assumption and lead the optimization
search towards a better solution. It also leverages the benefits
of model-driven and data-driven techniques. However, use of
a fixed value for the constraint parameter does not allow
the model to efficiently estimate the local patterns for each
dataset. Hence, we propose a procedure to adaptively tune the
constraint parameter during the optimization of cIVA. The idea
of the adaptive tuning technique is to find the highest value for
ρ
[k]
l from a sequence of possible values, (ρi)i∈N, that satisfies

the condition in (3) for the lth constraint and kth dataset. For
example, given a sequence (3, 2.5, 5, 1.2), the highest lower
bound for ε(ŝ[k]l , dl) = 2.8 from the sequence is ρ̂[k]l = 2.5.

Algorithm 1 describes the steps in the acIVA technique. We
define ρi as the ith element from the sorted sequence, (ρi)i∈N,
L as the number of constraints, and dl, l = 1, . . . , L, as the
reference signal used to constrain L out of N sources. We
randomly initialize the demixing matrices, W[k], set µ[k]

l = 0
and γl to a positive scalar value. At each iteration, we obtain
an estimate of the sources, ŝ[k]l , k = 1, . . . ,K, l = 1, . . . , L

and update the Lagrange multiplier, µ[k]
l , as given in line 10

of Algorithm 1. The constraint function used to update the
Lagrange multiplier is computed using the bound selected
from lines 7 to 9. Starting with the index, i, set to the smallest
element in the sequence, (ρi)i∈N, the algorithm increments the
index i until it satisfies the condition on line 8, which checks
if the i+ 1th bound exceeds

∣∣∣ε(ŝ[k]l , dl)
∣∣∣ while the ith bound

is lower than
∣∣∣ε(ŝ[k]l , dl)

∣∣∣. The new value of the constraint
parameter, ρ̂l is set to ρi if the condition is met and is used
to compute the gradient, ∂J /∂w

[k]
l , as follows,

∂J /∂w
[k]
l = ∂JIVA/∂w

[k]
l − g′

(
ŝ
[k]
l , dl

)
µ
[k]
l (dl) , (4)

where g′
(
ŝ
[k]
l , dl

)
is the derivative of g

(
ŝ
[k]
l , dl

)
with respect

to w
[k]
l , ∂JIVA/∂w

[k]
l is the gradient of (1), and update the

demixing vector as in line 13 followed by obtaining a new
estimate of the sources. The process is repeated until the
convergence criterion, following the one proposed in [23],
is met. Hence, the constraint parameter gets closer to the
true correlation between the source and the reference signal
at every iteration, without enforcing the reference signal on
the decomposition. In the next section, we will study the
performance of standard IVA and acIVA in high dimensional
scenarios for cases where the SCVs have moderately low
correlation, as observed in fMRI data.
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Fig. 2. (a) Distribution of correlation values in Σn = QQT for Cases 1-5. The black curve is the smoothed distribution of correlation values within all
SCVs. The box plot displays the median, the 25th and 75th percentiles of the correlation values with whiskers extending to the 99.3% confidence interval and
some outliers beyond whisker. The mean and standard deviation are in magenta. Horizontal magenta refer to the global mean from all cases and horizontal
blue lines refer to the median across all SCVs in each case. (b) Performance of IVA in terms of jISI with respect to number of datasets, K, for each case.
The jISI metric is the average jISI computed across all converged runs. The level of correlation increases from Case 1 to Case 5 with Case 1 corresponding
to low correlation within an SCV whereas Case 5 corresponds to high correlated SCVs. The number of sources and number of samples is fixed to N = 85
and V = 1000, respectively. For Case 3 and Case 4 at K = 40 no run converged in 1024 iterations, which is indicated by ‘4’, however with an increase in
K we start observing an increasing trend.

Algorithm 1 acIVA

Input: A sequence, (ρi)i∈N, of possible values for ρ[k]l ,
sorted in ascending order

2: Randomly initialize K demixing matrices,[
W[1], . . . ,W[K]

]
and set µ

[k]
n = 0, γn to be a

positive scalar value
for n = 1, . . . , N do

4: for k = 1, . . . ,K do
Compute ŝ[k] = W[k]x[k], k = 1, . . . ,K

6: if n ∈ {1, . . . , L} then
i = 1

8: repeat i = i+ 1

until ρi−
∣∣∣ε(ŝ[k]l , dl)

∣∣∣ < 0 < ρi+1−
∣∣∣ε(ŝ[k]l , dl)

∣∣∣
10: ρ̂

[k]
l = ρi

µ
[k]
l = max

{
0, γlg

(
ŝ
[k]
l , dl

)
+ µ

[k]
l

}

12: Compute ∂J /∂w
[k]
l using (4)

w
[k]
n = w

[k]
n + ∂J /∂w

[k]
n

14: else
Compute ∂JIVA/∂w

[k]
n

16: w
[k]
n = w

[k]
n + ∂JIVA/∂w

[k]
n

Repeat 3 to 13 until convergence

IV. APPLICATION OF ACIVA TO SIMULATED DATA

In order to study the performance of acIVA over standard
IVA on high dimensional datasets, we generate simulated
datasets similar to the set-up described in Section III. We
vary the number of datasets, K, from 2 to 60, and the
number of sources, N , from 40 to 85, with a fixed sample
size V = 1000. The SCVs are generated from a mul-
tivariate Laplacian distribution with a covariance structure,
Σ = QQT , qij = N (0.1, 0.3). This structure results in low
to moderately correlated sources that is a good match to the
fMRI sources, since the fMRI sources are known to have a
super-Gaussian distribution [22] with low to moderate level
of correlation, see supplementary material-S1. The sources are
linearly mixed using a randomly generated mixing matrix for
each dataset to obtain the observation set, X[k]. We generate

three different observation sets by randomly generating the
mixing matrices and sources for each set. We obtain 20 runs
of standard IVA and acIVA using the IVA-L-SOS algorithm.
For acIVA half of the total number of sources are used as
constraints, L = N/2, γn = 3 and the set P is defined as
0.1, . . . , 0.9. The reference signal for the constraint source is
obtained by computing the mean of the SCV. We measure the
performance of the two methods using jISI, which measures
the estimation of the whole demixing matrices, and spatial
correlation, which measures the estimation of the individual
sources of interest. For standard IVA, we align the estimated
sources with respect to the original sources, whereas for
acIVA no additional alignment step is required to align the
constrained sources. The average of the jISI metric and spatial
correlation of the constrained sources across 20 runs and three
observation sets for IVA and acIVA is shown in Fig. 3(a) and
Fig. 3(b) respectively.

From Fig. 3, we observe that IVA performance improves
with an increase in number of datasets upto a certain limit for
different numbers of sources. This range can be defined as the
best range in which there are sufficient samples available for
IVA to accurately estimate the underlying parameters. In this
range, however, the application of acIVA does not improve
performance compared with IVA, indicating that this is the
best IVA performance one can obtain, for the fixed choice
of algorithm and number of samples. Although the increase
in number of sources for a fixed number of datasets does
not significantly affect the performance, it does determine the
limit for better performance. The range of better performance
becomes tighter as we increase the number of sources, after
which we observe a degradation in performance due to the
effect of high dimensionality. The application of acIVA in
this high dimensional range however shows a significant
improvement in performance, indicating that the use of prior
information is providing reference to the search for a better
solution in high dimensional scenarios. The spatial correlation
of the estimated constrained sources and the corresponding
ground truth shows a similar trend as the jISI results. A high
spatial correlation also suggests that the acIVA method does
not enforce constraints on the decomposition and efficiently
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Fig. 3. Performance of IVA and acIVA in terms of jISI (a) and spatial correlation (b), with respect to number of sources, N and number of datasets, K.
The number of sources, N , is varied from 40 to 85, the number of datasets, K, is varied from 2 to 60, and the number of samples, V , is fixed at 1000. For
acIVA, half of the components are constrained, i.e., L = N/2. For K = 40 and N = 40 none of the IVA runs converged in 1024 iterations. (a) The jISI is
averaged across all converged runs for both acIVA and IVA. We observe degradation in performance of IVA for higher number of datasets, across different
values of N whereas acIVA provides improvement in performance compared to IVA. (b) The spatial correlation of the constrained sources with ground truth
is averaged across all converged runs. We see that acIVA was able to recover the constrained sources in high-dimensional scenarios, however IVA showed
poor performance.

estimates the spatial components across datasets. The acIVA
method is able to estimate the underlying sources significantly
better than standard IVA in high dimensional scenarios.

V. APPLICATION OF ACIVA TO REAL FMRI DATA
We apply acIVA on a large-scale real fMRI dataset acquired

from 327 subjects (164 female and 163 male). All images
were collected on a 3-Tesla Siemens TIM Trio scanner with
a 12-channel radio frequency coil. T2*-weighted functional
images were acquired using a gradient-echo EPI sequence
with TE = 29 milliseconds, TR = 2 seconds, flip angle =
75◦, slice gap = 1.05 millimeters (mm), slice thickness = 3.5
mm, field of view = 240 mm, matrix size = 64 × 64, voxel
size = 3.75 mm × 3.75 mm × 4.55 mm. The participants
were asked to keep their eyes open during the scan and stare
passively at a fixation point for 5 minutes, 4 seconds (152
volumes). Any additional volumes were discarded to match
data quantity across participants. Images were realigned using
INRIalign, and slice-timing corrected using the middle slice as
the reference frame. Data are then spatially normalized into the
standard Montreal Neurological Institute (MNI) space, resliced
to 3 mm × 3 mm × 3 mm voxels, and smoothed using a
Gaussian kernel with a full-width at half-maximum (FWHM)
of 10 mm. Masking using the group ICA for fMRI toolbox
(GIFT) was performed on each volume to remove the non-
brain voxels and vectorized, resulting in an observation set
for the kth subject as, X̄[k] ∈ R152×58541.

The reference signals for acIVA are extracted using gICA
[11], [12]. The gICA technique is shown in Fig. 4. Given
K datasets from K subjects, gICA performs subject-specific

Fig. 4. Given K datasets, gICa performs subject-level PCA in order to obtain
a signal subspace for each subject. The signal subspace from all subjects is
concatenated to form a tall data matrix followed by applying a group-level
PCA to extract a common signal subspace. ICA is applied on the group-
level PCs in order to estimate independent components, which are back-
reconstructed to obtain subject-specific time courses and spatial maps.

principal component analysis (PCA) in order to remove noise
from each dataset, followed by a group-level PCA in order to
extract a common signal subspace from all subjects. In order
to account for higher order statistics, gICA performs ICA on
the group-level principal components (PCs) and the estimated
independent components (ICs) are back-reconstructed to ob-
tain subject-specific spatial maps and time courses, as shown
in Fig. 4. The number of components is estimated as the mean
plus one standard deviation of the orders computed across
all subjects. The mean and standard deviation of the orders
estimated using the entropy rate based order selection by
finite memory length model [27], which incorporates sample
dependence into the information theoretic criteria, is 79.56
and 8.98 respectively. We select the final order as 90 (mean
plus one standard deviation). ICA using the entropy-rate bound
minimization algorithm [28] is applied on the subject datasets.
Out of the 90 components, we select L = 42 group-level



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 7

independent components (ICs) corresponding to functionally
relevant resting-state networks by visual inspection and these
components are used as reference signals in acIVA.

We perform acIVA on male and female group separately
using the group ICA components as reference signals. Each
subject’s data is dimension reduced using principal component
analysis in order to select the most informative components
and N = 55 uncorrelated components are used to form a
dimension reduced dataset, X[k] ∈ R55×58541 for each subject.
Five runs of acIVA using the IVA-L-SOS algorithm are ob-
tained with different initialization and the best run is selected
using the cross jISI method, which is an extension of the
method proposed in [29] to multiple datasets. The estimated
demixing matrices of the selected run are used to compute
the sources. The estimated components are grouped into 8
domains: auditory (AUD), motor, parietal, fronto-parietal (FP),
frontal, visual, default mode network (DMN) and cerebellum
(CB). The components in each domain are shown in supple-
mentary material-S21. We also applied standard IVA on the
datasets from each group, however, it did not converge in 1024
iterations. The acIVA technique converged in approximately
300 iterations.

A. Identification of functional networks
The use of reference signals in acIVA improves the iden-

tification of functional networks due to the adaptive nature
allowing the functionally connected regions to interact in a
more flexible and data-driven manner. It naturally groups the
regions that have correlated and anti-correlated relationship
with the reference signal. The default mode network (DMN)
is a large-scale brain network of interconnected brain regions
that form hubs and subsystems. It is commonly known to
be activated when the person is in the resting-state with
thoughts pertaining to oneself, others, the past and future,
and hence is one of the widely explored network in various
disorders. The core functional hubs of DMN are located in
the medial prefrontal cortex (mPFC), posterior cingulate cortex
(PCC), Precuneus and angular gyrus (AG). The acIVA method
identified the core default mode network in IC 31, when only
mPFC is used as the reference signal, as shown in Fig. 5. This
IC also shows activation in the regions of the central executive
network namely the dorsolateral prefrontal cortex (dlPFC) and
the posterior parietal cortex (PPC), which has shown anti-
correlation with the default mode network [30]. Similarly for
IC 32, the ventrolateral prefrontal cortex (vlPFC) is extracted
along with posterior DMN (PCC+AG) using acIVA for a
corresponding reference signal showing activation in the AG.
For IC 33, the anterior cingulate cortex (ACC) and regions are
extracted along Precuneus. The ACC and INS regions form
the salience network that plays a critical role in switching
between DMN and CEN [30], [31]. The reference signal in IC
34 consists of the regions associated with the dorsal medial
subsystem [32], namely the temporoparietal junction (TPJ),
lateral temporal cortex (LTC), temporal pole (TempP). The
dorsal medial subsystem also consists of dmPFC which is ex-
tracted using acIVA alongwith the reference signal. Precuneus

1Supplementary materials are available in the supporting documents /mul-
timedia tab.
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Fig. 5. Components estimated using acIVA and corresponding reference
signal, which are the group-level components of GICA. Our results indicate
that the proposed acIVA technique naturally groups together functional
networks, e.g., acIVA identified the whole default mode network (PCC, mPFC,
AG) when only the anterior DMN (mPFC) was used as the reference signal.
(Abbreviations: medial prefrontal cortex (mPFC), anterior cingulate cortex
(ACC), posterior cingulate cortex (PCC), angular gyrus (AG), dorsolateral pre-
frontal cortext (dlPFC), posterior parietal cortex (PPC), ventrolateral prefrontal
cortex (vlPFC), insular (INS), dorsal medial prefrontal cortex (dmPFC),
temporoparietal junction (TPJ), lateral temporal cortex (LTC), temporal pole
(TempP).

and anterior mPFC (amPFC) have shown strong association
with the dorsal medial subsystem and act as functional hubs
for information transfer across the subsystem [32].

B. Performance of acIVA and gICA in terms of preserving
subject-variability

In this section, we study the performance of acIVA in terms
of its ability to preserve subject-specific information using two
techniques, namely, ‘variability maps’ and capturing gender
differences in spectral power, and compare its performance
with the widely-used gICA technique for fMRI analysis [11],
[12]. The acIVA technique computes subject-specific spatial
maps and time courses, where the dependent components are
grouped together to form an SCV, as discussed in Section
II. In order to obtain subject-specific spatial maps and time
courses for gICA, the group level ICs/reference signals are
back-reconstructed using PCA-based back-reconstruction [22].

The variability map for each component is obtained as the
standard deviation at each voxel computed across subjects.
The results for the variability maps for the components asso-
ciated with the DMN are shown in Fig. 6. The maps from
acIVA demonstrate high standard deviation across subjects, at
voxels corresponding to meaningful regions in the DMN and
dorsal medial subsystem, whereas gICA demonstrates lower
standard deviation at these voxels. This suggest that since
gICA performs a significant dimensionality reduction step in
the group-level PCA stage, most of the variability associated
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Fig. 6. Variability maps (threshold at 1) for acIVA and gICA. High standard
deviation is observed at voxels corresponding to the DMN and dorsal medial
subsystem for acIVA as compared to gICA.

with individual subjects is lost. Hence, the subject-specific
components from gICA are mostly centered around the group
ICs with a low standard deviation. However, since acIVA does
not perform the group-level dimensionality reduction step, it
is able to capture the variability associated with each subject
resulting in a higher standard deviation.

We compare the performance of acIVA and gICA in terms
of capturing gender differences in spectral power. We obtain
the component power spectra for all subjects using the time
courses from acIVA and gICA, and identify differences using
a two-sample t-test between male and female group at each
frequency level. The components showing significant differ-
ence (p < 0.05, corrected) are shown in Fig. 7. Significantly
higher spectral power is observed in the male group at low
frequencies (< 0.05 Hz) in few motor (ICs 5), frontal (IC 22)
and DMN (IC 33) components. High spectral power in the
motor (IC 5) and frontal component (IC 22) is also observed
in a similar study [1]. Significantly higher spectral power
is observed in the female group at higher frequencies (0.05
to 0.15 Hz) in the frontal component (IC 22) and visual
component (IC 30). In general, our results show high spectral
power in the female group in the frequency range 0.05 to
0.15 Hz across the motor, parietal, frontal, visual, DMN and
cerebellum components, although not significant.

VI. DISCUSSION
IVA is a joint blind source separation technique that has

been shown to efficiently capture subject variability from
multisubject fMRI data [17], [18], [19]. It groups the subject-
specific local patterns pertaining to a common, global attribute
in a meaningful manner, in a sample sufficient regime, i.e.,
when the number of samples are sufficient to estimate the

gICA

0   0.05 0.1 0.15 0.2 0.25
frequency (Hz)

acIVA

0   0.05 0.1 0.15 0.2 0.25
frequency (Hz)

-6

-4

-2

0

2

4

6

-s
ig

n(
 t)

lo
g 10

( p
)

female    male

AU
D

M
ot

or
Pa

rie
ta

l
FP

Fr
on

ta
l

Vi
su

al
D

M
N

C
B

AU
D

M
ot

or
Pa

rie
ta

l
FP

Fr
on

ta
l

Vi
su

al
D

M
N

C
B

Fig. 7. Frequency range that demonstrates significant (p < 0.05) difference
between male and female group, displayed as −sign(t)log10(p). Hot colors
demonstrate higher spectral power in female group whereas cold colors
indicate high spectral power in male group. The line on the colorbar indicates
the FDR-corrected threshold (p = 0.05) for significance. Higher spectral
power is observed in the male group at low frequencies (< 0.05 Hz) for the
motor, frontal, visual and DMN components, whereas females show higher
spectral power at high frequencies (0.05 to 0.15 Hz). The acIVA technique
better captures gender differences than gICA technique, indicating its ability
to preserve subject variability.

multivariate SCVs exhibiting different levels of correlation. Its
performance improves as we increase the number of datasets
due to the availability of more information across datasets,
provided we are within the ’sufficient’ sample regime. How-
ever, with a further increase in dimensionality—number of
datasets—, the performance of IVA drops for a fixed number of
samples, indicating a tradeoff between the taking advantage of
more information across datasets and curse of dimensionality.
This drop in performance depends on the number of sources,
i.e., for a higher number of sources, a performance drop is
observed for a lower number of datasets. Hence for IVA, high
dimensionality is a function of the number of samples and
sources. With an availability of fMRI scanners with a higher
temporal resolution, there is an increase in number of volumes
for each subject that captures more information. For this type
of data, the estimated model order—number of sources—is
expected to be higher resulting in degradation in performance
at a lower value of K. In high dimensional scenarios, IVA
is able to recover the highly correlated SCVs better than the
low correlated SCVs since these SCVs carry more common
information across datasets and are a better match to the model
assumption. In this work, we propose the acIVA method to
estimate the underlying high dimensional SCVs in order to
overcome the limitations of IVA.

The acIVA algorithm efficiently incorporates prior infor-
mation regarding the sources or the columns of the mixing
matrix, into the IVA decomposition and we demonstrate its
potential use in the analysis of large-scale datasets. Our
results from Fig. 3 indicate that acIVA provides reliable and
meaningful estimation of the underlying sources when there
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are insufficient samples available with respect to the number of
sources and datasets. Although acIVA demonstrated superior
performance than standard IVA for higher number of datasets,
it is not impervious to the effect of high dimensionality. As
the number of dimensions approaches the number of samples
or in the sample-poor regime, where the number of samples
are less than the number of dimensions, the performance of
acIVA is expected to drop, as observed in Fig. 3 at N = 85
and K = 160. However, this drop in acIVA performance is
observed at a more extreme case as compared with standard
IVA. Additionally, the jISI results from Fig. 3(a) show that
the performance of acIVA is slightly affected in the sufficient
sample regime for some cases, e.g., N = {40, 55}, K =
{40, 60}. The spatial correlation of the constrained sources
for the corresponding points demonstrates similar performance
as IVA, indicating that the constrained sources or the sources
of interest are estimated accurately, however the estimation
of the unconstrained sources is penalized to some degree.
This effect can be reduced by incorporating prior information
regarding the remaining sources. It should also be noted
that the performance of acIVA depends on the number of
constraints, i.e., acIVA performance might improve further if
prior information regarding all the sources is incorporated.

Data-driven techniques are widely-used for the analysis
of fMRI data due to their flexible nature that allows for
identification of natural relationships that were not derived
a-priori [33], [22]. On the other hand model-driven meth-
ods such as region-of-interest based methods make stronger
assumptions regarding the nature of the decomposition, and
are robust to noise and other artifacts. Typically model-driven
methods extract functionally connected regions from resting-
state fMRI data by identifying voxels that have correlated
activation patterns with a pre-defined region-of-interest or a
seed voxel. These methods usually outperform the data-driven
techniques only when prior information is accurate [34]. The
acIVA technique provides a desirable balance between data-
driven and model-driven techniques, and takes advantage of
the robustness properties of model-driven methods and flexible
nature of data-driven techniques. A comparison of data-driven,
model-driven and semi-BSS method on task-related fMRI
data demonstrated robust performance of semi-blind ICA in
the presence of noise and when the prior information is not
completely accurate [34]. The acIVA technique adaptively
tunes the constraint parameter in order to efficiently incor-
porate the prior information, i.e., does not impose inaccurate
prior information on the decomposition. The use of adaptive
parameter tuning technique also allows for flexibility for the
functionally connected regions to fully interact and does not
enforce the sources to be exactly similar to the reference
component, as shown in Fig. 5.

VII. CONCLUSION
In this paper, we emphasize the need for flexible methods

that can scale to handle large-scale fMRI data. We discuss the
benefits of IVA in terms of providing a flexible framework
and in terms of its ability to better capture the subject-specific
information. However, we demonstrate that the performance
of IVA depends on a number of factors such as number

of samples, number of datasets, number of sources and the
level of correlation between the marginals of the multivariate
sources. To summarize, the IVA performance degrades with
decrease in number of samples and the level of correlation
within the SCVs, and with an increase in datasets and number
of sources. We discuss the acIVA technique and its extension
to incorporate multiple reference signals that efficiently guides
the solution and does not enforce inaccurate prior information
on the IVA decomposition, thus achieving a desirable balance
between data-driven and model-driven techniques. We demon-
strate its ability to overcome the main challenges of IVA,
namely, the effect of high dimensionality. We also apply acIVA
on a large-scale resting-state fMRI data and show that acIVA
efficiently estimates functionally connected brain regions.
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