EdCode: Towards Personalized Support at Scale for
Remote Assistance in CS Education

Yan Chen!, Jaylin Herskovitz!, Gabriel Matute!, April Wang!, Sang Won Lee?, Walter S. Lasecki', Steve Oney'

YUniversity of Michigan, Ann Arbor, United States, {yanchenm,jayhersk,gmatute,aprilww,wlasecki,soney}@umich.edu
2Virginia Polytechnic Institute and State University, Blacksburg, United States, sangwonlee@vt.edu

Abstract—Programming support methods, like discussion fo-
rums and office hours, are important in CS education, but diffi-
cult to scale. In this paper, we introduce EdCode, a system that
allows students to seek remote instructional support within their
IDE in a way that resembles in-person support. It also allows
instructors to provide contextualized responses by referencing
students’ code, and curate and publish their answers for an entire
class by selecting only the relevant part of the code referenced,
thereby helping to avoid plagiarism. We evaluated EdCode with
a series of usability studies and identified benefits and challenges
for its use in programming courses. Students found that the
perceived quality of support from EdCode was comparable to
that of support from in-person office hours, and both students
and instructors found publishing and viewing other students’
answers helpful.

Index Terms—Programming Education, Remote Assistance,
Scalable Support

I. INTRODUCTION

The enormous growth of software development jobs has led
to a rise in the desire to learn to code [1], [2]. As a result,
demand for computer science (CS) courses has swelled and
instructional resources have struggled to keep up with this
demand. Prior work has shown that instructional resources,
such as in-person support, can help students improve their
performance in programming courses [3], [4]. In-person support
makes it easy for instructors to access students’ code, allows
instructors to proactively help, and is personalized [5]. However,
instructional support can be hard to scale in courses that have
high student-teacher ratios, as many CS courses do.

Many courses use Q&A forums (e.g., Piazza) to scale
support for students but forum participation is often low due
to their public nature and the inability to have a natural
conversation [6]-[11]. Several systems, including Codeon [12],
have been shown to be effective at scaling remote programming
assistance in work settings. However, programming support in
educational settings is different than work settings in terms
of goals, stakeholders’ expertise, and collaboration structure.
For instance, students often lack sufficient knowledge and
understanding to phrase a question correctly compared to
professional programmers. Instructors would prefer to guide
students with hints and questions rather than giving away
the solutions, whereas professional programmers tend to offer
straightforward solutions that can be replicated by others.

978-1-7281-6901-9/20/$31.00 ©2020 IEEE

In this paper, we introduce EdCode, a remote support system
that allows instructors to provide personalized assistance to
students and publicly share their support with coding questions
in programming classes. We conducted two needfinding studies
and hypothesized that 1) supporting both asynchronous and
synchronous interaction could help instructors better guide
students’ learning processes, 2) allowing instructors to refer
to portions of code in their responses could make their
explanations clearer, and 3) allowing instructors to select
relevant code in students’ questions to share with the entire
class would help scale their support. EdCode instantiates
these ideas by adding three new features on top of Codeon—
contextualized explanations, which allows students to make
text-based help requests with code context (by highlighting
relevant code snippets) from their working context (IDE state)
in asynchronous fashion; a chat tool that allows instructors
to converse with students within each question; and selective
code publicity, which allows instructors to publish students’
questions and answers by selecting code regions that are
relevant to the question while concealing the rest of the solution.
In this way, other students could review questions and answers
curated by the instructors, leading to fewer duplicate questions
and saving time for instructors and students alike.

We conducted a virtual office hour study in an introductory
programming course. Both student and instructor participants
reported that the quality of answers from EdCode was better
than their existing Q&A forum (Facebook Group). Students
also found the answers were comparable to those obtained
from in-person office hours, and they could understand the
questions and answers with only the curated version of the
original code visible. Our contributions are:

« study-based insights into the needs and challenges of
using existing asynchronous remote support tools in
programming classes;

« a system (EdCode) that addresses these needs and chal-
lenges, used as a ‘technology probe’; and

« evidence that EdCode has the potential to be useful in a
classroom setting.

II. RELATED WORK

Community question-answering websites (e.g,. Stack Over-
flow) are common help-seeking systems, but they often lack
personalized support for programmers, especially novices [13]-
[15]. To scale personalized support, prior work has proposed

automated techniques to repair bugs [16], construct in-situ
explanations for code examples [17], and provide intelligent
tutoring [18]. While results are promising, they often require ex-
pertise to develop and can be difficult to adapt for programming
courses [19], [20]. Codeopticon [21] allows teachers to monitor
students’ behavior and provide support by detecting when
students need help. However, instructors must be proactive, and
the help sessions are not archived or reusable. CrowdCode [22]
enables code context capturing for request composition, yet
it focuses on improving programmers’ productivity, while we
aim to help students receive more guided support to improve
their learning experience.

In programming communication, relevant context (e.g.,
specific code lines) is important but challenging to capture.
Chen et al. [23] showed that presenting context could improve
the efficiency of help sessions, as helpers can provide feedback
that is specific to a requester’s code. Chat.codes [24] and
Callisto [25] developed deictic code references for explicitly
specifying a message’s context. Inspired by these studies, we
designed EdCode to automatically capture students’ codebases
and context, along with the request description.

III. FORMATIVE STUDIES

We conducted two studies to better understand the tradeoff
between personalization and scalability for support in program-
ming education. We conducted these studies with Codeon [12],
an asynchronous remote programming support tool, to explore
potential issues in the problem space. We chose Codeon because
it uses an asynchronous communication paradigm (which can
be more scalable than synchronous support) while enabling
easy context sharing (which can make it easier to provide
personalized support). Codeon has also been shown to improve
the productivity of software programmers.

A. Method

We first interviewed three students and two instructors from
an introductory programming class at the authors’ university.
We asked about their experiences with different programming
support methods, including online forums and office hours. We
then evaluated the usability of Codeon [12] in an educational
setting with 11 different students (5 female, 6 male) and the
two interviewed instructors from the same class by asking
them to make and review questions they had previously asked
with the assigned support tool (the course’s Facebook Group).
The instructor and student participants completed the study at
different times. The first author (who was a teaching assistant
in the same class) responded to students’ questions using
Codeon in real time. We then interviewed participants about
their experiences using Codeon compared to other help-seeking
methods.

B. Results

We observed three common problems across these studies.
First, the responses that our researcher instructor gave through
Codeon were difficult for students to interpret as students
lacked the ability to efficiently switch between deciphering

Students select a portion of their code
and click the 'Help' button next to the
selection to initialize a request.

They g\\;e the request atitle, re-
quest”description, and tags, and
send it to their instructors.
L@ > O

v [k‘,
\ |

N A

Instructors can see the code base and other
relevant information in their interface
where they could write a contextualized re
sponse to the request.

Students can review the re-

Check and integrate r
sponse in their code editor.

response with hyper-
text context.

Fig. 1. A diagram shows the process of using EdCode to make a request,
write a response, and integrate a response. (1) Students select a portion of
their code and click the ‘Help’ button next to the selection to initialize a
request. (2) Students attach a title, description, and tags to the request and
send it to instructors. (3) Instructors can see the code base and other relevant
information in their interface where they could write a contextualized response
to the request. (4) Students can review the response in their code editor, and
(5) check response context by clicking the hypertext.

a textual explanation and parsing references to code, which
were often included in responses. This is because Codeon
was designed to help programmers complete tasks rather
than guiding students to learn, and thus prioritizes allowing
users to quickly integrate code snippets over explaining or
annotating lines of code. Second, both the instructor and student
participants mentioned that they sometimes misunderstood a
student’s question or the instructor’s response respectively. Part
of this miscommunication resulted from the instructor assuming
prerequisite knowledge in their answer that the student actually
lacked. Neither existing support tools nor Codeon are able to
handle follow up questions that have code context within an
existing request. Lastly, to scale their support, the instructor
participants often wanted to publish previous responses for the
entire classes to avoid redundant effort. Meanwhile, we found
students would often include code context (e.g., screenshots)
along with their questions on the course’s Facebook group. This
could encourage other students to plagiarize their code, which
instructors prevented by removing their request. Students, in
turn, were uncertain about what code they can and should share
in their questions. Based on these findings, we designed three
features in EdCode that can support efficient communication
between instructors and students.

IV. EDCODE: FEATURE DESIGN

A. Contextualized Explanations: Referring to Code with Hy-
pertext

As we found in our formative studies, there is a high level
of interdependency between natural language explanations and
the referenced code. This can make it difficult for novice
programmers to follow the text responses, as their mental model
for programming is not robust enough to make connections
between the different pieces of information they receive.
Borrowing from the idea of hyperlinks, which are pervasive in
web documents, we created a contextualized explanation feature
that allows instructors to link a selection of code to textual
explanations (Fig. 2). In students’ code editor, they can click

Your Answer @

Yoo ava'a 1¢£Le bug 4 your: T conditlon shere o need t0'set: 1£ 0 be the cppot s of your: ESIEEIEIEIEN a
ink | Cancel
Select the associated code
context

Close Discussion

Fig. 2. The contextualized explanation feature and the chat tool. To make
their answers more contextualized, instructors can (1) select a portion of the
text in their natural language answer and the relevant code context; (2) click
the ‘link’ button to create the references, which will highlight the relevant
code (hypertext) when clicking the references in the text. Instructors can also
chat with students via (3).

highlighted text in an answer to see the code associated with it
(4, 5 in Fig. 1). This feature helps to lower the cognitive cost
for novices by dereferencing and removing navigation effort of
finding the relevant code [24]. It also helps instructors avoid the
effort of clarifying each piece of code context in composing an
answer (e.g., providing the line number or copying segments
of code into the explanation).

B. Chat Tool: Supporting Hybrid Interaction

To allow for quick follow-up and clarification while still
maintaining the Q&A structure, we created a chat feature
(Fig. 2.3). The formative study showed that unlike face-to-
face support, remote and asynchronous support available in
Codeon (or online forums) lacks the ability for one party to
interrupt another to immediately clarify a question or response.
We aim to add a feature that can facilitate light-weight and
real-time communication as if it were an in-person office
hour. However, we did not change the model entirely to
synchronous collaboration. We instead made the chat tool a
supplementary communication channel to preserve the benefits
of asynchronous communication, as both parties often need to
engage in other activities without interruption (i.e., instructors
need to work on other requests, while students need to fix
other parts of their code). For this reason, we took a hybrid
approach—supporting real-time interaction within the model
of asynchronous support.

The chat tool is situated per-request, meaning each request
will have its own chat box associated with the question and its
code context so that the conversation will be centered around
the question [26]. This is different from common instant chat
messengers in which a conversation is displayed separate from
the working context. Instructors are still encouraged to compose
an answer using the contextualized explanation feature to close
and publish the request later. This light-weight communication
is not the primary way of composing an answer, but efficient
for quickly resolving any discrepancies in understanding the
question or the response (Fig. 2).

C. Code Publicity: Sharing Code Selectively

We allowed instructors to control what parts of students’
code are made public for each request by selecting portions of
code and making them visible to all students (see Fig. 3). The
instructor can easily edit out sensitive information, eliminating
guesswork on the part of the student as to what information
should not be shared. Because students are able to send
private requests to instructors with all of their code included,
they do not have to determine what context is appropriate to
include with their request; the context is captured automatically.
Furthermore, instructors still benefit from being able to access
the complete context of the question. This allows instructors
to examine the code in depth and provide more personalized
feedback, as they can view and execute the code without
worrying about plagiarism and share a curated version of their
answer with the rest of the class.

V. EVALUATION

We conducted two studies: a virtual office hour study to
evaluate the usability of EdCode and a comparison study for
the contextualized explanation feature and the code publicity
feature in EdCode.

A. Study 1: Virtual Office Hours

1) Study Setup: We recruited two instructors (I), and seven
students (S) (3 female, 4 male) from an introductory Python
class at the authors’ university. Each instructor hosted an
virtual office hour session for two hours using EdCode to
provide remote support to the students: two in the first session
and five in the second (unbalanced due to availability). The
students were allowed to ask any questions relevant to the
course assignments or coding exercises. This setup encouraged
students to work at their own pace, giving them flexibility
in how they used EdCode. Through a survey and interviews,
we then compared their experience using EdCode to other
support methods used in class: a course’s Facebook Group and
in-person office hours.

2) Results and Discussion: The students asked 30 questions
in total, and instructors reported the questions as being realistic.
Usability: All seven students reported an overall preference for
EdCode, as it was “convenient” (S1, S3-S6), “effortless” (S2),

Select the code that is available
for all students

B

Fig. 3. The code publicity feature. Instructors first click the ‘Show this code
button to select a portion of the code in original request that is necessary
to understand the question for other students. Then they click ‘Send Your
Answer* button to publish the question and the answer to the entire class.

or “localized to my text editor” (S7). The flexibility between
synchronous and asynchronous communication in EdCode
allows students to “easily follow up with the chat” (S2) and
“ask questions wherever” (S1). EdCode also encouraged one
student to ask more questions: “I felt better asking questions
[using EdCode] than I would at office hour” (S2).

Answer Quality: Students reported the answers from EdCode
as being “more direct” (S4) and “more in depth” (S6) than
those from the course’s Facebook Group, and five reported
the quality as close to (S7) or the same (S1,3,5,6) as that of
in-person office hours. Some of the reasons that students gave
were: the code in the response is editable and built on code
from students’ original questions; the answer format is more
contextualized and guided than that of the course’s Facebook
Group, as “it provides visual feedback on my code [with the
contextualized explanation]” (S6); they were “able to follow up
with [the instructors] with the chat feature” (S7); “instructors
could add comments to my code to help me” (S3). These results
suggest that instructors can use EdCode to not only provide
high-quality remote assistance without some of the limitations
of in-person office hours, but also simplify the interaction
by splitting the controls and letting them focus more on the
feedback than the interaction with code on another machine.

Instructors’ Perception of Code Publicity: In the survey, one
instructor reported that “I appreciated having the ability to
write out the code itself in-line, reference it in my answer by
linking it to the word ‘here,” and comment some additional
notes in-line” (12), showing the versatility of the tool, and
that whether or not instructors choose to capture the code
context as a part of the explanation “depend|s] on the quetions”
(I1). One instructor (I1) proposed a feature that would suggest
similar questions that were previously answered, anticipating
that the code publicity feature could be helpful in reducing
duplicate questions in the first place. The same instructor (I1)
commented on the issue of plagiarism on current discussion
forums: “[the code] should definitely be controlled because
a lot of people post their full answers and said like ‘is this
correct?”’ This instructor (I1) found the code publicity feature
useful, “it removes the problem of other students being able
to see a student’s full code and copying their answers, which
is a big problem with the Facebook Group.”

Chat Tool: All requests received at least one response; 27 were
answered with a textual explanation, and three were answered
only through chat messages. In eight cases, participants used
at least one round of back-and-forth interaction using the chat
tool, either in real time or leaving messages for asynchronous
interaction. The messages left in the chat tool were often short
rather than self-contained, which invite quick clarifications and
light-weight conversation. Because the chat tool was situated
within a request, an instructor can focus on one request. This is
in contrast with in-person communication; instructors in office
hours may feel pressured due to the student waiting, and they
may even be interrupted. We anticipate that the instructor’s
attention can be more focused to those who are available at
the moment and thus provide more assistance (as opposed to
first-come-first-served basis).

B. Study 2: Contextualized Response and Code Publicity

We further evaluate EdCode’s response quality and its
Code Publicity feature. To compare responses, we recruited
one instructor from the same class and asked him to write
answers to six questions with three formats: (1) plain text (PT)
(2) contextualized explanation (CE) with EdCode’s hypertext
feature; (3) write contextualized explanation first and then use
the code publicity (CP) feature to censor any code that was
irrelevant or that other students should not see. We recruited
four different students to first rate the the comprehensibility of
answers in the PT, CE format on a scale of 1 to 9, and then
review both the questions and answers for the CP format.

Results and Discussion: The answer comprehensibility
ratings for contextualized explanation with code (CE) (u=7.4,
s.d.=1.82) and plain-text explanations (PT) (u=8.0, s.d.=1.58)
were comparable. Students reported that the contextualized
responses (CE) allowed them to easily see “what my code
should look like” (S9). When students were asked to give
integration strategies, they were able to provide the correct
line number and the location to insert the given code snippets
for responses in both CE and PT format. All students were
able to comprehend both the questions and answers in the CP
format where only the portion of the code was provided. When
asked to explain the given questions and answers, students
had the option to provide their own answer to the question.
We annotated their answers and found alignment with the
instructors’, showing that even with some context censored,
the questions were still fully understandable by students.

VI. CONCLUSION

In this paper, we explored ways to scale personalized support
for students in introductory programming classes. We designed
and studied EdCode, a system that allows students to seek
remote instructional support within their IDE in a way that
resembles in-person support. Through our user study, we
find that the support provided by EdCode can be on par
with traditional office hours in terms of the comprehensibility
of answers, while also allowing for much more flexibility
in communication formats (asynchronous and synchronous,
with-in context Q&A). Additionally, it facilitates scaling the
personalized support without risking the learning opportunities
coming from potential plagiarism that exists in traditional Q&A
forums. Follow-up questions using the chat tool also allowed
for more immediate feedback and interaction than these forums.
Our findings provide guidance for designing help-seeking tools
in other subjects to scale high quality support for students.

VII. ACKNOWLEDGEMENTS

We thank our reviewers for their helpful suggestions on this
work, and our study participants for their time.

REFERENCES
[11 B. of Labor Statistics. U.S., “Occupational outlook handbook,
2014-15 edition, software developers. retrieved december
10, 2016, 2016. [Online]. Available: http://www.bls.gov/ooh/

computer-and-information-technology/software-developers.htm

http://www.bls.gov/ooh/computer-and-information- technology/software-developers.htm
http://www.bls.gov/ooh/computer-and-information- technology/software-developers.htm

[2]

[3]

[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

P. K. Chilana, C. Alcock, S. Dembla, A. Ho, A. Hurst, B. Armstrong,
and P. J. Guo, “Perceptions of non-cs majors in intro programming:
The rise of the conversational programmer,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on. 1EEE,
2015, pp. 251-259.

B. S. Bloom, “The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring,” Educational researcher,
vol. 13, no. 6, pp. 4-16, 1984.

A. Cockburn and L. Williams, “The costs and benefits of pair program-
ming,” Extreme programming examined, pp. 223-247, 2000.

S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K.
Norman, How learning works: Seven research-based principles for smart
teaching. John Wiley & Sons, 2010.

L. Breslow, D. E. Pritchard, J. DeBoer, G. S. Stump, A. D. Ho, and
D. T. Seaton, “Studying learning in the worldwide classroom: Research
into edx’s first mooc,” Research & Practice in Assessment, vol. 8, 2013.
J. Manning and M. Sanders, “How widely used are mooc forums? a first
look,” Signals: Thoughts on Online Learning, 2013.

J. Huang, A. Dasgupta, A. Ghosh, J. Manning, and M. Sanders,
“Superposter behavior in mooc forums,” in Proceedings of the first ACM
conference on Learning@ scale conference. ACM, 2014, pp. 117-126.
R. McGuire, “Building a sense of community in moocs,” Campus
Technology, vol. 26, no. 12, pp. 31-33, 2013.

M. J. Thomas, “Learning within incoherent structures: The space of online
discussion forums,” Journal of Computer Assisted Learning, vol. 18,
no. 3, pp. 351-366, 2002.

A. Pincas, “Successful online course design: Virtual frameworks for
discourse construction,” Educational Technology & Society, vol. 1, no. 1,
p. 15, 1998.

Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney,
“Codeon: On-demand software development assistance,” in Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 2017.

J. Zhu, J. Warner, M. Gordon, J. White, R. Zanelatto, and P. J. Guo,
“Toward a domain-specific visual discussion forum for learning computer
programming: An empirical study of a popular mooc forum,” in 2015
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2015, pp. 101-109.

R. Slag, M. de Waard, and A. Bacchelli, “One-day flies on stackoverflow-
why the vast majority of stackoverflow users only posts once,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, 2015, pp. 458-461.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM,
2011, pp. 2857-2866.

X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in 2018
IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE, 2018, pp. 118-129.

A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons:
Generating context-relevant, on-demand explanations and demonstrations
of online code,” in 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 2015, pp. 3-12.

J. R. Anderson and E. Skwarecki, “The automated tutoring of introductory
computer programming,” Communications of the ACM, vol. 29, no. 9,
pp. 842-849, 1986.

K. Rivers and K. R. Koedinger, “Data-driven hint generation in vast so-
lution spaces: a self-improving python programming tutor,” International
Journal of Artificial Intelligence in Education, vol. 27, no. 1, pp. 37-64,
2017.

B. P. Woolf, Building intelligent interactive tutors: Student-centered
strategies for revolutionizing e-learning. Morgan Kaufmann, 2010.

P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for
computer programming,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. ACM, 2015, pp.
599-608.

T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek, “Mi-
crotask programming: Building software with a crowd,” in Proceedings
of the 27th annual ACM symposium on User interface software and
technology. ACM, 2014, pp. 43-54.

Y. Chen, S. Oney, and W. Lasecki, “Towards providing on-demand
expert support for software developers,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2016.
S. Oney, C. Brooks, and P. Resnick, “Creating guided code explanations
with chat. codes,” Proceedings of the ACM on Human-Computer
Interaction, vol. 2, no. CSCW, pp. 1-20, 2018.

A. Y. Wang, Z. Wu, C. Brooks, and S. Oney, “Callisto: Capturing the
“why” by connecting conversations with computational narratives,” in
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, ser. CHI *20. ACM, 2020.

C. Gutwin and S. Greenberg, “A descriptive framework of workspace
awareness for real-time groupware,” Computer Supported Cooperative
Work (CSCW), vol. 11, no. 3-4, pp. 411-446, 2002.

