BAND-LIMITED MIMICRY OF POINT PROCESSES BY POINT
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ABSTRACT. We say that one point process on the line R mimics another at a bandwidth B
if for each n > 1 the two point processes have n-level correlation functions that agree when
integrated against all band-limited test functions on bandwidth [—B, B]. This paper asks the
question of for what values a and B can a given point process on the real line be mimicked
at bandwidth B by a point process supported on the lattice aZ. For Poisson point processes
we give a complete answer for allowed parameter ranges (a, B), and for the sine process we
give existence and nonexistence regions for parameter ranges. The results for the sine process
have an application to the Alternative Hypothesis regarding the scaled spacing of zeros of the
Riemann zeta function, given in a companion paper.

1. INTRODUCTION

1.1. Objective. In this paper we ask the following question: how well can the statistics of a
point process on the real line R be mimicked by the statistics of a point process restricted to
a lattice aZ = {aj : j € Z}? The statistics we consider are correlation functions, and what
we mean by ‘mimicking’ is perfect agreement of the correlation functions of the two processes
when integrated against band-limited Schwartz functions of a specified bandwidth, explained
further below. We give an analysis of the mimicking problem for two distinct point processes,
the Poisson process and the sine process, and uncover some surprising mismatches between the
two.

This problem has its origins in a problem regarding the zeros of the Riemann zeta-function,
which we discuss at the end of the introduction and treat more fully in a companion paper [28].

1.2. Background and conventions for point processes. We first recall the definition of a
point process, and fix notation. A good reference for point processes with conventions similar
to ours is Hough et al. [23]. Other basic references for point processes include [4, 20, 48].

A point process is a recipe to randomly lay down points in some topological space. In more
formal terms: we consider a locally compact separable topological space X; in fact for us X will
always be R or aZ for some a > 0, equipped with the Euclidean topology, which is the discrete
topology on aZ. A point configuration u in X is a sequence of elements u := (u;),;ecz With
u; € X for all i € Z. For u a configuration, and V' C X, we use the notation

#Hy(u) :=#{i: u; €V}

to denote the number of elements of the configuration w inside V. We allow repeated values
uj = uy, with j # k, and count them with multiplicity. We let the configuration space Conf(X)
be the set of locally finite configurations, that is

Conf(X) := {u: #xr(u) < 400 for all compact K}.
We let 9 be the smallest topology on Conf(X) that contain all cylinder sets C, where
CV .= {u € Conf(X) : #v(u) =m},

where V' is any bounded Borel set and m is any non-negative integer.
1
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We let B(91) be the Borel o-algebra generated by 9t. A point process on X is a random
element u taking values in (Conf(X), B(9)). With this definition, the sets

{u : #31(u) =mza, #32(u) = ma, 7#Bn<u) = mn}

are measurable events, for any finite collection of Borel subsets By, Bs, ..., B, of X and for any
finite collection of non-negative integers mz, ..., m,. This definition allows points to coincide;
they may have a finite multiplicity. A point process is said to be simple if (with probability
one) any configuration has u; # u; if i # j.

In this paper we specialize to the case that the space is X is R or aZ for some a > 0.

For the point processes we will be interested in, we will require an additional condition.

Uniform Local Moments Condition. For each n > 1 there exists a constant C,, < 0o such
that

E[(#(1,041)(v)"] < Cpn, for all L € R. (1)
Here C,, depends on n but does not depend on L.

We say that a point process satisfying (1) has uniform local moments, and refer to it
subsequently as a u.l.m. point process.
Given a point process on R, for any n > 1 and any ¢ € C.(R"), the sum

> dugy sy, (2)
J1yeesiin
distinct
defines a random variable (that is, a measurable mapping from Conf(X) to C). In the case
that our point process has uniform local moments, the Riesz representation theorem implies
for that measure that for all n > 1 that there exists a unique measure p, on R" such that

E Z d(ujyy .o uj,) = Rnqb(ml,....,a:n)dpn(arl,...,xn), (3)

j]; kA '.' 7jn
distinct

for all ¢ € C.(R™). (See Theorem A.1 in Appendix A.1.) In the case that X = aZ, the measure
pn, will be supported on (aZ)™. The measure p,, is called the n-level correlation measure
of the process u. (The name n-level joint intensity measure is used interchangeably in
some literature, e.g. [23, Chap. 3].)

We recall the well-known fact that if V' is any Borel subset of R (or aZ), we have

n—1
Y W) Lv(uy,) = [ @#vu) =) (4)
F1yerin i=0

distinct

where 1y is the indicator function of the set V. In consequence

n—1
E T (v () — i) = /ndpn(:rl,...,:rn). (5)
1=0

From this it follows that a u.l.m. point process has finite constants A,, such that p,([L, L +
1™ < A,,.

The u.l.m. condition on a point process allows us to extend (2) to a slightly wider class of
functions ¢ than C.(R™). Let S(R™) be the Schwartz class of functions on R".

Proposition 1.1. Let u be a u.l.m. point process on R and let p, be the n-level correlation
measure of the process u (defined by (3) for all ¢ € C.(R™)). Then for alln > 1 andn € S(R™),
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the sum

Z n(wjy, ...y uj,)

‘71 9 ?jn
distinct

converges almost surely and defines an integrable random variable, with

E Z n(ujy s ..., uj,) = / N(T1y ey Tn) dpn (1, ooy T). (6)
Jlseesdn "
distinct
Proposition 1.1 is proved via a simple limiting argument combined with the dominated
convergence theorem. Theorem A.3 in Appendix A.2 gives a slightly more general result with
a full proof.

Remark 1.2. [t is possible for two distinct point processes share the same correlation functions
for all n > 1. For instance, if X and Y are random variables taking values in the natural
numbers which have the same moments but different distributions — see [50, Sec. 11.7] for a
construction — let u be the point process consisting of X points at the origin (and no other
points) and v be the point process consisting of Y points at the origin (and no other points).
Then u and v will have the same correlation measures but different distributions.

This phenomenon is not the usual situation: if a point process has uniform local moments
whose constants Cy, in (1) do not grow too quickly with n, then any other point process that has
the same correlation measures py for n > 1 must be identical in distribution. See [32, Theorem
2] and [23, Remark 1.2.4]. One may make a comparison between this fact and the classical
moment problem for random variables, see Lenard [33, p. 242], and for the moment problem
[45], 2], [46].

1.3. Statement of the problem. Throughout the paper we use the convention that the
Fourier transform of n(x) on R™ is given by

€)= [ nwe(-z-) da,

where e(y) = e*™ and x - € = 21&1 + -+ + 6.
We make the following definition.

Definition 1.3. Let u and v be u.l.m. point processes in R, and let B > 0. Suppose that for
each n > 1 and all n € S(R"™) whose Fourier transform 1 is supported in [—B, B]", we have

E Z n(ujy, ..., uj,) =E Z NV, s V5,)- (7)
jlv"vj’n jlv“'?j’n
distinct distinct
Then we say that v mimics u at the bandwidth [—B,B] (resp. v mimics u at the
bandwidth B).

The mimicry relation is an equivalence relation: it is reflexive, symmetric and transitive.
The symmetry property is if v mimics u at bandwidth B, then u mimics v at bandwidth B.

We have been motivated to consider this definition by an application to number theory
described in Subsection 1.8.

A point process is said to be supported on aZ if all configurations lie in aZ. We ask the
following question in general:

Band-limited Mimicry Problem. For a given u.l.m. point process u in R,
for what values a and B does there exist a u.l.m. point process u* supported
on the lattice aZ such that u* mimics u at the bandwidth B ?
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In this problem we do not require either the point processes we consider u or u* to be simple.

In the band-limited mimicry problem for a process u we are given partial information about
the n-level correlation measures for a putative point process u* supported on aZ. A major
difficulty in resolving the problem is that not all collections of measures p; are realizable as
the correlation measures of some point process. Determining which collections of measures are
in fact the correlation measures of some point process is referred to as the realizability of point
processes. Abstract criteria for the realizability of a point process were given by Lenard [33,
Theorem 4.1] in terms of correlation measures. These criteria are hard to apply in practice.
Lenard also specified a large set of inequalities that correlation functions must satisfy, which
provide a possible mechanism to prove non-realizability, e.g. [33, Propositions 3.4-3.8]. The
realizability problem has more recently been the subject of considerable work [27, 26, 11].

It is not clear for which point processes band-limited mimicry is possible at all (namely, for
some a, B > 0). This paper exhibits some processes where band-limited mimicry is possible
and establishes limits on allowable mimicry parameters (a, B).

1.4. Sampling and interpolation. There is a certain relation between the band-limited
mimicry problem and the classical problems of sampling and interpolating a signal. Below
by saying that a function is band-limited on R™, we mean that function has compactly sup-
ported Fourier transform.

Indeed, the sampling theorem (see Grafakos [19, Thm. 5.6.9]) tells us that a band-limited
function n € S(R™) which satisfies supp 7 C [—1/2a,1/2a]™ can be reconstructed (by inter-
polation) from its sample values on the lattice aZ, by the Whittaker-Shannon interpolation

formula
@)= > Hs(m"’) (8)

ke(azZ)™

where S(x) is a sinc-function, defined by

[ et
sm-{l . ©)

Therefore, given a Schwartz function n € S(R™) having supp 7 C [1/2a,1/2a]", for a u.l.m.
point process’s n-point correlation measures p,, we have

/n z)dpn(z /[R <k>f[5($’;’“) dpn(z). (10)

ke (aZ)m

Under mild hypotheses on p, we can interchange the sum and integral on the right side to

obtain
[ oo = 3 aw) [ Hs (B dpu). (1)

ke aZ)™

That is, we have

[ ntadont) = | n(w)dg) ), (12)

where p/, () is the atomic measure on R” supported on the lattice (aZ)™ with

atsh = [ T5(5 ) doto), (13)
i=1
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for all k = (ki, k2, ...,k,) € (aZ)"™. (There exist measures p, such that the integral in (13) will
not converge, but for all p, which we consider this integral will indeed converge.)

Nonetheless the existence of a measure p/, supported on (aZ)"™ satisfying (12) is only a
necessary condition that there exist a point process having such correlation measures. As
we will see, the measures defined by (12) are sometimes realized as correlation measures of a
point process, but sometimes they are not. The bandwidth % for the lattice aZ nonetheless
retains a certain importance, and we use the convention that the bandwidth B = ﬁ is called
the Nyquist bandwidth (for mimicry on aZ), following a naming convention in sampling
theory. (More often % = 2B is termed the Nyquist rate (measured in samples per second)
for sampling band-limited functions whose Fourier transform has maximum frequency B on a
lattice with spacing aZ.)

We note that there are general mathematical results asserting that for (stable) reconstruction
of an arbitrary band-limited signal on R" with frequencies confined to a finite set of intervals
having measure 2B using a sampling scheme on aZ", one must have B < ﬁ, see Landau [29,
Theorem 1], [30], who noted that the special case of an interval [—B, B] was originally due to
A. Beurling.

1.5. Point Processes studied. In this paper we will treat in detail the mimicry tradeoff
between a and B for two particular point processes for which mimicry occurs: the Poisson
process and the sine-process.

1.5.1. Poisson point process. The Poisson process is in fact a family of point processes indexed
by a parameter A > 0 called the intensity. The Poisson process of intensity A may be
characterized as follows [24, Ex. 2.5]: it is the unique point process w with correlation measures
defined by

E > o(w)y,owy,) = [ (a1, ..., mn) - A" day -+ dan, (14)
Rn

jl geee 7jn
distinct

for all n > 1 and for all ¢ € C.(R™). Thus its n-point correlation measure is dp,(z) = \"d"z.
From this fact and (5) it is easy to see for any A that the Poisson point process of intensity A
has uniform local moments.

1.5.2. Sine process. The sine process is a name often used for the determinantal point process

associated to the sine kernel K(z,y) = % for x # y, and K(z,z) = 1, cf. [10]). The

sine process may be characterized as follows [23, Ch. 4]: it is the unique point process z with
correlation measures dpp(x) = det,xn[S(z; — x;)] d"a:

E E (215 -s 24y) = d(x1, ...y xy) - det {S(ml — xj)} dxy -+ dey,, (15)
jl)"‘?jn Rn nxn
distinct

for all n > 1 and all ¢ € C.(R™). Here det, «,[-] denotes an n x n determinant, and S(x) is the
sinc function given in (9). Furthermore, by convention, the right hand side of (15) for n =1
has the meaning [, ¢(x1) dz1. From this correlation measure and (5) it is easy to see that the
sine process also has uniform local moments.

1.6. Main results: general processes. We prove two general results about mimicry. The
first result is a uniqueness result for the correlation functions of a mimicking process strictly
above the Nyquist bandwidth.

Theorem 1.4. For any u.l.m. point process u on R, if there exists a point process u' sup-
ported on aZ that mimics u at the bandwidth [—B, B] with B > i then its n-point correlation
measures, supported on (aZ)", are uniquely determined for alln > 1.
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The uniqueness assertion of Theorem 1.4 need not hold for B < ﬁ In fact, for all ¢ > 0 and
B = ﬁ, there exist two distinct point processes supported on aZ, with different correlation
measures for all n > 1, which mimic the Poisson process (of any intensity A). See Proposition
3.4.

We prove Theorem 1.4 in Section 2, where we give a reconstruction formula for these correla-
tion measures in Theorem 2.1. Note that n-point correlation functions do not always uniquely
determine a point process, but they do so provided a suitable bound on the growth of the local
moments of the process holds.

The second result gives an upper bound for the mimicry tradeoff for translation invariant
u.l.m. point processes. We call a point process R-translation invariant (in the correlation
sense) if for all n > 1 its n-point correlation measures satisfy for each (z1, z2, ..., z,) € R",

pn(x1+t, 22+t Jxn +1t) = pp(x1, 20, -+ ,2,) forall teR. (16)

The usual notion of translation-invariance for a point process requires that its probability law
be invariant in distribution under translations, compare [4, Sect. 4.2.6]. This notion implies
translation-invariance in the correlation sense. For u.l.m. point processes with a suitable
growth bound on their local moments, so that the correlation functions uniquely determine the
law of the process, the two definitions are equivalent.

We have a similar notion of (aZ)-translation invariance (in the correlation sense), for point
processes supported on the lattice aZ restricting (zy1,x9, -+ ,xy,) € (aZ)™ and t € aZ above.
Furthermore we say a point process u is trivial if for all Borel subsets B, #p(u) = 0 almost
surely. A point process is said to be non-trivial otherwise.

Theorem 1.5. Let u be a non-trivial u.l.m. point process on R that is R-translation-invariant
in the correlation sense. If a point process u' supported on aZ mimics u at the bandwidth
[-B, B|, then necessarily B < % That is, for any lattice aZ the process u cannot be mimicked
on aZ above twice its Nyquist bandwidth.

The bound % of Theorem 1.5 is tight. We show in Theorem 1.6 that it is attained for the
Poisson process.

Theorem 1.5 is derived at the end of Section 2 using a result that if u is a translation-
invariant point process (in the correlation sense) that can be mimicked by a process v’ on aZ
at a bandwidth B > ﬁ above the Nyquist bandwidth, then v’ is necessarily aZ-translation
invariant (in the correlation sense). We obtain a contradiction from this property if B > %

1.7. Main results: Poisson process and sine process. We prove specific results for the
Poisson process and the sine process. For each lattice spacing a, one may ask about the full
range of bandwidths B for which the point process can be mimicked.

For the Poisson process we have a complete characterization: mimicry is possible for B up
to and including twice the Nyquist bandwidth.

Theorem 1.6 (Poisson process mimicry - general bandwidth). Let A > 0 be arbitrary. We
have,

(i) For alla >0, if B < %, then the Poisson process with intensity A can be mimicked at
bandwidth [—B, B] by a u.l.m. point process supported on aZ.

(ii) For all a > 0, if B > %, then the Poisson process with intensity A cannot be mimicked
at bandwidth [—B, B] by a u.l.m. point process supported on aZ.

Corollary 1.7 (Poisson process mimicry - Nyquist bandwidth). Let A be arbitrary. For each
a > 0, the Poisson process with intensity A can be mimicked at the Nyquist bandwidth [—i, i]
by a u.l.m. point process supported on aZ.
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Mimicry for the Poisson process. Mimicry for the sine process.

FIGURE 1. A plot of the regions (a, B) for which the Poisson process and sine
process can be mimicked at bandwidth B by a point process with uniform
moments supported on aZ. In the green region these point processes can be
mimicked, while in the red region they cannot. In the white region of the
second plot we currently have no information.

We have stated this corollary for mimicry of the Poisson process at the Nyquist bandwidth
in order to compare with Corollary 1.9 for the sine process, which exhibits a very different
behavior in this regime.

Turning to the sine process, we obtain a partial answer on bandwidths when mimicry is
possible, for a general sampling lattice aZ.

Theorem 1.8 (Sine process mimicry - general bandwidth). We have,

i) For all0 < a < 1, if B < =2 then the sine process can be mimicked at bandwidth
a
[—B, B] by a u.l.m. point process supported on aZ.
i) For all0 < a <1, if B> 1=2 then the sine process cannot be mimicked at bandwidth
- p
[—B, B] by a u.l.m. point process supported on aZ.
(i) If a > % and B > %, then the sine process cannot be mimicked at bandwidth [—B, B]
by a u.l.m. point process supported on aZ.

This result gives a complete answer for the sine process at the Nyquist bandwidth. An
important feature of the answer is that existence of mimicry at the Nyquist bandwidth depends
on the value of a.

Corollary 1.9 (Sine process mimicry - Nyquist bandwidth). The sine process can be mimicked
by a u.l.m. point process supported on aZ at the Nyquist bandwidth [—%, %] if and only if
0<a<?i.

=3

This answer contrasts with the Poisson process case, where mimicry is possible at the Nyquist
bandwidth for every a > 0.

For 0 <a < %, Theorem 1.8 implies mimicry is possible slightly beyond the Nyquist band-

width, by an amount depending on a. For a > % we do not determine the complete range



8 JEFFREY C. LAGARIAS AND BRAD RODGERS

of mimicry, however Theorem 1.8 shows that the mimicry range is strictly below the Nyquist
bandwidth.

We note that the sine process at a = % is the largest value of a where the Nyquist bandwidth
can be achieved. This process plays an important role in [28].

The regions of a, B spelled out by these theorems are plotted in Figure 1. It would be very
interesting to understand those a, B not described by Theorem 1.8, left white in Figure 1.

1.8. An application to the Alternative Hypothesis. The questions treated in this paper
were motivated by a problem originating in number theory regarding zeros of the Riemann zeta
function. We treat this problem in a companion paper [28], and give a brief description here.

Let the nontrivial zeros of the Riemann zeta function in the upper half-plane be listed as
{Br + ik }kez in increasing order of ordinate, taking 0 < 3 < 79 < v3---. We define the
rescaled zeta zero ordinates

Vi = 5=k log V-

It is known that the v have on average a spacing of 1 between consecutive values. (This result
goes back to Riemann’s original paper [40], for a proof see [36, Corollary 14.2].) The Alternative
Hypothesis refers to the (seemingly outlandish) supposition that the spacings 711 — 3% always
lie approximately in the set %Z. It is discussed in a 2004 AIM note [1], Farmer, Gonek and Lee
[17, Section 2] and in Baluyot [7].

The Alternative Hypothesis is of special interest because of known connections between
the spacings of zeros of the zeta function and the existence of Landau-Siegel zeros (see e.g.
Conrey and Iwaniec [14]). The Alternative Hypothesis is expected to be false, and indeed
it is contradicted by the well-known GUE Hypothesis, that the spacing between zeros of the
zeta function follow a distribution coming from random matrix theory, concerning rescaled
eigenvalues of the Gaussian Unitary Ensemble, cf. [35], [38], [25]. On the other hand, the GUE
Hypothesis remains a conjecture, even assuming the Riemann Hypothesis, and it is natural
to ask whether the Alternative Hypothesis can be ruled out just by what is known about the
statistical distribution of zeros of the zeta function. By this we mean the known information
about n-level correlation functions of zeros that was proved by Rudnick and Sarnak [44] for all
n > 1, extending results for n = 2 and n = 3 ([35], [21]).

Rudnick and Sarnak characterized the correlation functions of zeros against certain band-
limited test functions; their result amounts to knowing just a bit less than the assertion that
the renormalized zeros mimic the sine process at a bandwidth B = 1. In the companion paper
[28] we review an exact statement of their result, and using ideas related to those in this paper,
we show that the Alternative Hypothesis cannot be ruled out by what is known about the
statistical distribution of zeros of the zeta function. This is done via the construction of a
counterexample Alternative Hypothesis point process which uses the 1/2-discrete sine process
in its construction.

Recently Tao has independently treated the Alternative Hypothesis (using slightly different
methods) in a blog post [51]. He constructs an alternate distribution ACUE for eigenvalues
of unitary matrices U(N); in a suitable scaling limit as N — oo his construction yields the
Alternative Hypothesis point process treated here.

The present paper investigates conditions permitting mimicking by a lattice process aZ in
greater generality than [28]. In particular, Corollary 1.9 reveals that the ability to construct
a counterexample Alternative Hypothesis point process depends upon quite special properties
of the sine process and the lattice-bandwidth combination (a, B) = (1/2,1). In particular (see
Figure 1), the point (a, B) = (1/2,1) occurs on the boundary of mimicry for the sine process,
and even a slight perturbation off this lattice spacing or bandwidth would no longer allow for
it.
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We note that while the Band-Limited Mimicry Problem as posed above seems natural from
the perspective of both applications to number theory and what one is able to say about it, one
may reasonably ask broader questions. For instance, one may generalize Definition 1.3 so that
(7) holds for a different collection of functions 7 than those with Fourier transform supported
on [—B, B]" (e.g. one might allow 7 to be bandlimited in [—By,, B,]" for constants B,, which
vary with n). It would be interesting to see if a more general theory along these lines can be
developed, but we do not pursue this here.

2. THE NYQUIST BANDWIDTH

The Nyquist bandwidth has an important implications regarding correlation measures. In
this section we prove for B strictly larger than the Nyquist bandwidth i that all the correlation
measures of any u.l.m. mimicking discrete point process on aZ are uniquely determined. This
result does not address the question whether any such mimicking discrete point process exists.
We then study translation invariance (in the correlation sense) and deduce that R translation
invariant point processes cannot be mimicked above twice the Nyquist bandwidth.

2.1. Uniqueness of correlation functions above the Nyquist bandwidth. In what fol-
lows for 0 < € < 1/2, we let 3. be an even bump function with the following four properties:

0<pB(¢) <1, forallfeR, (17)

p(§) =1, forf] <1/2—¢, (18)

Pe(§) =0, for|] >1/2+e¢, (19)

Be(3+2)=1—B(3—2), forall0<z<1/2. (20)

A ‘bump function’ is any function that is C*°-smooth and compactly supported. We omit
the details in constructing such bump functions, see Lee [31, Lemma 2.22]. The function S,(&)

should be seen as a smooth approximation to the indicator function of the interval from [—%, %]
Note further that the functions ..., 5c(§ — 1), Be(€), Be(§ + 1), ... form a partition of unity for the
real line.

Theorem 2.1. If a u.l.m. point process u can be mimicked at bandwidth B by a point process
u’ supported on aZ, and if B > i, then the correlation measures pl, of ', which are supported
on (aZ)", are uniquely determined and satisfy

a

Pa({(k1 ko, kn)}) = / b(*= k) dpn(x)  for allk € (aZ)", (21)
1

for any bump function 3. satisfying (17) -(20) and for all sufficiently small e (where sufficiently
small depends on B).

Remark 2.2. For ¢ > 0, the function 3.(z) is a Schwartz function and the integral (21)
converges due to the assumption of uniform local moments on the point process .

Proof. We begin by showing that for = € (aZ)",

Note that

n

[15-(" ) =TT [ se@peteton — ko 23
=1

a
=1
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For fixed 14, if (x; — ki)/a € Z, then f(§) = e(&(x; — k;)/a) has period 1 and so using the
properties (18), (19), and (20),
3/2

/ ﬁe(ﬁ)e(é(xz - kl)/a) d§ = ﬂs(é)e(g(xz - kz)/a) dg§
R /2

1/2
_ / | 6+ 140+ A1+ Ol — )
1/2
—/ 1-e(&(zi — ki)/a) d
—-1/2
= 1, (). (24)

Applying this formula for each i in (23) yields (22). (Note that the equality (24) does not hold
if k; e R~ CLZ.)
Let n € S(R™) denote

n(x) =[] 5 (= k) (25)

a
=1
We have
n
7(€) = a"e(~k - &) | | e (ag)-
i=1
which is supported in [—i -5, i + £]*. If B > 1/(2a), then for sufficiently small € > 0 we

have supp 7 C [-B, B]".
From the support of «’ falling in aZ, and from (22) we have

Pk} = E Y (.4

Jl AR ’jn
distinct

= E > nf,...uj) (26)

]]; 2 "' 7jn
distinct

If u is mimicked at bandwidth B by «’, since supp 7 C [—B, B]" we have

E Z n(u}l,...,ugn):E Z n(ujl,...,ujn):/ n(x)dpn(x),

. ) . . Rn
J1rsdn J1yensdn
distinct distinct

where the second equality holds by Proposition 1.1. Combining this equality with (26) gives

) = [ o) = [ TLA(2) dpto)

a
as asserted. O

Theorem 1.4 is a direct consequence of Theorem 2.1.

2.2. Translation-invariant point processes and Nyqist bandwidth. Recall from Section
1.6 that a point process on R is R translation-invariant (in the correlation sense) if every n-level
correlation function is translation invariant: For all n > 1,

pn(T1, T2, ooy y) = pp(x1 + t,z0 + 8, .oy +t) forall teR.

A point process is aZ translation-invariant (in the correlation sense) if every n-level correlation
function is translation invariant: p,(z1, z2,...,2n) = pn(x1 +t, 22 + t,..., 2, + t) for all t € aZ.
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Corollary 2.3. Let u be a u.l.m. point process that is R translation-invariant in the correlation
sense. Suppose that u can be mimicked by a point process v’ supported on aZ at bandwidth B
with B > % Then v is aZ translation-invariant in the correlation sense. That is, for each
n > 1 the (uniquely determined) correlation measure p, of u', which is supported on (aZ)", is
aZ-translation invariant.

Proof. Since B > i, by Theorem 2.1 the correlation functions of the process «’ are uniquely

determined. The aZ-translation invariance of all the correlation functions p;l(kl, ko, ..., ky) of
u’ then follows from (21). In more detail: we have, for each (ki, ko, ...,k,) € (aZ)™ and any
translation k € aZ,

g~k k= 0h) = [ TTA( ) dpuan,o )

- /nﬁﬁe(yi;ki>dpn(y1—k,--- Yo — k)

i)dpn(yl,‘-- s Yn)

Il
T
H'z: [

=

m
VN

<

\
™

= p;z(kh 7kn)7

with the third equality holding by R-translation invariance of the n-point correlation function
pn of u, and the first and last inequality hold (for (k1 — k,--- ,kn, — k) € (aZ)™) by (21).
(Actually only the aZ-translation invariance of p,, is needed for the third equality to hold.) O

2.3. Proof of Theorem 1.5.

Proof of Theorem 1.5. We suppose that there exists a non-trivial process u’ supported on aZ
that mimics u to bandwidth B > é and obtain a contradiction. By the result of Theorem 2.3
the process v’ is aZ-translation invariant in the correlation sense.

On the other hand, letting o’ = %a, we have that v’ is also supported on the lattice a'Z = 1aZ,
as this includes aZ as a sublattice. But the process v’ mimics u to bandwidth B > é = 2%,,
which is above the Nyquist bandwidth for the lattice a’Z. Therefore Theorem 2.3 applies to
say that this process v’ must be a'Z-translation invariant in the correlation sense.

However v is manifestly not a’'Z translation-invariant in the correlation sense, because it is
supported on aZ, a lattice which does not include the point a’. Indeed, because v’ is non-trivial
and translation invariant in the correlation sense on aZ, we must have E# o, (u’) > 0. Then
translation invariance in the correlation sense on a’Z implies E# .1 (u) > 0, which cannot be

the case if u’ is supported on aZ. ]

We note that Theorem 1.5 is not true if the assumption of translation invariance is dropped.
Indeed, consider the point process which consists of a single point located at the position 0
almost surely. Since for any a this point process is already itself supported on the lattice aZ,
mimicry occurs for any parameters (a, B).

3. MIMICRY OF THE POISSON PROCESS

3.1. The discrete Poisson process. In this section we prove Theorem 1.6, describing when
the Poisson process can be mimicked.

It ends up that in the range of a, B where the process can be mimicked, it is mimicked just
by the discrete Poisson process.
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Definition 3.1. For any a > 0 and any A > 0 the discrete Poisson process on aZ of
intensity X\ is the point process w* = (w;f)jez such that for each k € aZ, the number of points
at each site #(w*) are independent and identically distributed random variables, with each
variable a Poisson random variable with mean al.

The discrete Poisson process on aZ of intensity A is never a simple point process.

Proposition 3.2. Letting w* be the discrete Poisson process on aZ of intensity A, we have for
alln > 1 and ¢ € S(R™),

E > o(w),.wi)= > (a))"¢(k).

J1sensdn ke(azZ)™
distinct

Proof. This follows from the independence of the random variables #(w*) for different k, and
the fact that the factorial moments of Poisson random variables satisfy

E e (w™) #r(w®) = 1) - (#x(w®) = (m = 1)) = (aA)™
O

3.2. Mimicry for B < %, no mimicry otherwise. We now show the first part of Theorem
1.6, that the Poisson process can be mimicked by the discrete Poisson process. The proof
depends on the Poisson summation formula, which we recall in a suitable form.

Theorem 3.3 (Poisson summation formula). For all ¢ € S(R™),

Py ek = > 60)

ke(azZ)™ je(a=1zZ)n

Proof. The usual formulation of Poisson summation states this for a = 1 (see [19, Theorem

3.L17)): Y open o(k) = Xiez ¢(j). Replacing ¢(z) with a"¢(azx) yields the result for general
a. g

Proof of Theorem 1.6, part (i). We show that for B < 1/a, the Poisson process with intensity
A is mimicked at bandwidth [—B, B] by the discrete Poisson process on aZ with intensity .
For n € S(R™) with supp 7 C [-B, B]", we must show that

E Z n(wj,, ..., wj,) =E Z W W ).

j17~--7jn .]1» 9.]71
distinct distinct

Using (14) for the Poisson process and Proposition 3.2 for the discrete Poisson process, this
requires the equality

/ n@\'d'z = > (aX)"n(k). (27)
" ke(aZ)n
The left side is A"7(0). Using Poisson summation the right side is

(@)™ > k=" Y i) = A"i0),

ke(aZ)™ je€(@=tzZ)n
where the last equality holds because supp 7 C [—f é]", since B < % Since 7} is a Schwartz
function it necessarily must vanish at all points on the boundary of its support, hence the only
non-vanishing point k in (a=*Z)" is k = 0. O

The other half of Theorem 1.6 follows from results we have already proved:

Proof of Theorem 1.6, part (ii). This is a direct consequence of Theorem 1.5. O
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As we have mentioned in the context of Theorem 1.4, the mimicry demonstrated above need
not be unique outside the range B > %

Proposition 3.4. For any A > 0 and any a and B satisfying 0 < B < %, there exist two
distinct point processes supported on aZ. which mimic the Poisson process of intensity A\, and
have different correlation measures for allm > 1 .

Proof. Let w* be the discrete Poisson process on aZ with intensity A and let w** be the discrete
Poisson process on 2aZ with intensity A. For B < %, we have that both w* and w** mimic the
Poisson process at bandwidth [—B, B]. For w*, this is implied directly by Theorem 1.6. For
w**, we also verify mimicry from Theorem 1.6, with the lattice spacing a replaced by a lattice
spacing of 2a. Yet 2aZ C aZ, so both w* and w** are supported on the lattice aZ, and it is
plain from the definition that w* and w** have different correlation measures for alln > 1. O

4. MIMICRY OF THE SINE PROCESS

4.1. The discrete sine process. In this section we prove Theorem 1.8. A key tool will be
the discrete sine process.

Theorem 4.1. For each 0 < a < 1, there exists a unique point process z* on aZ such that for
allmn > 1 and all ¢ € S(R™),

E D ¢z nz,)= D, a"det[S(ki — k;)]o(k). (28)
1stinc

Moreover z* has uniform local moments.

Definition 4.2. The point process z* described by Theorem 4.1 is called the discrete sine
process on aZ.

The discrete sine process is not new; in various guises it has appeared in [9, 24, 53, 54] and a
proof of its existence follows the same ideas as for the (continuous) sine process, coming from
the theory of determinantal point processes. The details of this proof however do not seem to
be in the literature. We provide a proof of Theorem 4.1 in the appendix of a companion paper
[28]. For a > 1, there does not exist a point process with correlation structure described by
(28), see [28, Remark A.3].

The discrete sine process on aZ is a simple point process for 0 < a < 1. ([28, Proposition 4.4]).
This simplicity property exhibits repulsion of points, a characteristic property of determinantal
point processes, cf. [23, Chap. 1].

4.2. Mimicry for B < 177“ We show that the sine process can be mimicked by the discrete
sine process; this is the first part of Theorem 1.8. As in the previous section, our proof depends
on Poisson summation.

Proof of Theorem 1.8, part (i). We show for B < 177“ = 1/a — 1, the sine process is mimicked
by the discrete sine process on aZ. By Theorem 4.1 and (15) this is just a matter of showing
that for n € S(R™) with supp /) C [-B, B|",

[ e detlsten —aplare =ar 3 ) detlsth — k)l (29)
ke(aZ)™

Let g(x) = n(x) det,xn[S(z; — x;)]. Then (29) is just the claim that
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and as the left hand side is §(0), this identity will be verified by Poisson summation if we show

g(y) = 0 whenever y ¢ (—1/a,1/a)™.
For notational reasons we let £ = [—1/2,1/2]. One has the well-known computation

S(z) = /R 15(6)e(€) d

so, where G,, is the symmetric group,

det[S(z; — ;)] = Z sgn(o )Hs(l‘i_‘rj)

nxn
0'6671
= sgn / e U(i))> d*¢
oeG, Bn
= sgn / e — &1 )) d"e.
0'6671, E"

Hence for y € R”,

i) = 3 senlo) [ [ el-aye qu ) (o) e

0'6671

= Sgn(a)/ Ny — (&1 = &-1(1)) s Un — (& — Eo—1(m))) 7€ (30)

ceG, En
But for y ¢ (—1/a,1/a)"™, we must have |y;| > 1/a for some i, and hence for £ € E™, we have
lyi — (& — &o-1(3))] = 1/a — 1. If 7 is supported in [-B, B]" with B < 1/a — 1, we therefore
have that the integrand in (30) vanishes for all y ¢ (—1/a,1/a)", and §(y) = 0 as we wanted.
This therefore verifies (29) and proves the claim. O

4.3. No mimicry for a < % and B > ITT“ We now prove part (ii) of Theorem 1.8. For

a < 1/2, our strategy will be to suppose the sine process can be mimicked for bandwidth
B> 177“ and obtain a contradiction. Our main tool, as before, is Lemma 2.1, but now we use
2-level correlations.

Proof of Theorem 1.8, part (ii). Let a < 1/2 and let z be the sine process. Suppose there exists
a u.l.m. point process z’ supported on aZ which mimics z at bandwidth B > 1;—“ =1/a—1,;
we will obtain a contradiction.

For a < 1/2, this implies B > 1/2a and so Theorem 2.1 applies. Thus for any k € (aZ)? and
all sufficiently small € > 0,

) = [ e(P ) B () (1= (o = ) dndo

a a

- [ s - R [(05(2) 5(EEE) (1 [9) Jus

—a?(1- /Rﬁa(az/)Qe((kl k)1~ [v]) dv).

where the computation in the second line uses the Fourier pair f(z) = S(z)2, f(€) = (1—|¢]),
and the computation in the third line makes use of the fact that §. is even to simplify the
resulting expression. As this is true for all sufficiently small €, we can take the limit as ¢ — 0,
and see that

1/2a
(k) = a?(1 - / (k1 = ko)) (1= ]} dv) = a®(1 = S(ks — kz)?),

—1/2a
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with the last identity following because (1 — |v|)4 is supported in [—1/2a,1/2a] for a < 1/2.
Hence for any n € S(R), we must have for the point process 2/,

E Z J17 j2 - a2 Z ﬂ(k)(l _S(kl _k2)2)- (31)

J1,J2 ke(aZ)?
distinct

Yet if 2/ mimics the sine process process at bandwidth B for supp # C [~ B, B]?,

B S k) = [ 0@ = S - ) dordre (32

J1,J2
distinct

Let g(z) = n(z)(1 — S(z1 — 22)?), so that as a consequence of (30) for n = 2,

31, 2) = w1, m) — /R A — vy + ©)(1— €])s de. (33)

By Poisson summation the expression on the right hand side of (31) is
> a6,

j€(a=12)?

while the expression in (32) is
3(0).

These expressions are not equal if 7 is chosen such that 77(£) > 0 for all £ and 7 is supported in a
sufficiently small neighborhood of the point (1/a—1, —(1/a—1)) with /(1/a—1, —(1/a—1)) # 0,
since in this case

> i) =a0) ~ [ #1/a=&.=1/a+ )1~ ) de (34)

je(a—17)2

due to (33) and the facts that 7(j) = 0 for any j € (a™'Z)? and 7H(j1 — &, j2 + &) = 0 for all
€€ (—1,1)if j € (a~'Z)? unless j = (1/a,—1/a) (or possibly j = 0 if a = 1/2). But then (34)
is not equal to §(0) since 7(1/a —1,—(1/a — 1)) # 0.

This shows that (31) cannot equal (32) a contradiction. O

4.4. No mimicry for a > } and B > 4. Finally we prove part (iii) of Theorem 1.8. This
proof is rather more involved than the other proofs in this paper, and we break it into three
steps:
(i) in step 1, we show that band-limited mimicry can be extended to a slightly more
general class of test-functions 1 than Schwartz-class;

(ii) in step 2 we develop some computations for the sine-determinant involving a particular
set of functions h, () allowed by step 1, which vanish on aZ except at = 0 or z = ¢,
where / is an odd multiple of a.

(iii) in step 3 we suppose the sine process can be mimicked for the relevant a and B
and obtain a contradiction through a violation of suitable moment inequalities, as the
parameter £ — oo.

Step 1: We extend the class of test functions outside the Schwartz class, to which band-
limited mimicry can be applied:

Lemma 4.3. If u and v are u.l.m. point processes and u mimics v at bandwidth [—B, B, then
for allm > 1 if n € C(R™) is a function that can be written as

(X1, ..., xn) = h(z1) - - h(xy)
with
(i) h(&) = ffoo o(t) dt where o is of bounded variation, and
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(ii) o and h are supported in [—B, B]
then we have

E Z n(ujy,...,uj,) =E Z N(vj, -y 05,)-

Jiseesdn J1seesdn
distinct distinct

The proof of Lemma 4.3 is given in Appendix A.3. The proof is a refinement of the proof of
Theorem A.3 in Appendix A.

The point of Lemma 4.3 is that 7 is just slightly out of the Schwartz class, but expectations
of these statistics can still be taken.

Step 2: We fix a > 0 and let £ = (2k + 1)a be an odd multiple of a. Define the functions

hao(z) = S(f) + S(x - 5),

a a

As ¢ is an odd multiple of a, we have

sin TE sin TE 1
hao(®) = —z*% — % . =0(-—=>)
“ oz TE_ (2k + 1) 1+ 22

as |z| — oo. These functions h, are included among the test functions A allowed in Lemma
4.3. A key property of the function hg¢(z) is that it vanishes at all + € aZ except z = 0 and
x =/, where it takes the value 1. We set

Ha,é(xly 7$n) = ha,é(xl) te ha,é(xn)a

and note that Hg ¢(21,...,2,) = O(1+1x§ ﬁ)

, with implicit constants depending on a, ¢, n.

Furthermore we define

®,(a) = lim Hoo(x1,...;xpn) det[S(x; — x5)] d"x.

£—00,0dd Jpn nxn

(The limit is taken over odd multiples of a, as £ — o0.) Because of the decay of H,, the
integrals inside the limit are well-defined, though it is not yet obvious that the limit exists.

Lemma 4.4. The limit defining ®,(a) exists for alln > 1 and a > 0, and

(I)l(a) = 2a
(202, if a € (0,1/2]
®y(a) = {1/2 —2a+4a®, ifac (1/2,00),
o if a € (0,1/2]
®3(a) = {(Qa -1 ifa€ (1/2,00)
0 if a € (0,1/2]
®4(a) = § (a—1/2)*(1 - 20a + 12a°) ifae(l/2]]

17/4 — 22a + 484 — 48a3 + 16a* if a € (1,00).

Proof. In the first place, note

hae(§) = a- (1 + (=€) La(§), (35)

where for notational reasons we write I,(£) = 1_1/24,1/2¢)(§)- Fix n and a, and for z € R", let

9e(x) = Ho(x) det [S(z; — 27)].
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Using (30), and recalling the notational convention E = [—1/2,1/2], we see

/Hag ) det[S(z; — ;)] d"x

=010 = 3 sen(o) [ @[] (14 (606 ~ &) Lues — o) €. (30)
0€6n j=1

We will take the limit of this expression as ¢ — co. By multiplying cross terms of (36), using
the Riemann-Lebesgue Lemma to eliminate any terms in which an exponential remains, we see
the limit as ¢ — oo exists and

®,(0) = Y sen(@N ()" [ H (& — 010 6 (31)
o€y
where
N(0) = #{T C {1,...n} : o(T) =T}
— 2w(o)’
with w(o) the number of cycles in the permutation o. To deduce the remainder of the Lemma
one evaluates the integrals on the right side of (37) noting that the integral in (37) breaks into

separate parts for each cycle of o.
To evaluate the integrals, for v > 2 we define

fulr) = /En (& = &) Ly (§n1 — ) L=y (§n — €1) "€

One can verify

2r — 2 if r € (0,1)
fa(r) = {1, if r € [1,00),

r?2 — 23 ifr
f3(r):{3 23 if r € (0,1)

1 if r € [1,00)

(16r3 — 14r1)/3 if r €(0,1/2)
fa(r) =< (1 —8r +24r% — 1603 +2r1) /3 if r € [1/2,1)

1 if r € [1,00).

(A computer algebra system is helpful here.) Painstakingly inserting these into (37) yields the
computations of ®1, ..., ®4 that have been claimed. ]

Remark 4.5. Using cycle index polynomials one can make the computation indicated in the
last line of the above proof more efficient by noting that if Z(Sy; aq, ...,a,) is the cycle index
polynomial of & in the variables ay, ..., an, the formula (37) simplifies to

O, (a) = (—1)"nla"Z(6n; —2f1(1/2a), ..., —2f,(1/2a)),
where we adopt the convention fi(r) =1 for all r.

Step 3: We can now complete the last part of the proof of Theorem 1.8.

Proof of Theorem 1.8, part (iii). Take a > 1/2. We now suppose that the sine process z can
be mimicked at a bandwidth B > 1/2a by a u.l.m. point process 2’ supported on aZ, and we
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will obtain a contradiction. For £ always an odd multiple of a, consider the random variable
Xi =3 hal)) (38)
J

= #10.0(), (39)

with the second identity dependent on the assumption that 2’ is supported on aZ.
We consider two sets of inequalities satisfied by expectation values of functions of this random
variable. First, Xy is an nonnegative integer-valued random variable, and so clearly

E X,(X, — 1)(X; — 2)(X, — 3) > 0. (40)
Secondly, let
my :=E X/
denote the r-th moment of X,;. By a consequence of the Hamburger moment criterion (see e.g.
[45, Theorem 1.2]), we have,

0 1
L
Dy=det {m; m; m;| >0, (41)
mg mymy

We claim that for any choice of a > 3 at least one of the inequalities (40) or (41) will not
hold for all sufficiently large £.

For consider first a € (1/2,1]. Note that from (38) and the indicator function identity (4)
we have

EXo(Xe—1)(Xe—2)(Xe—3)=E > Hayl},, 2}, 7}, 2),). (42)

jl?"’?jn

distinct
The computation (35) reveals that iLayg(f) = —2mial f£ (—0t)1,(t) dt, with the integrand of
bounded variation and supported in [—1/2a,1/2a] C [— B , B], so Lemma 4.3 may be applied;

if 2/ mimics z, then (42) is equal to

/ Hy(x det [S(z; — x;)] d*a.
Taking the limit of this expression as £ — oo along odd multiples of a, Lemma 4.4 yields
lim EX@(X@ — 1)<Xg — 2)(Xg — 3) = @4(@)

{—o00,0dd
= (a—1/2)*(1 — 20a + 12a).
For a € (1/2,1], it can be checked that this number is strictly negative, but this contradicts
(40).
Now consider a > 1. As above we have

lm EX,(X,— 1) (X, — (n—1)) = @ula),

{—00,0dd

and from this, using Lemma 4.4, one may extract
lim EX;=2a, (fora>0)

£—00,0dd

1
li E X2 4a?, (f 1/2
Eﬁ;ong)dd £ 2+ o, (fora>1/2)

1 3
eﬁl;onéddEXe §+2a+8a, (fora > 1/2)

7
lim EX}= - +2a+4a®+16a*, (fora > 1),
{—00,0dd 4
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and further, using the notation in (41), one may compute

1
lim D;=—-—a?% (fora>1).
£—00,0dd ¢ 2 ( )
(A computer algebra system is helpful here.) But this is strictly negative for any choice of
a € (1,00), and this contradicts (41).
Thus we have obtained a contradiction for all @ > 1/2, so in this range such a u.l.m. point
process 2z’ does not exist. ]

5. FURTHER QUESTIONS

This paper formulated the band-limited mimicking problem for u.l.m. point processes on
R. We studied two such processes where band-limited mimicry is possible, the Poisson process
and the sine process. These processes are special in at least two ways:

(i) Both processes are R translation-invariant, in probability law and in the correlation
sense defined in Section 1.6.

(ii) These processes have n-point correlation measures for each n > 1 that have absolutely
continuous densities dpy, (1, X2, ..., Tn) = fu(T1, ..., Tn)dx1dTs. . dXY, With fi (21,22, -+, 24)
defined on R", with the property that they holomorphically extend to entire functions
fn(z1, 22, .0y 25) on C™.

We raise several general questions.

First, we do not know to what extent the band-limited mimicry phenomenon discussed in
this paper exists for general u.l.m. point processes. Are there u.l.m. point processes P that
do not permit band-limited mimicry at any bandwidth B > 07 If there are, how general is the
class of such processes for which band-limited mimicry exists for some (a, B) with B > 07

Second, related to this question: which u.l.m. point processes u have the property that if u
supports band-limited mimicry for some B > 0 on a lattice aZ then it supports band-limited
mimicry for some B = B(a’) > 0 on each lattice a’Z having 0 < @’ < a? Does this class of
processes u include all R-translation invariant u.l.m. point processes?

Third, what restrictions does band-limited mimicry entail for point processes not necessarily
supported on a lattice? For instance, let 71 be the class of all u.l.m. point processes u which
mimic the sine process at a bandwidth B = 1, and let

p=sup {m : there exists u € 77 such that almost surely |u; — u;| > m for all ¢ # j}.

Theorem 1.8 shows that x4 > 1/2. The method of proof in Carneiro et. al [12], which makes
use only of pair correlation, should be able to be straightforwardly modified to show that
w < .606894. It may be that p = 1/2.

Likewise let

A :=inf {£: there exists u € T; such that almost surely |u;+1 —u;| < ¢ for all j € Z}.

What is the value of A7 Is it finite? It may be that a reinterpretation of methods from number
theory (see e.g. Soundararajan [49]) can yield further upper bounds for x and lower bounds
for A\. Questions about both 1 and A are closely connected to classical questions about gaps
between zeros of the Riemann zeta function.

Fourth, to what extent do classical theorems and conjectures about the sine process (or zeros
of the zeta function or eigenvalues of a random matrix) remain true for a point process which
merely mimics the sine-process at some bandwidth? For instance, central limit theorems for
mesoscopic statistics will still hold for processes which only mimic the sine-process (see [41,
Sec. 7]), along with suitably interpreted central limit theorems for characteristic polynomials
(using the method of [16, Sec. 7]). To take another example, to what extent do results and
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conjectures about extreme values of the zeta function or characteristic polynomials (see e.g.
[5, 6, 13, 18, 37, 39]) rely only upon information preserved by band-limited mimicry?

We also raise some more specific questions.

First, Theorem 1.8 of this paper did not completely determine the parameter ranges of a
and B permitting band-limited mimicry for the sine process. What happens for those (a, B)
in the white region of Figure 17 Can the sine process be mimicked there or not?

Second, it is obviously of interest to investigate the extent to which the band-limited mimicry
phenomenon extends to other point processes. Two one-parameter classes of point processes
which may be of interest to study are:

(i) Valké and Virag [52] define the one-parameter family of Sineg processes, where 5 > 0.
All members of this one-parameter family are R-translation invariant, and they have
the Poisson process as a suitable scaling limit as § — 0, see Allez and Dumaz [3].
The sine-process corresponds to f = 2, and the Gaussian orthogonal and symplectic
ensembles corresponds to 8 = 1 and 4 respectively.

(ii) Sodin [47] introduces the one-parameter family of Gi,-processes (for a € R) as a model
of critical points of characteristic polynomials for random matrices. In particular,
the Gip-process is presented as a model for the limiting distribution of (normalized)
spacings of zeros of the derivative of the Riemann ¢-function £(s) = s(s—l)ﬂ_ff(%)g(s)
assuming RH and the multiple correlation conjecture, cf. [47, Corollary 2.3]. (The
multiple correlation conjecture is equivalent to the GUE Hypothesis, in the form [28,
Conjecture 2.1].)
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APPENDIX A. SOME GENERAL RESULTS ON CORRELATION MEASURES

In this appendix we collect and prove some results regarding the correlation functions of
point processes which we have used in the paper.

A.1. Existence of correlation measures. The following result essentially is [33, Prop 3.2].
We include the simple proof here for completeness.

Theorem A.l. If u is a point process on R such that for any compact set K the random
variable # 5 (u) has finite moments of all orders, then for all n > 1 there exists a unique Borel
measure p, on R™ such that

E Z d(ujyy .. uj,) = Rn¢(:U1,...,:Un)dpn(xl,...,xn), (43)

]]; kA '.' 7jn
distinct

for all ¢ € C.(R™).

Remark A.2. A point process with uniform local moments will satisfy the hypothesis of The-
orem A.1.

Proof. The fact that #x(u) has finite n-th moment for any compact K implies that for ¢ €
C:(R™), the random variables > j, . . ¢(uj,,...,u;,) are integrable, and thus the mapping A
distinct
defined by e
A(b =K Z ¢(Uj1, "'7ujn)’

]]; bAd '.' 7j’rb
distinct
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is a positive linear functional on C.(R™). The Riesz representation theorem [43, Ch. 2, Theorem
2.14] thus implies the existence of the Borel measure p,,. O

A.2. Bootstrapping test functions from C,.(R") to S(R™). We show that for u.l.m. point
processes the correlation measures make sense with respect to not only C.(R") test functions,
but also Schwartz class test functions. Actually we show a bit more.

Theorem A.3. If u is a u.l.m. point process on R and p, is the measure on R™ defined by
(43) for ¢ € C.(R™), then (43) also holds for all n > 1 and all ¢ € C(R™) such that

Az, .y Tn) = O((l +22) 1 (1 —|—x%)>

Remark A.4. Hence in particular for a point process with uniform local moments, (43) holds
for all ¢ € S(R™), for alln > 1.

Proof. Let
1 1
= . 44
Q(ﬂjla ,:En) 1+33% 1_|_:L,721 ( )
We first establish for the point process u that
E Z (wjy, ...uj,) < +o0. (45)
j17 7.]n
distinct
For, there exists a absolute constant K such that
Q1 ...,zn) < K Z QL1 oo L)V, 1) (%) - Lip, 041y (2)
LeZn
for all x € R, so we have that
E Y Qujy,eug,) K -E DY QLo Ln)#ny 0y (W) - #1141 (1)
J1yeensdn Lezn
distinct
n
<K Y QL L) [TE #1111 ()™
LeZn =1
<KCp Y Q(Ly, ..., Ln) < +00,
Lezn
using Fatou’s lemma and Hélder’s inequality in the second line.
For the same reasons, we have
Q(z1, ..y xpn) dpn(z1, ...y Tp) < +00. (46)
Rn
Note also that (45) implies that almost surely
Z Q(ujy, ..., uj,) converges. (47)
j17“‘7jn
distinct

Let 8 € C.(R™) be a bump function takes the value 1 in some neighborhood of 0 € R™ and
which satisfies 0 < f(x) < 1 for all z € R™. For R > 0 define ¢r(z) = ¢(x)B(x/R), and note
for all x € R",

lim ¢p(z) = ¢(x).
R—o0
Moreover ¢ € C.(R™) for all R, and by assumption there is a constant C' > 0 such that
(GR(T1, s 2)| < C Q1,0 70)
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for all z € R".
Now from (47), it is easy to see that almost surely

hm Z Or(Ujy s - uj,) = Z A(Ujy s oo U, )

jl? 7.771 .]177.777.
distinct distinct

Hence using (45),(46) and dominated convergence,

E Z ¢(uj17"'7ujn):1,%i_{réo Z OR(Wjys s U,

jlv"'vjn jlv'--’jn
distinct distinct
= lim OR(T1, ey ) dpp (1, ooey Tp)
R—o00 Rn

d)(:rl? 7:1771) dpn(xh "-73771)7
R

as claimed. OJ

A.3. Bootstrapping band-limited test functions. We prove Lemma 4.3. The proof will
involve similar ideas to that of Theorem A.3. We require two lemmas from analysis first.

Below we consider functions o which are of bounded variation. We use the notation var(o)
to denote the total variation of the function ¢ on the real line.

Lemma A.5. Suppose s( fﬁ t)dt where o and s are integrable and o is of bounded
variation. Then

§(z) = O(min(||s| 11wy, var(o)/2%)).

Proof. This is a combination of two standard results. The bound §(x) < ||s||;1 is obvious, and
the bound var(c)/x? comes from integrating by parts twice in computing the Fourier transform:

1271'15 1 J
z)l = ‘/ —227m - 47r x2/ o (€)1

Combining these bounds proves the lemma. O

Lemma A.6. If o(t) is supported on the interval [A, B] and of bounded variation, then for any
€ > 0 there exists a Schwartz function &(t) supported on [A, B] such that

var(a) < var(o),
and

HO’—O‘HLl < e

Proof. As o is of bounded variation, the Jordan decomposition (see [42, Sec. 5.2]) tells us there
exists monotonic nondecreasing functions o4 and o_ such that 0 = 64 —o_ and o4 and o_
are constant for ¢ ¢ [A, B], that is

oi(t) =04(A), forallt <A,
o+(t) =04 (B), forallt> B,

and moreover var(o) = var(o) + var(o_). It is a straightforward exercise to construct mono-
tonically nondecreasing functions 64 and ¢_ with Schwartz class derivatives such that for either
+ or —,
16+ — ol <e€/2,
gi(t) =04(A), forallt <A,
64(t) =04(B), forallt> B.
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Note var(64) = var(oy) = 04(B) — 0_(A) and var(6_) = var(o_) = 0_(B) — 0_(4), so if
G=654—5_,
var(d) < var(é) + var(6_) = var(oy) + var(o_) = var(o),

verifying the first inequality of the lemma. Because & is compactly supported and is the
difference of two functions with Schwartz class derivatives, & is itself Schwartz class. Moreover
from the triangle inequality,

o =0l <llor —opllp + 16— =0l <e
verifying the second claim of the lemma. O
We finally turn to Lemma 4.3.

Proof of Lemma 4.3. The proof follows that of Theorem A.3. We show for all R > 1 there
exists nr € S(R™) such that

lim nr(x) =n(z), forallz e R", (48)
R—o0

supp g C [-B,B]" for all R > 1, (49)

nr(z) = O(Q(z)), forallzeR" R>1, (50)

where @ is the the quadratically decaying function defined in (44). Then exactly by the
argument in the proof of Theorem A.3, we have

E Z n(ujl,...,ujn):]%i_rgoE Z nr(wj, ..., uj,)
J1yeesdn J1seensdn

distinct distinct
= I%EI;OE ‘ . UR(Ujl’ "'7vjn)
J1s--5]n
distinct
=K E NV, s V5, )-
j17'~~:jn
distinct

The functions ng are constructed in the following way. For o as in statement of Lemma 4.3,
let 6 be a function described by Lemma A.6 such that supp 6 C [-B, B], var(dr) < var(o)
and [|[6r — o||z1 < 1/R. Define hy by

and note that
supp hgr C [_Ba BL (51)
and for all £, |hg(€) — h(€)] < 1/R so that from the support of both functions h, hg,
hr(z) = h(z)| < |hg = h|| 0 < 2B/R. (52)
Finally from Lemma A.5, we have
hg(z) = O(min(||hg|| .1, var(5r) /2°))
= O(min(2B||gg|| 1, var(o) /2?))

:O<1—¢—1w2)' (53)

Letting ng(x1,...,zn) = hi(x1) - - - hn(xy), we see that (48), (49), (50) are satisfied, using (52),
(51), (53) respectively. This completes the proof. O
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