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ABSTRACT

Electroencephalography (EEG)-based brain-computer interface (BCl) systems infer brain signals
recorded via EEG without using common neuromuscular pathways. User brain response to BCl
error is a contributor to non-stationarity of the EEG signal and poses challenges in developing
reliable active BCl control. Many passive BCl implementations, on the other hand, have the
detection of error-related brain activity as their primary goal. Therefore, reliable detection of
this signal is crucial in both active and passive BCls. In this work, we propose CREST: a novel
covariance-based method that uses Riemannian and Euclidean geometry and combines spatial
and temporal aspects of the feedback-related brain activity in response to BCl error. We evaluate
our proposed method with two datasets: an active BCl for 1-D cursor control using motor
imagery and a passive BCl for 2-D cursor control. We show significant improvement across

participants in both datasets compared to existing methods.

1. Introduction

Brain-computer interface (BCI) systems record brain
activity directly from the brain using methods such as
electroencephalography (EEG) and attempt to infer the
user’s intent [1,2]. Active BCIs such as motor imagery
(MI) BCIs are among common BCI systems in which
the user imagines moving a part of her/his body result-
ing in a decrease in power (called an event-related
desynchronization or ERD) in various frequency
bands [3,4]. Movement imagination of different body
parts leads to spatially different desynchronization that
can be used by the BCI to detect the imagined move-
ment. In practice, the imagined movement classes
(such as right/left hand) can be mapped to, for exam-
ple, a switch, to control the movement of a robotic
limb or a wheelchair. This BCI output is referred to
as BCI feedback and the brain response to BCI feed-
back as feedback-related brain activity. One source of
non-stationarity in EEG signals is the feedback-related
brain activity [5]. Error-related potentials (ErrP) and
error-related spectral components are among the com-
ponents of this signal [5]. If not taken into account,
these signals can pose challenges for real-world appli-
cation of a BCI system [5-7]. In previous work, we
have shown that when the feedback-related activity is
appropriately modeled, the information can be
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combined with the motor imagery classification to
greatly improve the overall BCI performance [5,6].

Separate work in passive BCIs (pBCI) [9,10] has
shown that the user’s intentions or emotional states
can be detected through passive cognitive monitoring
and that this signal can be used as an (implicit) control
source [11,12]. Therefore, in both active and passive
BCIs, single-trial classification of the user’s state with
respect to the BCI feedback (whether the BCI output is
perceived as an error/undesired or not) is a critical
component of a reliable BCI.

Previous work on classifying feedback-related brain
activity varies by the type of features used and the
classifier that is trained on these features [7]. For
instance, authors in [8] and [13] focused on temporal
features from one or two fronto-central channels, while
others such as [11] considered all available EEG chan-
nels and used a windowed-means approach as
instructed by [14].

Riemannian geometry has been shown to be promis-
ing for reliable classification in various BCI paradigms
[15-18]. Methods based on Riemannian geometry have
also been used for data augmentation to balance classes
for error detection in a P300 speller task [19]. However,
to our knowledge, there is no work in the literature that
attempts to classify error-related or feedback-related
brain activity using Riemannian methods.

CONTACT M. Mousavi @ mahta@ucsd.edu @ Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA; V. R. de Sa
@ desa@ucsd.edu @ Department of Cognitive Science, Halicioglu Data Science Institute, University of California, San Diego, CA, USA
© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built

upon in any way.


http://orcid.org/0000-0002-0139-7295
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2019.1671040&domain=pdf&date_stamp=2020-04-11

In this paper, we explore ways to improve the clas-
sification of the error-related brain activity so as to
further improve its contribution to an overall BCI
system. Specifically, we investigate the spatio-temporal
aspects of the error-related brain activity using covar-
iance matrices in two different BCI paradigms by look-
ing at both space and time covariances through
Euclidean and Riemannian geometry. Our goal is to
better distinguish whether the BCI feedback (output) is
perceived by the user as an error.

We evaluate our proposed methods through two
different datasets: one from our previous study in
which participants were actively controlling cursor
movements using right/left-hand motor imagery and
another dataset shared with us by Zander and Krol
et al. [11] in which participants were passively control-
ling a cursor on a screen in front of them. An earlier
version of this work appeared in [20].

2. Data collection and pre-processing

2.1. Dataset I: active cursor control with motor
imagery

Data were recorded from 10 participants after the study
was approved by the University Institutional Review
Board at UC San Diego. All participants signed
a consent form prior to participating in the experiment.
EEG data were recorded using a 64-channel BrainAmp
system (Brain Products GmbH) at 5000 Hz. Channels
were located according to the international 10-20 sys-
tem and were referenced online to FCz.

Participants were instructed to use motor imagery
of their right/left hand to control a cursor on a screen
in front of them to the right/left toward a target [21].
At the beginning of each trial, the cursor and the
target appeared at the center and three steps away
from the center at either right or left side of the
screen, respectively (see Figure 1). The cursor moved
one step every second and trials ended when the
cursor hit the target location or the other end of the
screen. Participants believed that they were in control
of the cursor movements; however, the cursor moved
based on a pre-determined sequence of movements
that was kept the same across participants. This was
to have enough cursor movements toward/away from
the target (i.e. good/bad movements) for each partici-
pant irrespective of the motor imagery performance.
The cursor sequence of movement was randomly
generated subject to a few constraints, e.g., no more
than two consecutive changes in direction were
allowed. For more details about the experiment, please
refer to [5].
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Figure 1. An example of a trial in dataset I. Participants were
instructed to use right/left-hand motor imagery to move the
cursor (the blue circle) to right/left toward the target (white
circle). We considered movements toward/away from the tar-
get as good/bad movements perceived by the participants [5].

The overall goal in a motor-imagery BCI is to detect
the imagined class. The common method is to train
a classifier to distinguish between right-hand and left-
hand motor imagery (or whatever imagery classes have
been mapped to ‘move cursor right’ and ‘move cursor
left’). As shown in our earlier work [5], there is another
classifiable aspect in the EEG signal - whether the
cursor moved in the desired or non-desired direction.
In the analysis for this paper, our goal is to improve
this classification of whether the user was satisfied with
the last cursor movement or not, i.e. if the cursor had
just moved toward (good) or away (bad) from the
target. We call this a good/bad (G/B) classifier.

2.2. Dataset II: passive cursor control

This dataset was recorded at the Technische
Universitit Berlin, Germany, from 19 participants and
shared with us by Zander and Krol et al. [11]. All
participants signed a consent form accepted by the
ethics committee of the Department of Psychology
and Ergonomics before taking part in the experiment.
Data were recorded using a 64-channel BrainAmp sys-
tem (Brain Products GmbH) at 500 Hz. Channels were
located according to the international 10-20 system
and were referenced online to FCz.

This study had multiple parts including offline and
online cursor control; however, we considered only the
offline data that were used for calibration in the origi-
nal study. This part of the study consisted of a cursor
moving randomly on a 4 x 4 grid. Participants were
instructed to observe cursor movements on the grid
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and evaluate each movement as ‘appropriate’ or ‘inap-
propriate’ with respect to reaching the target, which
was located in one of the corners of the grid. The
cursor moved randomly to one of up to eight adjacent
nodes until it reached the target, after which another
target was selected and the procedure restarted in the
next trial. For more details about the experiment,
please refer to [11].

Angular deviance from the optimal path was used to
describe and categorize the movements. In Figure 2,
the target is in the top right corner and the cursor (red)
at the bottom row. A movement upwards (depicted in
Figure 2-b) has an angular deviance of 18°, whereas
Figure 2-c depicts an angular deviance of 63°. We
considered angles that were below 45° as good move-
ments and angles above 130° as bad movements and
the EEG data corresponding to these two labels were
used to train a good/bad (G/B) classifier. The angles in
between were labeled as neutral and not used for
classification.

2.3. Pre-processing

In each dataset, sections that were contaminated with
excessive noise were removed. Independent component
analysis (ICA) [22] was applied to data from each parti-
cipant and independent components representing muscle
and eye artifacts were removed. Pre-processing was done
in MATLAB [23] and EEGLAB [24]. A maximum of 1
and 3 noisy channels were removed from datasets I and
I1, respectively. The removed channels were interpolated
using EEGLAB and all 64 channels were used for feature
extraction and classification. Data were re-referenced to
the common average, downsampled to 100 Hz, and fil-
tered in 0.5-10, 1-3, 2-5, 4-7, 6-10, 7-12, 10-15, 12-19,
18-25, 19-30, 25-35, 30-40 Hz with a 100th-order FIR
filter using a Kaiser window. The first frequency band was
used for the windowed-means method only as will be
described in more detail later. Next, data were epoched

50-950 ms after each cursor movement and this segment
is called a ‘step’ in what follows. Classification results are
reported on a single cursor movement, i.e. for every step.

3. Feature extraction and classification

Feature extraction and classification were implemented
in Python. We used scikit-learn [25] to implement
classifiers and the pyRiemann toolbox [26] to calculate
Riemannian distances and means.

In each dataset, classes (good and bad) were
balanced by randomly subsampling the larger class.
Therefore, we generated 10 instances of train-test com-
binations which were kept the same across the different
tested methods. In each instance, the train-test ratio is
about 4:1. On average, in dataset I instances, there are
573 train and 142 test steps. In dataset II instances, the
average train and test steps are 197 and 49, respectively.

Covariance matrices are used at the core of several
feature extraction methods in BCI applications
[15,27,28]. The methods discussed in this work use
space and time covariances of the good (toward the
target) and bad (away from the target) steps. Moreover,
we looked at different frequency bands, namely 1-3,
2-5, 4-7, 6-10, 7-12, 10-15, 12-19, 18-25, 19-30,
25-35, 30-40 Hz covering the low and high theta,
mu, and beta frequency bands and to cover for poten-
tial individual differences [5,29]. Covariance matrices
were calculated in each frequency band separately.
Next, we will explain how we estimated covariances
to capture spatial and temporal features and how
these were used for classification.

3.1. Space and time covariances

Let p represent the number of channels, ¢ the number of
time samples andi € {1, ..., N} where N is the number of
steps available. Let X; € RP** be an EEG epoch (i.e. step)
and C,, and C;, be the sample space and time covariances
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Figure 2. In dataset Il, participants were instructed to ‘judge’ each cursor (red full circle) movement (indicated by the arrow in the
static figure) as satisfactory or unsatisfactory with respect to its movement toward/away from the target (red empty circle) [11].
Diagram (a) depicts a cursor's location and diagrams (b) and (c) specify different next cursor movements and how the angle
between the cursor direction of movement and the direct line connecting the cursor to the target location is defined. We
considered angles smaller than 45° as good movements and larger than 130° as bad movements perceived by the participants.



for the i step, respectively. Since the number of time
samples in our case (i.e. 90 time samples at 100 Hz
sampling rate) is larger than the number of EEG channels
p = 64, time covariances are not full rank and thus not
positive definite. Also, as we removed eye and muscle
components through ICA, space covariances are also
rank deficient. Therefore, we used regularization to
make the covariance matrices full-rank. Space and time
covariances were regularized as follows:

C—(1-a)C+ atrac}\e{(C) I, (1)

where C is the covariance matrix, « is the regularization
parameter, trace(C) is the sum of the diagonal elements
of C and I is the identity matrix with the same size as C.
We used a data-driven method [30] to estimate the
regularization parameter for data from each participant,
in each frequency band for space and time covariances
separately. We only used train data to estimate the
shrinkage parameters («).

3.2. Common spatial patterns (CSP)

The filterbank common spatial patterns (FB-
CSP) algorithm was proposed by Ang et al. [32] to
detect the imagined movement class in a motor ima-
gery BCIL. Inspired by this method, in our previous
work, we used a similar approach to classify the error-
related brain activity in a motor imagery BCI [5].

Let C§ and Cfi represent the space covariance of the
i good and bad steps, respectively, for a specific fre-
quency band. The average of the trace normalized
sample covariances for each of the good and bad
classes were estimated as:

1
Y, = NZ C% /trace(C¥) (2)
and
1 b b
Yy = N Z C, /trace(C,) 3)

respectively, where N is the number of steps. As men-
tioned earlier, the number of steps in good and bad
classes were balanced. CSP filters for each frequency
band were estimated by simultaneous diagonalization
of the two covariance matrices:

WIS, W =2A¢ WIS,w=Aa (4)

where A¢ and A? are diagonal matrices such that AS +
AP = I [27]. CSP filters, represented by the columns of
W, are the solutions of the following generalized eigen-
value problem:
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YW = AZ,W. ()

Next, 6 filters (eigenvectors) corresponding to the 3
largest and smallest eigenvalues were selected. EEG
epochs were filtered through the selected filters in
each frequency band. The logarithm of the variance
(across time) of the filtered EEG data through each of
the 6 selected filters were calculated as features. These 6
features in each of the 11 frequency bands were used
for classification using a 66D regularized linear discri-
minant analysis (r-LDA) classifier [25,27,31].

3.3. Common temporal patterns (CTP)

The common temporal patterns (CTP) algorithm, pro-
posed by Yu et al. [33], is the temporal counterpart of
the common spatial patterns in which the sample mean
of the good and bad time covariances are considered
instead of space covariances. Similar to FB-CSP, we
consider a filterbank version of CTP. EEG epochs
were filtered through 6 CTP filters (corresponding to
the 3 largest and smallest eigenvalues) in each fre-
quency band and the logarithm of the variance (across
64 channels) of the filtered epochs were selected as
features (6 features for each band, hence a total of 66
features). A regularized linear discriminant analysis
(r-LDA) was trained on the selected features [25,31].

3.4. Common spatial and temporal patterns
(CSP-CTP)

To combine spatio-temporal features, we first calculated
CSP filters and selected 6 filters (corresponding to the 3
largest and smallest eigenvalues). Then, EEG epochs were
filtered through the CSP filters corresponding to the good
class. The CTP method was then used to capture tem-
poral features by learning 6 CTP filters (corresponding to
the 3 largest and smallest eigenvalues). Another set of 6
CTP filters were trained using the EEG epochs filtered
through the CSP filters corresponding to the bad class.
Figure 3 describes this method.

The above procedure was done in each frequency
band separately to select a total of 36 features and the
selected features from all 11 frequency bands were
concatenated. Finally, a regularized-LDA classifier was
trained [25,31].

3.5. Distance to Riemannian mean of spatial
covariances (DRM-S)

Full-rank covariance matrices lie on a Riemannian
manifold pertaining to the symmetric positive definite
(SPD) matrices [15]. Let A(n) be the set of all n x n
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6 filters

Single-band EEG

epoch: 64x90 ’

6 filters

Q
6\'5*9 cTP 6x3
Q / ' X

36 features

6 filters

Figure 3. Method of CSP-CTP: CSP filters are trained on each frequency band (p = 64 and t = 90). Six CSP filters (corresponding to
the 3 largest and smallest eigenvalues) are selected and EEG epochs are filtered through each. Then, CTP filters are trained on the

good (G) and bad (B) CSP-filtered data separately.

SPD matrices. The Riemannian distance between A; €
A(n) and A, € A(n) is defined as follows:

Be(A1, 42) = [[Log(A; ' As) | = [Z log%} 2 ()
i=1

where A; are the eigenvalues of (A;'A;). Since A; and
A, are both SPD, A; are real positive (non-zero) values.
Also, ||.||p represents the Frobenius norm and Log(.)
the matrix logarithm.

The mean of the SPD matrices Aj, A, ..., A; on the
Riemannian manifold is defined as follows [15]:

!
M(Ay1, Ay, ..., A)) = argmingey () ZS%(X, A). (7)
i=1
There is no closed form solution for (7); however, it
can be solved iteratively [34].

Based on the defined matrix relationships on the
manifold, we propose a filter bank generalization of
the minimum distance to Riemannian mean (MDM)
classifier [26]. First, the Riemannian mean of the good
and bad space covariances in each frequency band on
the training set were estimated as described earlier.
Next, in each frequency band, features were selected
as the Riemannian distances to the Riemannian means
of the good and bad classes. This resulted in a total of
22 features: 11 frequency bands x2 good and bad
classes. A logistic regression classifier was trained on
the selected features [25]. We trained a logistic regres-
sion classifier for all Riemannian methods since we
found that the distribution of features was far from
a multivariate normal distribution.

3.6. Distance to Riemannian mean of temporal
covariances (DRM-T)

This method is the temporal counterpart of the
DRM-S method described previously. After the
Riemannian mean of the good and bad time covar-
iances in each frequency band on the training set

were estimated, features were selected as the
Riemannian distances to the Riemannian means of
the good and bad classes. This resulted in a total of
22 features: 11 frequency bands x2 good and bad
classes. Logistic regression was trained on the
selected features [25].

3.7. Distance to Riemannian mean of spatial and
temporal covariances (DRM-ST)

This method combines spatial and temporal
Riemannian geometry-based features by concatenat-
ing DRM-S and DRM-T features described in the
previous two subsections. This resulted in a total of
44 features: 11 frequency bands x2 good and bad
classes x2 time and space covariances. A logistic
regression classifier was trained on the selected fea-
tures [25].

3.8. Covariance-based Riemannian and Euclidean
spatio-temporal classifier (CREST)

We combined DRM-ST and CSP-CTP to capture spatio-
temporal features using both Riemannian and common
spatial and temporal classifiers. We call this method
CREST. For each classifier, we first calculated the signed
distance of each trial to the decision hyperplane and applied
a logistic function to estimate the probability of the trial
belonging to the the good (or bad) class as the classifier
score. Logistic regression was used to combine DRM-ST
and CSP-CTP classifier scores [25].

3.9. Windowed-means (WM)

We compared our proposed methods with the windowed
means method which is widely used for single-trial event-
related potential (ERP) classification [11,14]. EEG data on
each channel were bandpass filtered to 0.5-10 Hz as
described earlier and epoched 50-950 ms after each cursor
movement. We calculated the mean of the signal on each



channel in 9 non-overlapping time windows, ie. each
covering 100 ms. Then, a regularized linear discriminant
analysis (r-LDA) classifier was trained on the selected
features [14,25,31].

3.10. CREST+WM

Finally, we combined DRM-ST, CSP-CTP and WM as well
to compare with the WM classifier to determine whether
WM and CREST capture different features. Logistic regres-
sion was used to combine DRM-ST, CSP-CTP and WM
classifier scores as explained earlier [25].

4. Results and discussion

Figures 4 and 5 plot the event-related potential (ERP),
i.e. the average EEG waveform time-locked to the cur-
sor movement, for ‘Good’ and ‘Bad’ classes on channel
Fz across participants for datasets I and II, respectively.
For the plot, EEG data for each participant were high-
pass filtered at 1 Hz and epoched —100 to 1000 ms time
locked to each cursor movement. Then, the average
waveform for each participant was calculated in each
class. The solid lines on each plot represent the average
across participants and the shaded color represents the

Fz
+1uV
-1uV
Good (n=10)
Bad (n=10)
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standard error of the mean. Note that the two classes
correspond to cursor movements toward/away from
the target and our goal in this paper is to train
a classifier to reliably distinguish among them after
every cursor movement.

We compared the G/B classification performance in
datasets I and II using CSP and DRM-S as well as CTP
and DRM-T. Tables 1 and 2 report the average (first
number in each entry) and standard error of the mean
(second number in each entry) for classification accu-
racy over 10 instances of train-test for each participant
in datasets I and II, respectively. On average,
Riemannian methods perform better across partici-
pants and this difference is statistically significant for
dataset I (paired-sample t-test, p<0.03). DRM-T per-
forms significantly better than CTP in dataset II
(paired-sample t-test, p< 0.01). However, in this data-
set, the difference between DRM-S and CSP is not
statistically significant across participants.

Tables 3 and 4 report the classification accuracy of the
windowed-means method (WM) and our proposed spatio-
temporal methods: DRM-ST and CSP-CTP, CREST and
CREST+WM. We used paired-sample t-tests to compare
the difference between WM and the other methods across
participants for each dataset. CREST and CREST+WM

0.1s

Figure 4. ERP in dataset I. The blue curve corresponds to the brain response to ‘good’ cursor movements, i.e. toward the target. The
red curve, on the other hand, corresponds to the brain response to ‘bad’ movements, i.e. away from the target.

-1pV
Good (n=19)
Bad (n=19)

Figure 5. ERP in dataset Il. The blue curve corresponds to the brain response to ‘good’ cursor movements, i.e. toward the target. The
red curve, on the other hand, corresponds to the brain response to ‘bad’ movements, i.e. away from the target.



124 M. MOUSAVI AND V. R. DE SA

Table 1. Dataset I: G/B classification accuracy using spatial and
temporal features separately. Each table entry is the average
classification accuracy (first number) together with the standard
error of the mean (second number) over 10 instances of train-
test for each participant. Riemannian methods outperform their
counterparts and this difference is significant across partici-
pants (paired-sample t-test, p < 0.03).

ID CSP DRM-S CcTP DRM-T
Al 0.77/0.009 0.77/0.009 0.65/0.012 0.72/0.013
A2 0.74/0.017 0.74/0.011 0.64/0.015 0.68/0.014
A3 0.58/0.006 0.62/0.012 0.52/0.008 0.56/0.014
A4 0.74/0.007 0.76/0.010 0.63/0.011 0.64/0.011
A5 0.67/0.008 0.67/0.011 0.56/0.009 0.59/0.014
A6 0.73/0.006 0.72/0.010 0.62/0.011 0.68/0.014
A7 0.76/0.008 0.77/0.009 0.61/0.010 0.66/0.010
A8 0.66/0.016 0.71/0.009 0.66/0.013 0.71/0.007
A9 0.75/0.009 0.81/0.012 0.65/0.009 0.72/0.011
A10 0.67/0.016 0.71/0.015 0.66/0.012 0.69/0.012
Average 0.71/0.019 0.73/0.017 0.62/0.014 0.67/0.016

Table 2. Dataset Il: G/B classification accuracy using spatial and
temporal features separately. Each table entry is the average
classification accuracy (first number) together with the standard
error of the mean (second number) over 10 instances of train-test
for each participant. DRM-T outperforms its counterpart and this
difference is significant across participants (paired-sample t-test,
p<0.01). However, the difference between CSP and DRM-S is not
statistically significant.

ID Csp DRM-S CTP DRM-T
P1 0.76/0.015 0.74/0.010 0.57/0.017 0.61/0.012
P2 0.64/0.018 0.65/0.015 0.61/0.016 0.67/0.015
P3 0.87/0.016 0.83/0.013 0.72/0.014 0.74/0.014
P4 0.65/0.026 0.73/0.023 0.62/0.021 0.71/0.016
P5 0.67/0.019 0.62/0.026 0.53/0.023 0.63/0.024
P6 0.63/0.027 0.62/0.018 0.54/0.019 0.53/0.022
P7 0.72/0.017 0.68/0.022 0.54/0.017 0.52/0.017
P8 0.84/0.017 0.80/0.012 0.52/0.019 0.62/0.024
P9 0.58/0.024 0.58/0.020 0.50/0.027 0.46/0.025
P10 0.54/0.027 0.58/0.018 0.55/0.017 0.61/0.019
P11 0.71/0.020 0.73/0.025 0.66/0.023 0.73/0.022
P12 0.64/0.023 0.69/0.014 0.59/0.017 0.62/0.023
P13 0.57/0.016 0.57/0.025 0.52/0.018 0.56/0.015
P14 0.60/0.017 0.62/0.023 0.58/0.016 0.56/0.016
P15 0.66/0.025 0.66/0.025 0.61/0.016 0.60/0.021
P16 0.77/0.016 0.71/0.026 0.63/0.010 0.64/0.011
P17 0.65/0.024 0.68/0.015 0.57/0.032 0.62/0.024
P18 0.59/0.018 0.64/0.023 0.60/0.030 0.55/0.027
P19 0.64/0.021 0.70/0.016 0.60/0.011 0.64/0.013
Average 0.67/0.021 0.68/0.016 0.58/0.012 0.61/0.016

outperform WM in both datasets (paired-sample t-test,
p<0.006, which stays significant at the 0.05 threshold
with Bonferroni correction for the number of tests).

The difference in performance of DRM-ST and WM is
not statistically significant for either of the datasets.
However, CSP-CTP outperforms WM in dataset II and
this difference is statistically significant (paired-sample
t-test, p < 0.005, which stays significant at the 0.05 thresh-
old with Bonferroni correction for the number of tests),
while the performance of CSP-CTP in dataset I is not
statistically different from that of WM.

Figures 6 and 7 show WM, CREST and CREST+WM
performance as bar plots for easier visualization.

Table 3. Dataset I: G/B classification accuracy comparing the
proposed spatio-temporal methods and WM. Each table entry
is the average classification accuracy (first number) together
with the standard error of the mean (second number) over 10
instances of train-test for each participant. Significantly
improved results across participants are represented in bold
fonts (paired-sample t-test, p< 0.006, which stays significant at
the 0.05 threshold with Bonferroni correction for the number of

tests, i.e. 4).

ID WM DRM-ST CSP-CTP CREST CREST+WM
Al 0.75/0.006 0.79/0.009 0.80/0.009 0.82/0.005  0.83/0.006
A2 0.79/0.010 0.77/0.012 0.76/0.007 0.82/0.007  0.85/0.007
A3 0.68/0.010 0.60/0.016 0.61/0.011 0.63/0.008 0.68/0.010
A4 0.83/0.011 0.77/0.014 0.88/0.011 0.91/0.007  0.90/0.009
A5 0.73/0.011 0.67/0.011 0.77/0.008 0.79/0.008  0.80/0.012
A6 0.72/0.009 0.74/0.015 0.69/0.008 0.76/0.004 0.78/0.005
A7 0.79/0.011 0.77/0.008 0.76/0.009 0.81/0.007  0.84/0.008
A8 0.69/0.014 0.72/0.005 0.71/0.012 0.76/0.011  0.77/0.014
A9 0.75/0.008 0.81/0.010 0.73/0.010 0.82/0.006  0.84/0.010
A10 0.74/0.014 0.73/0.016 0.75/0.009 0.78/0.007  0.80/0.009
Average 0.75/0.015 0.74/0.019 0.75/0.023 0.79/0.022 0.81/0.019

Table 4. Dataset Il: G/B classification accuracy comparing the
proposed spatio-temporal methods and WM. Each table entry is
the average classification accuracy (first number) together with
the standard error of the mean (second number) over 10
instances of train-test for each participant. Significantly
improved results across participants are represented in bold
fonts (paired-sample t-test, p< 0.005, which stays significant at
the 0.05 threshold with Bonferroni correction for the number of

tests, i.e. 4).

ID WM DRM-ST  CSP-CTP CREST  CREST+WM
P1 0.77/0.008 0.72/0.019 0.83/0.017 0.84/0.012 0.81/0.013
P2 0.74/0.019 0.70/0.008 0.77/0.016 0.77/0.020 0.75/0.014
P3 0.84/0.021 0.83/0.011 0.90/0.013  0.90/0.010  0.89/0.016
P4 0.77/0.010 0.75/0.031 0.73/0.021 0.76/0.022  0.80/0.017
P5 0.70/0.020 0.66/0.025 0.79/0.018 0.79/0.017  0.78/0.022
P6 0.68/0.021 0.60/0.010 0.69/0.026 0.70/0.024 0.72/0.023
P7 0.72/0.017 0.67/0.011 0.73/0.017 0.73/0.012 0.76/0.014
P8 0.83/0.014 0.79/0.016 0.92/0.014 0.92/0.017 0.88/0.016
P9 0.58/0.023 0.54/0.025 0.64/0.024 0.65/0.023  0.63/0.024
P10 0.51/0.021 0.62/0.022 0.58/0.021 0.63/0.019 0.57/0.023
P11 0.77/0.017 0.76/0.021 0.78/0.017 0.79/0.023  0.84/0.018
P12 0.69/0.021 0.68/0.024 0.77/0.011 0.73/0.022 0.74/0.016
P13 0.59/0.015 0.58/0.013 0.72/0.024 0.71/0.023  0.66/0.010
P14 0.70/0.005 0.61/0.019 0.68/0.019 0.69/0.016 0.71/0.015
P15 0.68/0.016 0.66/0.019 0.67/0.024 0.70/0.020 0.73/0.016
P16 0.80/0.010 0.70/0.019 0.80/0.020 0.81/0.022 0.82/0.012
P17 0.80/0.009 0.68/0.021 0.77/0.025 0.77/0.020 0.82/0.019
P18 0.71/0.027 0.63/0.028 0.72/0.017 0.69/0.023 0.72/0.025
P19 0.57/0.026 0.71/0.021 0.73/0.009 0.74/0.017 0.73/0.016
Average 0.71/0.021 0.68/0.017 0.75/0.019 0.75/0.018 0.76/0.019

5. Conclusions

We proposed spatio-temporal methods to classify the
error-related brain activity and evaluated our results on
two different datasets. The first dataset is from an
active motor imagery BCI in which the user’s brain
response to the BCI feedback is an implicit piece of
information and using this information can improve
the overall BCI performance [5]. We also evaluated our
proposed methods on a passive BCI dataset in which
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Figure 6. WM, CREST and CREST+WM in dataset I. The bars and error bars represent the average classification accuracy and the
standard error of the mean, respectively, i.e. first and second entries in Table 3 columns 2, 5 and 6.
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Figure 7. WM, CREST and CREST+WM in dataset Il. The bars and error bars represent the average classification accuracy and the
standard error of the mean, respectively, i.e. the first and second entries in Table 4 columns 2, 5 and 6.

participants were evaluating the movements of
a cursor. In the latter, error-related brain activity is
the core information to be classified even though it is
not explicitly provided by the user.

We compared DRM-S and DRM-T that use
Riemannian distances as features, with CSP and CTP
methods, respectively, in their capacity for classifying
feedback-related brain activity in response to BCI
error. Our results show that on average across partici-
pants in both datasets, methods that use features from

Riemannian geometry are more powerful when con-
sidering spatial or temporal features separately.

We also proposed methods to combine spatial and
temporal features that use Riemannian distances (DRM-
ST) and Euclidean geometry-based methods of common
patterns (CSP-CTP). We also proposed to combine
these two methods (CREST) and showed that this com-
bined method outperforms the windowed-means (WM)
method and the difference is statistically significant
across participants in both datasets.
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Abbreviations

BCl
CREST

brain-computer interface
Covariance-based Riemannian and Euclidean spatio-temporal
classifier

CSP common spatial patterns

CTP  common temporal patterns

DRM  distance to Riemannian mean

EEG  electroencephalography

ERD  event-related desynchronization

ERP  event-related potential

G/B good/bad

Mi motor imagery

pBCl  passive brain-computer interface

r-LDA regularized linear discriminant analysis

WM windowed-means
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