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Abstract— Although pain is widely recognized to be a mul-
tidimensional experience, it is typically measured by uni-
dimensional patient self-reported visual analog scale (VAS).
However, self-reported pain is subjective, difficult to interpret
and sometimes impossible to obtain. Machine learning models
have been developed to automatically recognize pain at both the
frame level and sequence (or video) level. Many methods use
or learn facial action units (AUs) defined by the Facial Action
Coding System (FACS) for describing facial expressions with
muscle movement. In this paper, we analyze the relationship
between sequence-level multidimensional pain measurements
and frame-level AUs and an AU derived pain-related measure,
the Prkachin and Solomon Pain Intensity (PSPI). We study
methods that learn sequence-level metrics from frame-level
metrics. Specifically, we explore an extended multitask learning
model to predict VAS from human-labeled AUs with the help of
other sequence-level pain measurements during training. This
model consists of two parts: a multitask learning neural net-
work model to predict multidimensional pain scores, and an en-
semble learning model to linearly combine the multidimensional
pain scores to best approximate VAS. Starting from human-
labeled AUs, the model achieves a mean absolute error (MAE)
on VAS of 1.73. It outperforms provided human sequence-
level estimates which have an MAE of 1.76. Combining our
machine learning model with the human estimates gives the
best performance of MAE on VAS of 1.48.

I. INTRODUCTION

The current gold standard of estimating clinical pain is pa-
tient self-report given by visual analog scale (VAS), despite
its known limitations [1], [2]. One of these limitations is that
it is difficult to obtain in populations with verbal or neurolog-
ical disabilities [2]. Automated pain recognition models have
been developed to solve this problem using various nonverbal
signals such as facial expressions, head/body movement and
physiological signals [3], [4], [5], [6]. Research has shown
that facial expressions can provide sensitive and reliable
information about pain across the life span [7], [8], from
infants [9] to elderly patients [10], [11].

Two types of pain metrics are usually considered in pain
studies: frame-by-frame metrics and sequence-level metrics.
One prominent example of frame-level metrics, are the
muscle-based facial action units (AUs) defined by the Facial
Action Coding System (FACS) [12]; they have been widely
used as a consistent and reliable way to represent facial
expressions including pain [13] expression. The names of
some of the pain-related AUs can be found in Table I.
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Another frame-level metric, built on top of the AUs, is the
Prkachin and Solomon Pain Intensity (PSPI) [14]. It defines
a single number that measures pain as a combination of AU
intensities:

PSPI = AU4 + max(AU6,AU7) + max(AU9,AU10) +
AU43

Most research on automatic pain detection from facial ex-
pression has focused on predicting frame-level PSPI scores.
A widely used 2-step framework is to first extract low-
dimensional relevant non-rigid geometric or appearance fea-
tures from raw pixels and then learn a classification or
regression model [15], [16], [17], [18]. Otherwise, deep
learning can be used to learn from raw pixels directly [19],
[20]. In addition to these “static approaches” that extract
features from single frames, it is also useful to learn dy-
namic features when data is available in the form of video
sequences [21], [22]. Multiple-instance learning has been
used to learn frame-level scores using sequence-level labels
in a weakly supervised manner [23], [24].

Automated detection of facial AUs has also been well
studied, and PSPI ratings can be calculated directly from
AU estimates. Many approaches of AU detection focused on
finding regions of interest [25], [26], [27], [28]. Jaiswal et
al. and Chu et al. combined CNN and LSTM, and Kumawat
proposed a 3D convolutional layer called Local Binary
Volume layer, to learn temporal information [29], [30],
[31]. Baltrušaitis et al. studied the benefit of person-specific
neutral expression normalisation and multiple datasets for
generic model training, and presented a pipeline that detects
AUs in real-time [32]. Tang et al. and Romero et al. fine-
tuned VGG models pretrained on face datasets to detect AUs
under different facial views [33], [34]

In contrast, to the automated work above, sequence-level
pain metrics are more often used in clinics, and the under-
standing and interpretation of pain in the literature is mostly
based on sequence level assessments, rated by observers or
by self-report. The sequence-level self-rated VAS is still the
most commonly used pain score in clinical settings. Only a
few papers have addressed the problem of estimating VAS
score in facial videos. Sikka et al. [35] and Xu et al. [36]
detected pain in children after surgery using AUs extracted
by iMotions (imotions.com). Liu et al., Martinez et al., and
Xu et al. used a two-stage method to first train a model to
predict pain scores at the frame level, and then predicted
video VAS score using these frame-level predictions [37],
[38], [39] although only [39] started from raw pixels.



Although sequence-level metrics are considered to have
more clinical relevance, frame-level pain recognition has
been studied more thoroughly and there exist software
packages and toolkits such as iMotions (imotions.com) and
OpenFace [40] to automatically detect AUs. There are many
reasons for this. First, it is difficult to obtain a large number
of sequence-level samples. A pain dataset with each video
lasting less than 1 minute can have three orders of magnitude
more frames than videos. Second, machine learning models
on videos require significantly more space and time to
train. This problem is not unique to pain; there are many
deep neural networks trained on facial images, but there
is no publically available model trained on facial videos,
so it is hard to leverage prior work when working with
videos. Currently most sequence-level models use frame-
level models as building blocks [35], [37], [38], [36], [39],
and the problem of learning sequence-level metrics is usually
broken down into two parts: learning frame-level metrics
and learning sequence-level metrics based on the frame-level
metrics. Since there has been a lot of research addressing
the first part (learning frame-level metrics), in this work, we
focus on whether and how well we can solve the second
part. In order to not be dependent on the quality of model
solving the first part, we study the second problem for human
coded frame-level AUs and PSPIs (which are usually used
as ground truth in AU and PSPI estimation models). We
do this through a two-stage model similar to the last two
stages in the extended multitask learning model which is the
current state-of-the-art for estimating VAS [39]. In the first
stage, we send statistics of AUs and PSPI over frames of
each video as inputs to a neural network to get a sequence-
level VAS prediction, and use multitask learning to improve
the VAS prediction while obtaining multidimensional pain
scales. Then, as in [39], we extend the multitask learning
framework by finding an optimal linear combination of these
pain scales to further improve VAS prediction. We show on
the UNBC-McMaster Shoulder Pain dataset [16] that this
method outperforms human video-level labels, and can be
further improved when combined with those human ratings.

The contributions of this paper are as follows:

• We analyze the relationship between multidimensional
pain measurements and their predictions from a machine
learning model

• We study the relationship between sequence-level and
frame-level pain metrics, and build an extended mul-
titask learning model to estimate sequence-level pain
scores using human-coded frame-level features

• We explore ways of utilizing human-coded AUs and
multidimensional pain ratings to improve VAS predic-
tion, and study the contribution of each component of
the multitask-ensemble multidimensional-pain model

• Our model serves as a baseline of how well one can
predict VAS using human-coded AUs

• Our model can be combined with automated AU/PSPI
detection systems to achieve end-to-end VAS prediction
and provides an upper-bound on expected performance.

II. METHOD

This paper studies the widely used UNBC-McMaster
Shoulder Pain dataset [16]. It contains videos of patient faces
(who were suffering from shoulder pain) while they were
performing a series of active and passive range-of-motion
tests to their affected and unaffected limbs on two separate
occasions. The dataset includes 25 subjects, 200 videos and
48,398 frames.

TABLE I: AU Description

AU4 brow lowering AU12 oblique lip raising
AU6 cheek raising AU20 horizontal lip stretch
AU7 eyelid tightening AU25 lips parting
AU9 Nose wrinkling AU26 jaw dropping

AU10 upper lip raising AU43 eye closure

The dataset provides 11 facial action unit (AU) intensities
coded each frame by certified FACS coders, and 1 PSPI score
calculated from the AUs. AUs are defined by FACS (Facial
Action Coding System) [12] to code movements of individual
facial muscles. In this work, we work with the 9 AUs (AU4,
6, 7, 10, 12, 20, 25, 26 and 43) present in more than 500
frames.

In addition to the frame-level features, the dataset also
provides 4 sequence-level labels: VAS (Visual Analog Scale)
0-10, OPR (Observers Pain Rating) 0-5, AFF (Affective-
motivational scale) 0-15 and SEN (Sensory Scale) 0-15.
OPR is the human observers’ rating of pain level of the
video. The other three measures are provided by the patients
themselves. The sensory scale consists of a numeric scaling
associated with the following words of increasing SEN scale:
extremely weak, faint, very weak, weak, very mild, mild,
slightly moderate, moderate, barely strong, clear cut, slightly
intense, strong, intense, very intense, extremely intense.
The affective-motivational (AFF) scale uses the following
affect-based words: slightly unpleasant, slightly annoying,
annoying, unpleasant, slightly distressing, slightly miserable,
very annoying, distressing, very unpleasant, miserable, very
distressing, slightly intolerable, very miserable, intolerable,
very intolerable [41], [42].

With the features and labels described above, our goal
is to train a model that predicts VAS using AU and PSPI
intensities. Our model structure and hyper-parameters follow
that of stage 2 and 3 of the model proposed in [39].

A. VAS Estimation in Facial Videos using AU Sequences

For each video, we form a 10-D feature vector by taking
the maximum rating over all frames for each of the 9 AUs
and 1 PSPI to form a 10 dimensional feature vector of the
video that is input to a fully connected neural network with
one 20 unit hidden layer to predict VAS in a linear output
layer using batch-weighted MSE loss [43]. We used the
Adam optimizer, initial learning rate of 1e-2, batch size of
32, max number of epochs of 200, and used early stopping
when the validation loss hadn’t decreased for 20 epochs.



B. Multitask Learning

As mentioned in [39], the three other sequence level
pain ratings are very related to the VAS pain score which
motivates a multitask learning (MTL) approach [44] that
leverages “the domain-specific information contained in the
training signals of related tasks” [44]. OPR may be especially
useful as it should be fully constrained by information in the
video (unlike VAS that may reflect strong pain but masked
facial expression). The multitask architecture is straight for-
ward. We use 4 scores instead of a single VAS as outputs
of the neural network. The labels are normalized into the
same range so that all elements contribute equally to the
loss during training. The losses are weighted based on the
distribution of VAS scores, and the validation loss is the
mean MSE of the 4 outputs.

C. Ensemble Learning of Multidimensional Pain Scores

Each of the four sequence-level scores (VAS, OPR, AFF,
and SEN) reports on different aspects of pain. VAS reflects
the patient’s overall rating of their perceived pain. AFF and
SEN are designed to try to separate out affective vs sensory
aspects of pain and are also reported by the patient. OPR,
on the other hand, is scored by an external observer and is
only based on the facial video so may be a more predictable
function of the video for training a machine learning system.
If humans are considered the gold standard at facial pain
recognition, then OPR could be considered an approximate
upper bound for a machine-learning facial video system.

OPR, AFF, and SEN are all highly correlated with VAS
(see Figure 1 LEFT) and can be considered as predictions
of VAS. After scaling their outputs to the same range as
VAS, they all do a reasonable job at estimating VAS and can
be considered as four different “experts” (Fig. 1 RIGHT).
Ensemble averaging can be used to compute the optimal
linear combination of experts to reduce variance of the
estimator [45].

As in [39], the final prediction of VAS is learned as a
weighted sum of the four experts. If each expert outputs fi,
then the overall model f̃ is defined as:

f̃ =
4∑

i=1

αifi

We solve the optimization problem minimizing MSE of
the final prediction f̃ subject to

∑4
i=1 αi = 1 [46], [47],

[45], [39]. The optimal α = [α1, α2, α3, α4]T is:

α =
Ω−11

1T Ω−11

where Ω = [ωij ] = [E[(fi − V AS)(fj − V AS)]] and V AS
gives the true VAS labels. The ensemble weights an expert
more if it is more accurate in estimating VAS.

III. EXPERIMENTAL ANALYSIS

On the UNBC-McMaster dataset, we performed 5-fold
cross validation with each fold consisting of 5 subjects.
To prevent overfitting, we used the same training/test splits
for the two stages in each iteration. One of the 4 training

folds is randomly selected as the validation set for neural
network training. After 5 iterations we evaluate the models
using Mean Absolute Error (MAE), Mean Squared Error
(MSE), Intraclass Correlation Coefficient (ICC) and Pearson
Correlation Coefficient (PCC) on all test data. ICC is useful
when MAE scores are deceptively low. For example, for the
current dataset, if the model outputs the average VAS for
all samples, the MAE will be 2.44, but the ICC will be
approximately zero. So we want low MAE with high ICC.

For all models in this paper, we performed the above 5-
fold cross validation 5 times, and report mean and standard
deviation over 5 experiments. All experiments were run on
a single NVIDIA Titan V GPU.

A. Relationship between Sequence-level Metrics in the Data

Fig. 1: Correlation (left) and MAE (right) between each pair
of the 4 sequence-level true scores. The scores have been
scaled to the same range 0-10.

OPR AFF SEN

Fig. 2: 2D histogram of sequence-level score pairs.

The relationship between the 4 sequence-level scores in
the UNBC-McMaster dataset is shown in Fig. 1. We can see
from the heatmap on the left that VAS, AFF and SEN are
highly correlated, and OPR is also correlated with these 3
self-rated scores but not as much. The right side of the figure
shows how well (in terms of MAE) each of the multimodal
pain measures predicts the others (after appropriate rescal-
ing). For example OPR (human ratings) predicts VAS with
an MAE of 1.76.

Figure 2 shows the joint distributions of VAS with OPR,
AFF and SEN plotted as 2D histograms. It can be seen
that although VAS is linearly correlated with the three other
scores, they are not strictly proportional.

B. Relating Sequence- and Frame-level Metrics in the Data

Fig. 3, shows the correlation between the frame-level and
sequence-level pain scores. We see again the high correla-
tions between the sequence-level measures and some corre-
lation between the frame-level measures. Of the sequence
measures, OPR generally has a higher correlation with
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Fig. 3: The correlation between 4 sequence-level scores (VAS, OPR, AFF, SEN) and 10 frame-level scores (9 AUs and
PSPI) in the data. On the left is the correlation at the frame level, where the VAS for a frame is the VAS of the video it
belongs to. On the right is the correlation at the sequence level, where the maximum AU/PSPI for a video is taken.

the AUs and PSPI. This shows the potential of predicting
sequence-level pain ratings from frame-level measurements.

C. Multidimensional Pain Prediction using Neural Networks

While the previous subsections discussed properties of the
UNBC-McMaster Pain dataset, in this subsection we discuss
relations between predictions from our neural networks.

VAS OPR AFF SENmean

VAS

OPR

AFF

SEN

 1.77 1.66 1.70 1.67 1.66

 2.13 1.77 1.95 1.97 1.92

 1.79 1.42 1.14 1.46 1.42

 1.49 1.30 1.29 1.31 1.30

train
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1.75

2.00

2.25

VAS OPR AFF SENmean

 1.90 1.72 1.82 1.79 1.77

 2.15 1.86 1.96 1.99 1.95

 1.82 1.42 1.26 1.53 1.47

 1.59 1.34 1.41 1.43 1.40

test

1.25
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1.75

2.00

2.25

Fig. 4: Average MAE on training and test data. The y axis
gives the true label, and x axis the predictions. Each entry is
the mean absolute difference between the two variables. All
the labels and predictions have been mapped to the range
0-10 before calculation, but MAEs in different rows are not
strictly comparable because OPR only takes 6 values while
AFF and SEN can take 16.
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Fig. 5: Contributions of each of the AUs to the neural
network outputs that use max of AUs and PSPI as input. The
heights of the bars represent feature importance measured as
the mean absolute shap values. Error bars show the standard
deviation of the mean absolute shap values.
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Fig. 6: Contributions of each of the 9 PSPI statistics to the
neural network outputs that use 9 PSPI stats as input. The
heights of the bars represent feature importance measured as
the mean absolute shap values. Error bars show the standard
deviation of the mean absolute shap values.

Fig. 4, presents, as heatmaps, the MAEs of the multitask
neural network with 4 outputs (prior to ensembling) corre-
sponding to the 4 sequence-level pain ratings. For example,
diagonal elements show the MAEs of each output predicting
the corresponding metric, and the second element in the first
row shows the MAE of using the OPR output to predict
VAS. Interestingly, the best MAE in predicting a metric is
not always given by its corresponding output, e.g. the OPR
output predicts VAS better than the VAS output, and the OPR
output works better in SEN prediction than the SEN output.
Actually, the OPR output works well when used to estimate
all the metrics despite being trained to only estimate OPR,
the metric with the lowest correlation with the other pain
scores. This may be because OPR is more consistent across
subjects and is based purely on video features. As a result,
OPR may be learned more easily from facial features such
as AUs and PSPI, and serve as a better pain metric when
tested across subjects.

AU Importance. We use the shap framework [48] to
calculate the contribution of each of the AUs to the four
output scores, and plot the importance values in Fig. 5. The
bar graph shows, for example, that AU7, 12, 25 and 43 are
very useful in pain prediction, except that AU25 is much
less important when predicting OPR than predicting the self-
ratings. OPR uses PSPI more while not using as much the



individual AUs compared to the self-report measures of VAS,
AFF and SEN. Interestingly, while AU4 is considered to be
among the “core expressions of pain” and contributes to PSPI
score [49], [14], [50], it is not a very important feature in
this model on this dataset.

There is a fair amount of consistency between Fig. 5 and
Fig. 3. For example, PSPI has higher correlation with OPR
than the 3 self-rated scores, and also higher importance for
predicting OPR. AU25 and 43 are less important for OPR and
also less correlated with OPR than the other 3 pain scores.

Benefit of Multitask Learning. We explore the benefit of
multitask learning in the neural network in Table II row 1-2.
The first row shows the VAS prediction performance without
multitask learning, i.e. when the neural network only has one
output predicting VAS. The second row corresponds to the
multitask learning model, where the performance is evaluated
only with the output trained to predict VAS. Learning the
three other scores from a shared hidden layer, together with
VAS helps the model’s VAS output to better predict VAS.

Different Input Features. When extracting sequence-
level features for a video from a sequence of frame-level
features, we simply take the maximum of the AU/PSPI se-
quence as in [15], but it is also common to use other statistics
such as standard deviation, minimum, mean, etc. [35], [37],
[36], [39]. To explore how different choices of input features
work, we extracted 9 statistics (mean, max, min, standard
deviation, 95th, 85th, 75th, 50th, 25th percentiles) from the
PSPI and AU sequences to form a length-90 (9 stats × (9 AU
+ 1 PSPI)) feature vector. The performance using 90 features
is not as good as using 10 maxima (row 4-6 compared to
row 1-3 in Table II). The reason may be that 90 dimensional
inputs is too large for our model. To address this, we also
tried using 9 statistics of PSPI only following [37], [39]
since PSPI is defined to represent pain and contains the
most comprehensive information about pain expressions. The
results are shown in the last three rows in Table II. Using 9
statistics of PSPI works fine, but still not as good as using
10 maxima of PSPI and AUs. The shap importance values
for this model are plotted in Fig. 6. Min and 25 percentile
are two inputs that are not very useful for this model.

D. Optimal Linear Combination of Multidimensional Pain

While multitask learning results in improved training of
VAS prediction through joint learning of all 4 measures,
ensembling the 4 predicted outputs discussed in Section II-C
results in significantly (p < 0.0001) better performance as
shown in row 3 in Table II.

E. Contributions of Different Components: Multitask Learn-
ing, Ensemble Learning and Multidimensional Pain

In this section, we perform ablation studies to explore the
relative contributions of different components of the extended
multitask learning model.

In order to see whether multitask learning helps, we
trained models with separate hidden layer for each of the four
sequence-level outputs i.e. with the same inputs and outputs
but without multitask learning/hidden layer sharing. The

performance (“4 scores”) is not as good as using multitask
learning (“4 scores MTL”) (see Table II and Fig. 7).

In order to compare the importance of ensemble learning
to that of multi-task learning, we trained a model with the
same structure as our best model, i.e. with 4 neural network
outputs and ensemble learning on top of them, but instead
of using 4 different pain scores as labels for NN outputs,
we trained each of the 4 outputs with identical VAS labels
(but different initial conditions). This allows the model to
start from 4 different initial states and explore different
areas of the weight space with different final predictions.
The ensemble model will then find the best way to linearly
combine these predictions to obtain a new random variable
as the prediction of VAS. The results show that this simple
ensemble model also performs better than a single network
predicting only VAS but slightly worse than the best model
predicting 4 different pain scores, as plotted in Fig. 7 “VAS
×4 MTL”. From these results we conclude that ensembling
is most helpful for the excellent performance, but that using
multidimensional pain scores is also helpful.

We also trained a version of the network with 4 VAS
outputs where each output had its own (unshared) hidden
layer. (“VAS ×4” in Fig. 7). This model performed slightly
worse. This is likely because the multitask learning model
has less parameters and so learns faster with less overfitting.

Lastly, since ensemble learning contributes significantly to
the performance, we considered a model with extra copies
of outputs to provide more “expert” predictions to ensemble.
We considered 4 copies of the 4 different sequence-level
scores, and separately, 16 copies of VAS, to make 16 output
NNs. This didn’t further improve the performance.

To summarize, with the same inputs, the model with en-
semble learning on multidimensional pain predictions yields
the best performance. This corresponds to the third row in
Table II for each input type, as well as the first (blue) bar in
Fig. 7 in each group.

F. Comparison with Humans and Other Work
We compare our model with humans in Table III. The

human ratings are given by the OPR scores in the dataset.
Our extended multitask learning model using AU features
and multidimensional pain outputs beats the MAE of those
humans. Moreover, when averaging our prediction with the
human predictions, the performance can be further improved.
This implies that learning pain as a function of individual
AUs may be a more accurate and systematic way than
learning pain from the whole face.

We also compare our model using true AUs with [39] that
has a model with similar structure but uses AUs predicted au-
tomatically from the output of a deep convolutional network.
Our results significantly outperform [39] demonstrating the
potential of an end-to-end VAS prediction model if the AU
prediction stage is improved.

IV. DISCUSSION AND CONCLUSION

We explored a model that predicts VAS using facial
actions units, and beats human observers on the UNBC-
McMaster Shoulder Pain dataset. When a human observer is



TABLE II: Sequence-level VAS Prediction using Frame-level Labels

NN Input NN Output Ensemble Learning MAE MSE ICC PCC
PSPI+AU max VAS - 1.94± 0.05 5.25± 0.18 0.57± 0.02 0.64± 0.02
PSPI+AU max 4 scores MTL - 1.90± 0.04 4.98± 0.10 0.59± 0.01 0.67± 0.01
PSPI+AU max 4 scores MTL Ensemble 1.73 ± 0.03 4.61 ± 0.19 0.61 ± 0.02 0.67 ± 0.02

PSPI+AU stats VAS - 2.02± 0.05 5.83± 0.14 0.51± 0.04 0.58± 0.02
PSPI+AU stats 4 scores MTL - 1.94± 0.05 5.39± 0.22 0.56± 0.02 0.61± 0.02
PSPI+AU stats 4 scores MTL Ensemble 1.81± 0.04 5.04± 0.17 0.58± 0.01 0.63± 0.01

PSPI stats VAS - 2.07± 0.05 5.81± 0.23 0.52± 0.04 0.63± 0.03
PSPI stats 4 scores MTL - 2.03± 0.05 5.58± 0.23 0.53± 0.03 0.65± 0.02
PSPI stats 4 scores MTL Ensemble 1.76± 0.03 4.81± 0.18 0.59± 0.02 0.65± 0.02

Fig. 7: Bar graphs showing the MAE, MSE, 1-ICC, 1-PCC (we plot 1-ICC and 1-PCC instead of ICC and PCC so that for
all sub-figures shorter bars mean better performance) of the following models predicting VAS using 3 different combinations
(PSPI, PSPI+AU, PSPI+AU max) of frame-level labels: (1) 4 scores MTL. Predicting 4 scores using multitask learning. (2)
4 scores. Predicting 4 scores using 4 separate models. (3) VAS × 4 MTL. Predicting 4 VAS using multitask learning. (4)
VAS × 4 predicting 4 VAS using 4 separate models. (5) 4 scores × 4 MTL. Predicting 4 copies of 4 scores using multitask
learning. (6) VAS × 16 MTL. Predicting 16 copies of VAS using multitask learning.

TABLE III: Comparison with Humans and Other Work

MAE MSE ICC PCC
EMTL with true AU (this paper) 1.73± 0.03 4.61± 0.19 0.61± 0.02 0.67± 0.02

EMTL from pixels [39] 1.95± 0.06 5.90± 0.23 0.43± 0.03 0.55± 0.03
Human (OPR) 1.76 6.26 0.66 0.66

Average of EMTL (with true AU) and Human 1.48± 0.02 4.22± 0.10 0.70± 0.01 0.71± 0.01

available, the performance can be largely improved simply
by averaging our prediction and the human prediction. While
the human observer in the UMBC-McMaster dataset is not
necessarily the same human that labeled the AUs, it would be
interesting to explore whether this method of using human-
labeled AUs can beat the same observer at VAS prediction.

We studied ablations of the Extended Multitask Learning
Model. The approaches using multitask learning, multidi-
mensional pain measurement and ensemble learning can be
used in similar healthcare datasets and tasks. Our model can
be combined with existing frame-level pain estimation mod-
els such as AU or PSPI extractors to easily form a video-level
metric prediction model. In this case, the performance shown
in this paper provides an upper bound on the accuracy that
can be achieved when using automatically estimated AUs
instead of manually labeled AUs. It also provides a baseline
for estimating sequence-level pain ratings such as VAS using
widely-used frame-level pain related measurements such as
AUs and PSPI.
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