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Abstract—Brain-computer interface (BCI) systems are pro-

posed as a means of communication for locked-in patients. One

common BCI paradigm is motor imagery in which the user

controls a BCI by imagining movements of different body parts.

It is known that imagining different body parts results in event-

related desynchronization (ERD) in various frequency bands.

Existing methods such as common spatial patterns (CSP) and

its refinement filterbank common spatial patterns (FB-CSP)

aim at finding features that are informative for classification of

the motor imagery class. Our proposed method is a temporally

adaptive common spatial patterns implementation of the com-

monly used filter-bank common spatial patterns method using

convolutional neural networks; hence it is called TA-CSPNN.

With this method we aim to: (1) make the feature extraction

and classification end-to-end, (2) base it on the way CSP/FBCSP

extracts relevant features, and finally, (3) reduce the number

of trainable parameters compared to existing deep learning

methods to improve generalizability in noisy data such as EEG.

More importantly, we show that this reduction in parameters

does not affect performance and in fact the trained network

generalizes better for data from some participants. We show

our results on two datasets, one publicly available from BCI

Competition IV, dataset 2a and another in-house motor imagery

dataset.

I. INTRODUCTION

Brain-computer interface (BCI) systems read and interpret
brain signals directly from the brain and were proposed
originally as communication methods for patients suffering
from locked-in syndrome [1]. Motor-imagery (MI) based
BCIs involve the user imagining moving different body
parts to provide different control signals. This results in
decreased/increased power in some frequency bands often re-
ferred to as event-related desynchronization/synchronization
(ERD/S) [2], [3], and the differences between MI of different
body parts can be emphasized with spatial filtering. The
common spatial patterns (CSP) algorithm is commonly used
to find filters that maximize the projected variance for one
class while minimizing it for the other class [4]. Filter-bank
common spatial patterns (FB-CSP) is a variation of CSP in
which optimal sets of filters are sought in multiple frequency
bands [5]. However, one downside of both CSP and FB-CSP
methods is that supervised feature extraction step (finding the
optimal filters) and classification are performed in separate
steps.
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Convolutional neural networks (CNN) have revolutionized
the area of computer vision [6]. However, the characteristics
of EEG signals are very different from those of images,
videos, or speech. EEG signals are time series recorded
from electrodes located at multiple sites on the scalp. They
are prone to artifacts from non-brain sources such as eye
and muscle movements and usually have low signal-to-
noise ratio. Therefore, the common architectures of deep
convolutional neural networks should be adapted to provide
their benefits (end-to-end feature extraction and classification
and ability to learn non-linear task specific classification
boundaries) while not suffering from the potential drawbacks
(overfitting or learning to use class-correlated non-brain
artifacts for classification).
Proposed by Maryanovsky et. al [7], CSP-NN implements

the CSP algorithm in a convolutional layer (with kernel size
C ⇥ 1) followed by squared-average pooling to emulate
the usual squared post-processing after CSP filtering. It
independently computes spatial filters for multiple frequency
bands using signals that are already filtered through a bank of
band-pass filters just as the original filter-bank CSP algorithm
does. Then the features from the filters are merged and go
through a fully-connected layer before the output layer.
Shallow and deep ConvNets [8] are two CNN-based ar-

chitectures proposed for EEG-based BCI data classification.
Shallow ConvNet learns a temporal convolution as its first
layer and a spatial convolution afterwards. A squared-average
pooling layer provides non-linearity; however, the pool that
is averaged and squared is shorter than the length of the
EEG epoch. Next, the features are concatenated and their
logarithm is sent to a dense layer with soft max activation
over the number of units equal to the number of motor
imagery classes.
EEGNet [9] was proposed as a general-purpose CNN-

based model for EEG-based BCIs and can handle both
ERD/ERS type features as well as temporal event-related
potentials (ERP). It consists of two blocks, each with con-
volutional layers, non-linear activation function (exponential
linear unit), pooling and dropout. The EEGNet architecture
has fewer parameters than shallow ConvNet.
As motor imagery BCIs are known to involve changes in

power in different frequency bands, we propose an architec-
ture for ERD/ERS type features. It is important to note that
since EEG is generally noisy and artificial neural networks
can use many parameters to learn highly non-linear functions,
they are prone to overfitting. Inspired by the FB-CSP method,
our goal is to propose a CNN-based model for motor imagery
classification that keeps the number of parameters small



without compromising performance. We propose to use the
temporal convolutional layer from EEGNet together with the
spatial feature extraction convolutional layer and activation
function from CSP-NN. We call this temporally adaptive
common spatial patterns with neural networks (TA-CSPNN).
This method uses about half the parameters of EEGNet and
yet provides similar or improved results (see Section IV).

II. PROPOSED ARCHITECTURE: TA-CSPNN

Let Xi 2 RC⇥T be the available EEG epochs for each
class i 2 {1, ..., N} where N is the number of imagery
classes, C is the number of EEG channels and T the number
of time samples. Layers in TA-CSPNN are described in table
I and in a block diagram in figure 1. The design parameters
are K: length of temporal kernel, Ft: number of temporal
filters, Fs: number of spatial filters, and p: dropout layer
parameter that indicates the fraction of layer inputs to drop
[10].

TABLE I
DESCRIPTION OF LAYERS IN TA-CSPNN.

Layer Filters/Units Size Output
Input - - (1, C, T )

Conv 2D Ft (1,K) (Ft, C, T )
Batch Normalization - - (Ft, C, T )
Depthwise Conv 2D Fs (C, 1) (Ft ⇥ Fs, 1, T )
Batch Normalization - - (Ft ⇥ Fs, 1, T )

Activation: x2 - - (Ft ⇥ Fs, 1, T )
Average pooling - - (Ft ⇥ Fs, 1, 1)

Dropout(p) - - (Ft ⇥ Fs, 1, 1)
Flatten - - Ft ⇥ Fs

Fully connected N - N
Activation: Softmax - - N

Fig. 1. Block diagram of the proposed TA-CSPNN.

The first convolutional layer filters the input EEG signal
with multiple filters. Note that this layer is equivalent to
filtering each channel of EEG data with a finite impulse
response (FIR) filter:

Xi(c, t) =
K�1X

n=0

bnXi(c, t� n), (1)

where K is the length of the temporal filter and bn (n 2
{0, ...,K � 1}) the filter weights. We did not use a bias
for the weights trained in this layer to be as close to
equation 1 as possible. Note that this temporal Conv2D is
implemented with mode ‘same’ in Keras to pad the input
with zeros such that the output has the same number of
rows and columns as the input. Batch normalization [11]
along the first dimension is applied next. Then a depthwise
2D convolution is applied to extract spatial features. This is
equivalent to learning the spatial filters in each temporally
filtered (filterbank) separately. We used a norm constraint
on the spatial filter weights such that ||w||2  1. This is
because the common spatial filters in the CSP algorithm are
eigenvectors of a generalized eigenvalue problem and have
norm 1. Note that this Conv2D layer is only applied along
the channels (and not the time dimension) and is essentially
a one-dimensional kernel. Common spatio-temporal filters
can be learnt by using a 2D kernel along time and space as
discussed in [7].
The output of the spatial convolution is squared and

summed (average pooling layer) across time which is equiv-
alent to calculating the power of the spatially filtered EEG
data. The dropout layer [10] comes after. We use dropout
to prevent overfitting and allow better generalization. Finally
the features are sent through a dense layer of the size of the
number of imagery classes (output). The activation is chosen
to be softmax such that the network outputs probabilities.
As mentioned earlier, activity from the spatial convolution

layer is squared and passed through an average pooling layer.
This is different from EEGNet’s use of the exponential linear
unit (ELU) activation function. Figure 2 plots both of these
functions. We chose x2 as the non-linear activation function
since ERS/ERD features are variations in the power of the
EEG signal.
Code was implemented in Keras [12] with Tensorflow

backend [13] and is available at https://github.com/
mahtamsv/TA-CSPNN. We used Adam optimization with
default parameters [14] to minimize the categorical cross-
entropy loss function. In all experiments, 10% of the training
data were used for validation. To avoid overfitting, the accu-
racy of the validation set was monitored for early stopping
[15] with a patience of 50 and maximum of 500 epochs. The
model was then evaluated on the test set.

III. DATASETS

We report the performance of our proposed architecture
on two datasets:



Fig. 2. Comparison of ELU and x2 activations.

A. Dataset I

This is a publicly available dataset (BCI Competition IV,
Dataset 2a) [16] from 9 participants performing left hand,
right hand, both feet, and tongue motor imagery. The dataset
consists of data from two sessions (train and evaluation sets)
for each participant recorded on two different days. Each
session has 288 trials total (72 for each imagery class). Data
were recorded from 22 EEG and 2 EOG channels but we
only used the EEG channels.
We used code provided by [8] to import, epoch and filter

the data from 4-40 Hz and epoch from 0.5-2.5 seconds after
the onset of the cue. The number of classes is N = 4. Data
on each channel were downsampled to 125 Hz.

B. Dataset II

Motor imagery data were recorded from 10 participants
who signed a consent form approved by the UC San Diego
Human Research Protections Program prior to participating
in the experiment. Data were recorded using a 64-channel
BrainAmp system (Brain Products GmbH). Participants were
instructed to perform right/left hand motor imagery to move
a cursor on the screen in front of them right/left towards a
target at either the right/left side of the screen. The cursor
moved at the speed of one step per second towards/away
from the target. After visual inspection, we applied ICA
and removed eye and muscle artifacts. Then the data were
downsampled to 100 Hz, bandpassed from 1-40 Hz with an
FIR filter of order 100 and epoched 0.1-1 second after each
cursor movement. For more details about the experiment
please refer to [17].
For the CSP-NN method, we used FIR filters of order 100

to filter the EEG data on each channel in 1-3, 2-5, 4-7, 6-
10, 7-12, 10-15, 12-19, 18-25, 19-30, 25-35, and 30-40 Hz
frequency bands to cover low and high theta, mu and beta
bands while compensating for individual differences [17].
We randomly selected 5 divisions of train-validation-test

sets in which right and left imagery classes were balanced
in each set. Performance is reported as the average of the
classification accuracy on the test sets.

IV. RESULTS AND DISCUSSION

As the EEGNet architecture for ERD/ERS data outper-
forms deep ConvNet [9], we restrict comparison of our TA-

CSPNN to shallow ConvNet and EEGNet. For dataset I,
performance of TA-CSPNN with Ft = 8 temporal filters
and Fs = 2 spatial filters is presented in table II and is
compared with EEGNet(8,2) [9] and shallow ConvNet (Sh-
ConvNet) [8]. For this dataset, the length of the temporal
kernel and the dropout parameter were set to K = 63 and
p = 0.25 respectively for both EEGNet and TA-CSPNN.
Shallow ConvNet was originally proposed for a sampling
rate of 250 Hz. Since we downsampled the data by two, we
also divided the lengths of the temporal kernels and pooling
layers by two: temporal kernel length was set to 13, pool
size in the average pooling layer to (1,35) with a stride of
size (1,7) as suggested by [9].
For each participant, all models were trained on the train

set with 10% for validation and tested on the evaluation
set (as originally distributed for the purpose of the BCI
competition). Performance is reported as the average of the
classification accuracy on the evaluation set for a model
trained with 10 different initializations. Shallow ConvNet
performs significantly better than TA-CSPNN for A2 and
A4 but does significantly worse for A1, A3, A8 and A9
(paired-sample t-test, p < 0.05). However, the difference be-
tween EEGNet and TA-CSPNN is not statistically significant
(paired-sample t-test, p > 0.1).
Table III reports the length of EEG epochs (L), the

sampling rate (SRate) and the number of trainable parameters
in each architecture for dataset I. Note that the number
of parameters in TA-CSPNN is about half the number of
parameters in EEGNet and less than 2.5% of the number of
parameters in shallow ConvNet.

TABLE II
CLASSIFICATION RATES FOR DATASET I. NOTE THAT THIS IS A

FOUR-CLASS CLASSIFICATION.

PID Sh-ConvNet EEGNet(8,2) TA-CSPNN(8,2)
A1 0.61 0.69 0.71
A2 0.39 0.40 0.36
A3 0.70 0.79 0.79
A4 0.55 0.49 0.44
A5 0.38 0.38 0.39
A6 0.42 0.46 0.44
A7 0.70 0.71 0.72
A8 0.62 0.73 0.72
A9 0.68 0.78 0.76

TABLE III
NUMBER OF PARAMETERS FOR DATASET I: TRIAL LENGTH IS 2

SECONDS AT SAMPLING RATE OF 125 HZ.

L SRate Sh-ConvNet EEGNet(8,2) TA-CSPNN(8,2)
2 s 125 Hz 40644 1900 972

For dataset II, the length of the temporal kernel and
dropout parameter were set to K = 50 and p = 0.25 for both
EEGNet and TA-CSPNN. Since CSP-NN has 11 temporal
filters and 6 spatial filters (equivalent to the top three filters
for each class in CSP), we set the number of temporal and



TABLE IV
CLASSIFICATION RATES FOR DATASET II.

PID CSP-NN EEGNet(11,6) TA-CSPNN(11,6)
P1 0.87 0.87 0.87
P2 0.66 0.68 0.74
P3 0.71 0.70 0.71
P4 0.74 0.78 0.76
P5 0.83 0.91 0.89
P6 0.74 0.68 0.74
P7 0.87 0.82 0.86
P8 0.82 0.77 0.88
P9 0.69 0.72 0.75
P10 0.71 0.67 0.78

TABLE V
NUMBER OF PARAMETERS FOR DATASET II: TRIAL LENGTH IS 0.9

SECONDS AT SAMPLING RATE OF 100 HZ.

L SRate CSP-NN EEGNet(11,6) TA-CSPNN(11,6)
0.9 s 100 Hz 6560 10738 5062

spatial filters in both EEGNet and TA-CSPNN to Ft = 11
and Fs = 6 respectively.

CSP-NN was implemented slightly different than [7]: we
used batch normalization [11] after the Conv2D layer for
each frequency band and also used dropout with p = 0.25
after the squared-average pooling layer. Then the merged
features from different frequency bands were passed to a
dense layer with 30 hidden units and ELU activation function
before the output layer.
Table IV reports the classification accuracy for each partic-

ipant in dataset II. TA-CSPNN does significantly better than
EEGNet (paired-sample t-test, p < 0.05) in P2, P6, P8 and
P10. For the rest of the participants, the difference between
EEGNet and TA-CSPNN is not statistically significant.
Table V reports the length of EEG epochs (L) for dataset

II as well as the sampling rate (SRate) and the number of
trainable parameters for each model applied to dataset II.
Note that TA-CSPNN uses less than half the number of
parameters in EEGNet.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a temporally adaptive convo-
lutional neural network-based implementation of the widely
used FB-CSP to classify ERD/ERS: TA-CSPNN. Our model
uses about half the number of parameters in EEGNet [9]
and less than 2.5% of that used by shallow ConvNet [8] and
shows comparable or improved results for motor imagery
classification on a publicly available dataset (BCI Competi-
tion IV, dataset 2a) and another motor imagery dataset [17].
Our proposed architecture is easily generalized to incorpo-

rate spatio-temporal features in each filterbank by changing
the spatial convolution kernel size [7], [18]. Also, regulariza-
tion methods that have been proposed to improve CSP [19]
can be incorporated as regularization terms on the weights
in the spatial convolution layer. Moreover, the hidden layers
may provide additional useful feedback signals for online
motor imagery training [20].
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